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The prescribed dose of anticancer
agents is most commonly calculated
using body surface area as the only
independent variable, and it has been
shown that this approach still results
in large interpatient variability in
drug exposure. Here, we retrospec-
tively assessed the pharmacokinetics
of 33 investigational agents tested in
phase I trials from 1991 through 2001,
as a function of body surface area in
1650 adult cancer patients. Twelve of
the drugs were administered orally,
19 were administered intravenously,
and two were administered by both
routes. Body surface area-based dos-
ing was statistically significantly asso-
ciated with a reduction in interpatient
variability in drug clearance for only
five of the 33 agents: docosahexaenoic
acid (DHA)–paclitaxel, 5-fluorouracil/
eniluracil, paclitaxel, temozolomide,
and troxacitabine. These results do
not support the use of body surface
area in dose calculations and suggest
that alternate dosing strategies should
be evaluated. We conclude that body
surface area should not be used to de-
termine starting doses of investiga-
tional agents in future phase I stud-
ies. [J Natl Cancer Inst 2002;94:
1883–8]

In clinical oncology, the traditional
method by which individualized anti-
cancer drug doses are determined uses
body surface area, because use of this
measurement is thought to reduce the
interpatient variability of drug exposure
and, hence, drug effects (1). The use of

body surface area measurements arose
from the extrapolation of drug doses
used in experimental animals to those
considered safe as starting doses for hu-
man cancer patients in phase I clinical
trials (1). However, a rigorous scientific
rationale for body surface area-based
dosing of anticancer drugs in adults is
lacking, especially when one considers
that the difference in size between mice
and humans is far greater than the dif-
ference in size between individual pa-
tients. Although the primary objective of
phase I trials is to evaluate drug toxicity,
antitumor activity is usually a secondary
objective. Other measures, such as drug
clearance, have also been used as surro-
gate markers of drug effects. However,
it has been widely recognized that large
interpatient variability in drug clearance
exists despite the use of body surface
area in drug-dose calculations (2). In-
deed, for most drugs that are used in
clinical practice today, clearance cannot
be reliably predicted by body surface
area, because other factors involved in
drug disposition may be more important
for clearance (1,3–5). For example,
several recent studies (6–9) have high-
lighted the importance of genetic poly-
morphisms in drug-metabolizing en-
zymes and drug transporter proteins in
explaining interindividual pharmacoki-
netic variability. As a follow-up to a
preliminary report by Grochow et al.
(10), we assessed the pharmacokinetics
of 33 investigational agents in adult
cancer patients as a function of body
surface area to provide a pharmacoki-
netic rationale for selecting the appro-
priate starting doses for phase I evalua-
tion.

Data were obtained from 1650 pa-
tients who were treated with 33 antican-
cer drugs (involving 21 classes of
agents) that were developed in phase I
trials over a 10-year period at three in-
stitutions. Twelve of the drugs were ad-
ministered orally, 19 were administered
intravenously, and two were adminis-
tered by both routes. Detailed clinical
and pharmacokinetic profiles for these
agents have been described elsewhere
(5,11–68). All patients were at least 18
years old and had normal organ func-
tion, except for those enrolled in two
studies that involved patients with vary-
ing degrees of renal and hepatic impair-
ment (65,66). Drug clearance was calcu-
lated by using either noncompartmental
or compartmental analysis (69) and was

expressed either as liters per hour (L/h)
or as L/h normalized to body surface
area in meters squared (L/h/m2). Inter-
patient variation in drug clearance was
calculated by dividing the standard de-
viation by the mean and was expressed
as a percentage (i.e., the coefficient of
variation [CV]). We used the following
arbitrarily defined criteria to determine
whether body surface area-based dosing
was statistically significantly associated
with a reduction in interpatient variation
in clearance: 1) a linear regression coef-
ficient (R) � .50; 2) P<.01; and 3) a
relative reduction in the variability of
clearance �15%, which was calculated
by using the formula {[CV for clearance
(L/h) – CV for clearance (L/h/m2)] /
[CV for clearance (L/h)]} × 100. All
three of these criteria had to be met for
the reduction to be considered statisti-
cally significant.

