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Abstract
Carnitine is a conditionally essential nutrient that plays a vital role in energy production and fatty acid metabolism. 

Vegetarians possess a greater bioavailability than meat eaters. Distinct deficiencies arise either from genetic mutation 

of carnitine transporters or in association with other disorders such as liver or kidney disease. Carnitine deficiency 

occurs in aberrations of carnitine regulation in disorders such as diabetes, sepsis, cardiomyopathy, malnutrition, 

cirrhosis, endocrine disorders and with aging. Nutritional supplementation of L-carnitine, the biologically active form of 

carnitine, is ameliorative for uremic patients, and can improve nerve conduction, neuropathic pain and immune 

function in diabetes patients while it is life-saving for patients suffering primary carnitine deficiency. Clinical application 

of carnitine holds much promise in a range of neural disorders such as Alzheimer's disease, hepatic encephalopathy 

and other painful neuropathies. Topical application in dry eye offers osmoprotection and modulates immune and 

inflammatory responses. Carnitine has been recognized as a nutritional supplement in cardiovascular disease and 

there is increasing evidence that carnitine supplementation may be beneficial in treating obesity, improving glucose 

intolerance and total energy expenditure.

Introduction
Carnitine (β-hydroxy-γ-N-trimethylaminobutyric acid) is

widely distributed in food from animals sources but there

is limited availability in plants [1]. In humans, 75% of car-

nitine is obtained from the diet [2]. L-carnitine (the bio-

logically active stereoisomer) is absorbed from foods via

both active and passive transport across enterocyte

(intestinal cell) membranes [3]. The bioavailability of L-

carnitine varies due to dietary composition. Bioavailabil-

ity of L-carnitine in individuals such as vegetarians who

are adapted to low-carnitine diets is higher (66% to 86%

of available carnitine) than regular red-meat eaters

adapted to high-carnitine diets (54% to 72% of available

carnitine) [4]. Carnitine not obtained from food is syn-

thesized endogenously from two essential amino acids,

lysine and methionine. This occurs in kidney, liver and

brain [5]. Cardiac and skeletal muscle, harboring the

highest concentrations, cannot synthesize carnitine and

so must acquire carnitine from plasma. Unabsorbed L-

carnitine is mostly degraded by microorganisms in the

large intestine [3]. Almost all carnitine (99%) is intracellu-

lar [5]. Carnitine influences carbohydrate metabolism.

Aberrations in carnitine regulation are implicated in

complications of diabetes mellitus, hemodialysis, trauma,

malnutrition, cardiomyopathy, obesity, fasting, drug

interactions, endocrine imbalances and other disorders.

The purpose of this review is to summarize the role of

carnitine in human nutrition and disease and highlight

the major areas of research in this field.

Carnitine biosynthesis and metabolism

Carnitine, a branched non-essential amino acid, is syn-

thesized from the essential amino acids lysine and methi-

onine. Ascorbic acid, ferrous iron, pyroxidine and niacin

are also necessary cofactors [1] and deficiencies of any of

these can lead to carnitine deficiency. The pathway in

mammals is unique using protein-bound lysine that is

enzymatically methylated to form trimethyllysine as a

post-translational modification of protein synthesis [6].

Trimethyllysine undergoes four enzymatic reactions in

the course of endogenous L-carnitine biosynthesis (Figure

1).

One of the enzymes in this pathway, γ-butyrobetaine

hydroxylase, is absent from cardiac and skeletal muscle

but highly expressed in human liver, testes, and kidney

[4]. The rate of L-carnitine biosynthesis in vegetarians is

estimated to be around 1.2 μmol/kg of body weight/day

[7]. Omnivorous humans ingest 2-12 μmol/kg of body

weight/day which represents 75% of body carnitine

sources [8]. Neither renal reabsorption nor changes in

dietary carnitine intake appear to affect the rate of endog-
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enous carnitine synthesis [9]. Bioavailability of oral carni-

tine dietary supplements is only in the order of 14 to 18%

of dose and unabsorbed L-carnitine is mostly degraded

by micoorganisims in the large intestine [3].

Free L-carnitine, absorbed from dietary intake or syn-

thesized in liver and kidney, reaches the blood stream and

the extracellular fluid. Its transport within cells of various

tissues is limited by their respective uptake capacities

[10]. Plasma concentration of free carnitine is in dynamic

balance with acylcarnitines with the acyl to fee carnitine

ration of ≤ 0.4 being considered normal [11]. Acetylcarni-

tine esters are formed intracellularly during regular meta-

bolic activity. Long chain acetylcarnitine esters transport

fatty acyl moieties into the mitochondria (Figure 2). Short

and medium-chain acetyl esters, formed in the mitochon-

dria and peroxisomes, participate in the removal of

organic acids [12]. Acetyl-L-carnitine is the principal

acylcarnitine ester [12]. Acetyl-L-carnitine participates in

both anabolic and catabolic pathways in cellular metabo-

lism [12].

Carnitine plays a critical role in energy balance across

cell membranes and in energy metabolism of tissues that

derive much of their energy from fatty acid oxidation

such as cardiac and skeletal muscles [13,14] (Figure 2).

Although carnitine plays its main role in carnitine free

fatty acid metabolism, it also enhances carbohydrate utili-

zation [15]. Uptake in skeletal and cardiac muscle is a sat-

urable active transport process against a concentration

gradient [16].

Figure 1 Carnitine biosynthesis and metabolism.

Figure 2 Carnitine is actively transported via OCTN2 into the cy-

tosol to participate in the shuttling of activated long chain fatty 

acids into the mitochondria where β-oxidation takes place. Carni-

tine also regulates the Coenzyme A (CoA)/acylCoA ratio within the mi-

tochondria, modulation of which reduces accumulation of toxic acyl-

CoA compounds and maintains energy production.
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Experimental evidence suggests that the transport of

long chain fatty acids into the mitochondria is a rate lim-

iting step in fatty acid oxidation. During sustained low to

moderate exercise, fatty acid oxidation increases to

become the predominant energy source to muscles [17].

CPTI (Figure 2) is a control point of FA oxidation and

decreased carnitine levels and acidosis of CPT1 have

been implicated in decreased fatty acid oxidation during

heavy exercise [18]. Deficiencies in CPTII may result in

exercise induced muscle injury due to inability to increase

FA oxidation with increased exertion.

Carnitine participates in cell volume and fluid balanc-

ing in all tissues that are affected by the tonicity (iso-,

hyper- hypo- tonicity) of the extracellular environment

[19]. Data suggest that despite fluctuations in carnitine

concentration due to its osmolytic pressure changes, car-

nitine maintains its energy production capacities and

often osmolytic gradients can be harnessed for

energy[19]. Carnitine fluctuates with both physiological

and pathological changes in osmotic pressure. In one

example of a physiological response to osmotic pressure,

in early mammary gland milk production osmoregulatory

pathways are exploited using asymmetric kinetics to

increase the carnitine concentration in milk for suckling

neonates who have reduced carnitine stores, even though

this results in decreased maternal liver stores [20].

Primary Carnitine Deficiency Syndromes

Two distinct carnitine deficiency states have been

reported although a rigid distinction between "primary"

and "secondary" carnitine deficiency is difficult to estab-

lish in some cases [10]. Primary carnitine deficiency

(PCD) is a rare autosomal recessive disorder of fatty acid

oxidation caused by deficiency of plasma membrane car-

nitine transport resulting from impairment in the plasma

membrane OCTN2 carnitine transporter. This deficiency

restricts tissue uptake, leading to decreased accumulation

in the heart and skeletal muscle and potentiates increased

renal carnitine loss [21,22] leading to systemic carnitine

depletion [23]. Due to defective renal absorption (free)

carnitine is excreted in the urine of patients with primary

deficiency and can result in tissue carnitine levels drop-

ping to below 10% of normal [14,22,24-26]. Genetic defi-

ciencies of transporter activity represent the only known

forms of primary carnitine deficiency [27].

PCD occurs in 1-5 per 10, 000 population and most

commonly manifests between ages 1-7 [28,29]. The most

common presentation of PCD is hypoketotic hypoglyce-

mic encephalopathy. Cardiomyopathy has also be

observed [30]. The gene responsible for PCD is SLC22A5.