The median body surface area for the
entire patient population was 1.86 m2

(interquartile range � 1.68–2.00 m2)
and the mean body surface area was
1.86 m2 (range � 1.25–3.06 m2). The
CV for clearance, the correlation be-
tween body surface area and clearance,
and the relative reduction in variability
for clearance for each of the agents are
listed in Tables 1 and 2. For all but five
agents (i.e., docosahexaenoic acid [DHA]–
paclitaxel, 5-fluorouracil/eniluracil, pac-
litaxel, temozolomide, and troxacit-
abine), body surface area-based dosing
was not associated with a statistically
significant reduction in the interpatient
variability in drug clearance.

In the case of drugs for which renal
function plays a principal role in drug
elimination, BSA-based dosing may de-
crease variability in drug clearance
among patients. For example, troxa-
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citabine, an L-nucleoside analogue, and
5-fluorouracil coadministered orally
with the dihydropyrimidine-dehydroge-
nase inactivator eniluracil, are primarily
excreted in the urine as unchanged drugs
( ≈ 60% and 75% unchanged, respec-
tively). Normalization of drug dose to
body surface area was associated with a
22% reduction in the interpatient varia-
tion in troxacitabine clearance and a
15% reduction in the interpatient varia-
tion in 5-fluorouracil/eniluracil clear-
ance (17,67). Body surface area-based
dosing of pemetrexed, a novel multi-
targeted antifolate that is also mainly
excreted in urine as unchanged drug
(>70% unchanged) was also associated
with a 16% reduction in interpatient
variation in drug clearance (70). The
known association between body sur-
face area and glomerular filtration rate
(71) may explain the observed relation-
ship between body surface area and
clearance of these renally excreted
agents. However, the finding that differ-
ences in body surface area among pa-
tients account for only a small percent-
age (i.e., �22%) of the total variability
in drug clearance is consistent with re-
sults from a recent study (72) that re-
ported that body surface area was poor-
ly correlated with glomerular filtra-
tion rate (R<.22). Therefore, for agents
that are excreted principally by the kid-
neys, dosing strategies that are based on
the accurate assessment of glomerular

filtration rate and not on body surface
area should be associated with de-
creased interpatient variability in clear-
ance (73).

Body surface area-based dosing may
also be a preferred dosing strategy for
drugs that are confined to blood volume
because of the known relationship be-
tween body size and blood volume
(74,75). For example, we found that
body surface area was highly correlated
with temozolomide clearance (R � .88,
P<.001) and was associated with 35%
of the variation in temozolomide clear-
ance among patients. Temozolomide is
an alkylating agent that undergoes
pH-dependent breakdown to the active
moiety 5-(3-methyltriazen-1-yl)imida-
zole-4-carboxamide immediately fol-
lowing drug administration and is virtu-
ally isolated to the central compartment.
Interpatient variability in DHA–pacli-
taxel clearance was reduced by 26%
when the dose of that agent was normal-
ized to body surface area. DHA–
paclitaxel has a low clearance (∼0.11
L/h), has a small volume of distribution
(∼4 L), and is extensively (>99.6%)
but nonspecifically bound to alpha1-
acid glycoprotein and albumin (76).
These characteristics indicate that
DHA–paclitaxel is principally confined
to blood volume, and that systemic
exposure to total drug may be dictated
by its capacity to bind plasma proteins.
By contrast, drugs that bind a single

protein with high affinity but low capac-
ity [e.g., as 7-hydroxystaurosporine
(UCN-01) binds alpha1-acid glycopro-
tein (77)] are more likely than DHA–
paclitaxel to show wide variations in
unbound (i.e., pharmacologically ac-
tive) drug concentrations among pa-
tients. For agents with disposition char-
acteristics like UCN-01, measurement
of total drug concentrations in plasma is
a poor surrogate for that of unbound
drug (78), and accurate assessment of
the relationship between body surface
area and clearance requires measure-
ment of unbound drug concentrations.
Thus, the protein-binding characteris-
tics of investigational agents across
species should be characterized before
those agents are evaluated in phase I
trials.