Several mutations have been described

[21,22,25,26,29,31-33]. Three tissues/organs are affected

in PCD: cardiac muscle which leads to progressive cardi-

omyopathy; central nervous system which is affected by

encephalopathy caused by hypoketotic hypoglycaemia,

and skeletal muscle which is affected by myopathy [30].

For these patients, L-carnitine supplementation is a life-

saving treatment.

Three distinct clinical entities have been described; the

adult, the infantile, and the perinatal, all with an auto-

somal recessive inheritance pattern [34]. The different

mutations in SLC22A5 probably give rise to differences in

severity/onset of the disease. Measurement of free carni-

tine and total carnitine in plasma are important in the

diagnosis.

Carnitine transporter mutations in Crohn's disease

consists of missense mutation(s) in the gene coding

plasma membrane transporter OCTN1 (SLC22A4) and/

or mutation(s) in the promoter of the gene encoding

OCTN2 (SLC22A5) [14,35]. Manifestation of these muta-

tions results in disruption of a heat shock binding ele-

ment decreasing the transport function (OCTN1), and

reduced expression (through OCTN2 mutation) which

both result in carnitine deficiency [14]. These mutations

are in strong linkage disequilibrium, creating a two-allele

risk haplotype and hence increasing the overall risk of

this disease [14].

Secondary Carnitine deficiency

Secondary deficiency is characterized by increased carni-

tine excretion in urine in the form of acyl-carnitine due to

an accumulation of organic acids [36,37]. Secondary car-

nitine deficiency can be caused by increased losses, phar-

macological therapy, a number of inherited metabolic

disorders [38], poor diet or malabsorption of carnitine,

from increased renal tubular loss of free carnitine (Fan-

coni syndrome), haemodialysis, peritoneal dialysis, or the

increased excretion of acylcarnitines[39] with certain

drugs. There have been reported at least 15 syndromes in

which carnitine deficiency seems to be secondary to

genetic defects of intermediary metabolism or to other

conditions [40]. Patients with secondary carnitine defi-

ciency accumulate organic acids which causes enhanced

urinary excretion of carnitine in the form of acyl-carniti-

nes [36,37].

Secondary carnitine deficiency (SCD) is less severe

with respect to its short-term clinical impact and is much

more common [23]. As opposed to PCD, SCD occurs due

to, or in association with, other disorders such as liver or

kidney disease, defects in fatty acid metabolism, or

administration of pharmacological agents such as pivam-

picillin or valproic acid (discussed below) [27,41,42]. SCD

is seen in patients with renal tubular disorders, in which

there may be excessive excretion of carnitine, and in

hemodialysis patients. A lack of carnitine in dialysis

patients is caused by insufficient carnitine synthesis and

by the loss through dialytic membranes, leading, in some

patients, to carnitine depletion and a concomitant rela-
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tive increase in esterified forms of carnitine [43]. L-Car-

nitine supplementation an lead to improvements in

several complications seen in uremic patients, including

cardiac complications, impaired exercise and functional

capacities, muscle symptoms, increased symptomatic int-

radialytic hypotension, and erythropoietin-resistant ane-

mia through normalizing the reduced carnitine palmitoyl

transferase activity in red cells [43]. Argani and col-

leagues showed a decrease in plasma levels of triglyceride

(TG) and very low-density lipoprotein, and increases in

total high-density lipoprotein cholesterol (HDL-C and

HDL2-C) and albumin, in hemodialysis patients upon

administration of 500 mg/day carnitine taken orally for 2

months [44].

Secondary genetic carnitine deficiency

CPT-1 deficiency

Carnitine palmitoyltransferase I (CPTI) deficiency is

thought to cause serious disorders of fatty acid metabo-

lism. The nucleotide sequences of cDNA and genomic

DNA encoding human CPTI have been characterized

[45,46]. However, a relationship between disease and

mutation of the human CPTI gene has not been reported

[47].
CPT II deficiency

The adult CPT II clinical phenotype is somewhat benign

and requires additional external triggers such as high-

intensity exercise before the predominantly myopathic

symptoms are elicited. The perinatal and infantile forms

involve multiple organ systems. The perinatal disease is

the most severe form and is invariably fatal [34]. The

most frequent symptom of muscle palmitoyltransferase

CPT II deficiency is an exercise induced myalgia [1].

Myoglobinuria, the traditional hallmark of this disease

was not present in 21% patients in one study [48]. Myal-

gia typically starts in childhood while myoglobinuria

starts later in adolescence or early adulthood [1]. One

case study found a novel mutation in CPT II (del1737C),

an autosomal recessive disease with a distinct phenotype

[49]. A two- day old boy died due to severe hepatocardio-

muscular disease with an extreme early onset. His sister

also died. Upon autopsy the brother showed massive pul-

monary atelectasis with intra-alveolar hemorrhage, car-

dio- and hepato-megaly. The sister died of sudden

cardiopulmonary arrest due to the increase of long-chain

(C16-18) acylcarnitines. Decreased CPT II activity was

found in her liver, heart and kidney. The cause of death

was neonatal CPT II deficiency.

Acquired carnitine deficiency

Hemodialysis and kidney disorders

In the kidney, osmolytes including carnitine are crucial

since hypertonicity is usual and the kidney must cope

with fluctuations of diuresis (increased production of

urine) and antidiruesis. Extracellular osmolarity of med-

ullary cells may become more than four-fold that of isoto-

nicity [50]. In healthy individuals, carnitine is freely

filtered and tubular resorption of free carnitine (FC) is

almost complete. What is excreted in urine is carnitine

ester, or acylcarnitine (AC) [13]. In healthy people, the

renal clearance of AC is four to eight times that of FC [51-

53]. Impairment of excretion of AC occurs with deterio-

rating renal function leading to decreased carnitine clear-

ance and resulting in elevated plasma levels of carnitine

[13]. Uremic patients have elevated levels of AC that

occur as both elevated FC and total carnitine before dial-

ysis [52]. These patients experience accumulation of

plasma acylcarnitines, in part due to a decreased renal

clearance of esterified carnitine moieties [54]. Due to

accumulation of metabolic intermediates, impaired car-

nitine biosynthesis, reduced protein intake, and increased

removal of carnitine through hemodialysis (HD), patients

who undergo routine HD usually present with plasma

carnitine insufficiency [54]. During dialysis, patients

experience subnormal plasma/serum free carnitine con-

centrations [13] with plasma levels dropping by 60% with

a slow replacement from carnitine stores such as from

skeletal muscle during the interdialytic period.

Dietary intake also plays an important role in carnitine

homeostasis of HD patients since the prevalence of mal-

nutrition ranges from 18% to 75% of these cases [54].

Clinical consequences of such malnutrition can lead to

impaired muscle function, decreased wound healing,

altered ventilatory response, and abnormal immune func-

tion [54]. Repeated hemodialytic treatments can result in

depletion of skeletal muscle carnitine stores. Intravenous

L-carnitine (LC) following dialysis can replenish the free

carnitine removed from the blood and restore muscle

carnitine content, alleviating muscle myopathies and

impaired exercise capacity [13], as well as ameliorating

erythropoietin-resistant anemia, decreased cardiac per-

formance, intradialytic hypotension [54]. Furthermore,

LC may positively influence the nutritional status of HD

patients by promoting a positive protein balance, and by

reducing insulin resistance and chronic inflammation,

possibly through an effect on leptin resistance [54]. Han-

delman however cautions that evidence for effectiveness

of carnitine supplements in dialysis suffers from trials

limited in subject number and open labeled, and suggests

more rigorous testing is needed [55].

Cyclosporin A induced nephrotoxicity

Cyclosporine (CyA) is used as an immunosuppressive

agent following organ transplantation but its use is lim-

ited due to its associated nephrotoxicity. Bertelli et al.

[56] demonstrated that L-propionylcarnitine (L-PC), a

propionyl ester of L-carnitine, is able to prevent CyA-

induced acute nephrotoxicity, reducing lipid peroxidation
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in the isolated and perfused rat kidney in vitro. In vivo

studies demonstrate that L-PC was able to significantly

lower blood pressure in CyA treated animals and to pre-

vent decrease creatinine clearance that normally results

from CyA administration [57]. Origlia and colleagues fur-

ther demonstrated L-PC-associated reduction in lipid

hydroperoxide content and morphological abnormalities

associated with chronic CyA administration [57].