Normalizing doses to body surface
area may also provide an advantage for
drugs, such as paclitaxel, that are formu-
lated in vehicles that are known to affect
drug disposition. For example, previous
work (51,79) has shown that the distri-
bution of paclitaxel in the blood depends
on the duration of drug infusion and the
dose of its formulation vehicle (Cremo-
phor EL-dehydrated ethanol USP; Bris-
tol-Myers Squibb, Wallingford, CT),
which is likely due to the preferential
affinity of paclitaxel for Cremophor EL
in the circulation. It has been demon-
strated that this vehicle has a distribu-
tion volume that approximates the blood

Table 1. Variability in drug clearance of orally administered agents*

Agent

CV for drug
clearance/f, %

No. of
patients R† P‡ RIV, % Drug class ReferenceL/h L/h/m2

9-AC§ 53.7 55.0 41 .04 .81 0 Topoisomerase I inhibitor (11,12)
BN80915 151 148 17 .05 .85 2.0 Topoisomerase I inhibitor (13)
Capecitabine 31.3 36.5 30 .07 .71 0 Oral fluoropyrimidine (14)
CS-682� 59.3 54.1 42 .32 .04 8.8 Cytidine analogue (15)
DMDC§ 67.1 63.9 140 .16 .06 4.8 Cytidine analogue (16)
Eniluracil/5-FU 30.9 26.3 36 .57 <.001 15 Oral fluoropyrimidine (17)
MMI270B 68.1 62.8 46 .44 .002 7.8 MMP inhibitor (18,19)
Phenylbutyrate 36.5 39.6 19 .13 .60 0 HDAC inhibitor (20)
PKI166 82.8 86.0 24 .03 .89 0 TK inhibitor (21)
R115777 61.4 60.8 29 .17 .37 0.98 FT inhibitor (22)
SCH66336 95.6 96.6 26 .12 .55 0 FT inhibitor (23)
Temozolomide 20.0 13.0 24 .88 <.001 35 Alkylating agent (24)
Topotecan§ 47.0 44.5 54 .34 .01 5.3 Topoisomerase I inhibitor (25–32)
ZD9331 66.7 71.2 42 .09 .60 0 TS inhibitor (33)

*CV � coefficient of variation; drug clearance/f � apparent oral clearance; L/h � liters per hour; L/h/m2 � L/h normalized to body-surface area in meters
squared; RIV � relative reduction in variability for clearance; 9-AC � 9-amino-camptothecin; DMDC � 2�-deoxy-2�-methylidenecytidine; 5-FU � 5-fluo-
rouracil; MMP � matrix metalloproteinase; HDAC � histone deacetylase; TK � tyrosine kinase; FT � farnesyltransferase; TS � thymidylate synthase.

†Regression coefficient from the relationship drug clearance/f (L/h) � [slope of line • body-surface area (m2)] + [y-intercept].
‡P value was obtained from the regression analysis.
§Compartmental analysis.
�Dose-normalized area under the curve of the active metabolite 2�-cyano-2�-deoxy-1-�-D-arabino-pentofuranosyl cytosine.
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volume and that body surface area is a
statistically significant covariate for
Cremophor EL clearance (80). Thus the
impact of body surface area on the vari-
ability in paclitaxel pharmacokinetics is
most likely associated with the affinity
of paclitaxel for its vehicle in the circu-
lation (81), the distribution of which is
linked to total blood volume, and thus to
body surface area (75).

For the majority of the anticancer
agents we examined that underwent de-
velopment in adult patients from 1991
through 2001, we found that body sur-
face area-based dosing was not statisti-
cally significantly associated with a
decrease in interpatient variability in
clearance. For the few agents for which
clearance was statistically significantly
associated with body surface area, the
relative reduction in variability in clear-
ance was between 15% and 35%, which

suggests that only up to one-third of the
total variability can be explained by dif-
ferences in body surface area. These
results therefore do not support body
surface area-based dosing for most anti-
cancer agents but warrant the evaluation
of alternate dosing strategies for phase I
evaluation in adult humans. A non-body
surface area-based dosing strategy (e.g.,
one based on a fixed dose) was success-
fully implemented in the development
of five of the orally administered agents
examined in our study [i.e., phenylbu-
tyrate (20), PKI166 (21), R115777 (22),
SCH66336 (23), and ZD9331 (33)],
demonstrating that administration of a
fixed total dose is feasible for the devel-
opment of both cytotoxic and noncyto-
toxic targeted anticancer agents. We
therefore recommend that the practice of
calculating starting drug doses on the
basis of body surface area in phase I

trials should be abandoned and that fu-
ture early clinical trials should instead
evaluate the administration of fixed drug
doses that are calculated on the basis of
an average body surface area of 1.86 m2.
For novel targeted agents, dose refine-
ment should be based on finding an ex-
posure that produces a biologic or mo-
lecular effect on a drug target that is
associated with a desired therapeutic
outcome or avoidance of a toxicologic
outcome. For cytotoxic agents that have
a narrow therapeutic window, efforts
should continue to focus on defining in-
dividual doses that are based on patient
characteristics that are known to affect
drug clearance (e.g., age, sex, renal
function, and use of concomitant medi-
cations). A combination of these strate-
gies should yield more rational dosing
schemes that can be implemented in on-
cology practice.

Table 2. Variability in drug clearance of intravenously administered agents*

Agent

CV for drug
clearance, %

No. of
patients R† P‡ RIV, % Drug class ReferenceL/h L/h/m2

9-AC§ 29.9 27.6 12 .31 .32 7.7 Topoisomerase I inhibitor (34)
BMS181174 33.2 27.2 15 .55 .04 18 Antitumor antibiotic (35)
Carzelesin 84.5 92.8 27 .14 .50 0 DNA minor groove binder (36)
CI-958 40.5 38.3 38 .33 .04 5.4 DNA intercalator (37)
DHA-paclitaxel§ 29.1 21.9 11 .66 .03 24 Antimicrotubule agent (60)
DHA-paclitaxel§� 43.7 32.5 22 .61 .003 26 Antimicrotubule agent (60)
Docetaxel§ 36.0 34.7 168 .33 <.001 3.5 Antimicrotubule agent (14,38–42)
EMD121974 25.7 28.0 36 .03 .87 0 Antiangiogenic agent (43)
EO9§

Phase I 54.5 54.4 31 .01 .94 0.2 Bioreductive alkylating agent (44)
Phase II 170 162 72 .17 .16 4.7 Bioreductive alkylating agent (45)

Irinotecan§ 31.8 33.9 85 .16 .14 0 Topoisomerase I inhibitor (5,46,47)
GI147211§ 32.8 34.2 85 .06 .60 0 Topoisomerase I inhibitor (48)
NX 211§ 98.9 95.4 29 .35 .07 3.5 Topoisomerase I inhibitor (50)
Paclitaxel§�

1-h inf 41.9 34.3 34 .57 <.001 18 Antimicrotubule agent (51,52)
3-h inf 28.5 23.1 40 .45 .003 19 Antimicrotubule agent (51,53)

Pemetrexed 39.0 32.8 34 .42 .01 16 TS inhibitor (49)
PNU152243 59.2 62.4 13 .13 .66 0 Anthracycline (54)
PNU159548 46.2 42.8 24 .36 .09 7.4 Alkycycline (55)
PNU166196 30.8 28.5 23 .23 .30 7.5 DNA minor groove binder (56)
SAM486A 57.6 55.2 60 .16 .21 4.2 Polyamine inhibitor (57,58)
SN-38§¶ 60.9 67.6 85 .22 .04 0 Topoisomerase I inhibitor (5,46,47)
TAS-103 39.7 36.8 36 .36 .03 7.3 Topoisomerase I and II inhibitor (59)
Topotecan§ 97.3 94.5 82 .24 .03 2.9 Topoisomerase I inhibitor (61–64)
Topotecan§** 82.5 80.6 55 .10 .46 2.3 Topoisomerase I inhibitor (65,66)
Troxacitabine 31.4 24.4 39 .66 <.001 22 L-nucleoside analogue (67)
UCN-01§ 79.4 79.9 20 .003 .99 0 PKC inhibitor (68)
UCN-01§� 51.8 51.6 20 .16 .50 0.4 PKC inhibitor (68)

*CV � coefficient of variation; L/h � liters per hour; L/h/m2 � L/h normalized to body-surface area in meters squared; RIV � relative reduction in
variability for clearance; 9-AC � 9-amino-camptothecin; DHA � docosahexaenoic acid; TS � thymidylate synthase; inf � infusion; PKC � protein kinase
C; UCN-01 � 7-hydroxystaurosporine.

†Regression coefficient from the relationship drug clearance (L/h) � [slope of line • body-surface area (m2)] + [y-intercept].
‡P value was obtained from the regression analysis.
§Compartmental analysis.
�Unbound drug levels.
¶Irinotecan metabolite, dose-normalized area under the concentration-time curve (×1000).
�Volume of distribution at steady state in L versus L/m2.
**Patients with impaired renal or hepatic function.
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