Cirrhosis and liver disorders

Carnitine deficiency has been associated with cirrhosis

[5]. L-acyl-carnitine has been suggested as a potent, low-

cost, and safe alternative therapy for patients with cirrho-

sis [58]. Minimal hepatic encephalopathy (MHE) is a seri-

ous and common complication that occurs in the

majority of cirrhotic patients [59]. Malaguarnera and col-

leagues treating MHE patients with acetyl-L-carnitine

(ALC) exhibited recovery of neuropsychological activities

related to attention/concentration, visual scanning and

tracking, psychomotor speed and mental flexibility,

short-term memory, attention and computing ability, lan-

guage, orientation ability and cognitive activities [59].

There is a strong correlation between hepatic encephal-

opathy and abnormal ammonia handling, and ALC has

been shown to induce ureagenesis leading to decreased

blood and brain ammonia levels [60]. This is supported

by other studies that showed a protective effect of L-car-

nitine against ammonia-evoked encephalopathy in cir-

rhotic patients, with ALC administration improving

neurological symptoms and plasmatic parameters in cir-

rhotic patients with hepatic coma [60-67].

Carnitine depletion is common in patients hospitalized

for advanced cirrhosis and results from three factors;

substandard intake of dietary carnitine; substandard

intake of lysine and methionine; and loss of capacity to

synthesize carnitine from these two amino acids [68]. The

most likely reason for incapacity to synthesize carnitine

from lysine and methionine is inability to convert γ-buty-

robetaine to carnitine [68]. Chronic ingestion of alcohol

is known to cause hepatic steatosis [69,70]. Sachan et al.

[71] demonstrated that exogenous carnitine added to the

ethanol diet in an experimental rat model significantly

reduced lipid accumulation in livers which were other-

wise laden with lipids, suggesting that there is a defi-

ciency of functional carnitine i.e. carnitine which is

available for acylation [72]. Supplementation of the diet

with lysine can restore carnitine levels, however, there

appeared to be impairment of carnitine biosynthesis in

ethanol-compromised livers in the rat study [71]. It is

known that dietary absorption of amino acids is impaired

by ethanol so this could also contribute to carnitine defi-

ciency overall [73]. It appears that reduced plasma and

peripheral tissue carnitine levels result from sequestra-

tion by ethanol-compromised liver [71]. Sachan and col-

leagues conclude that dietary carnitine is effective in

preventing lipid accumulation that results from ethanol-

feeding of rats. Dietary carnitine proved to be an effective

hypolipidemic agent. Efficacy was related to degree of

hypercarnitinemia which is consistent with a deficiency

of functional carnitine biosynthesis in the ethanol fed rats

[71].

Obesity, endocrine disorders and diabetes

Evidence is mounting that carnitine supplementation

may be beneficial in obesity [5]. In obese rats manifesting

insulin resistance, carnitine supplementation improved

glucose tolerance and increased total energy expenditure

[5]. Carnitine palmitoyltransferase (CPT)-1 is the rate-

limiting step of the fatty acid oxidation pathway and a tar-

get for the treatment of obesity. Modulation of CPT-1

may affect energy metabolism and food intake, and

research is ongoing into the effects of both stimulation

and inhibition of CPT-1 and in relation to obesity man-

agement [74].

Pharmacological stimulation of brain carnitine palmi-

toyl-transferase-1 (CPT-1) was reported to decrease food

intake and body weight [75]. A selective CPT-1 stimula-

tor produced long lasting hypophagia (reduced food

intake) and persistent weight loss [75]. However, this is in

contrast with other studies that found CPT-1 inhibition

actually stimulated hypophagia [76,77] and weight loss

[77]. Thus further work needs to be done to clarify this

issue. There is some debate in the literature regarding

whether satiety depends on the cytosolic concentration of

long-chain fatty acids, with the suggestion that an

increased concentration correlates with satiety and

decreased feeding and body weight [77-80]. However, Aja

and colleagues found no evidence for this hypothesis

since in this model CPT-1 should inhibit feeding by

increasing cytosolic fatty-acyl CoA levels while they actu-

ally showed the initial response of mice to a CPT-1 inhib-

itor was an increase in appetite [75]. The authors discuss

whether CNS injection of the drug versus systemic treat-

ment may play an important role in the overall effect.

The development of type 2 diabetes is accompanied by

decreased immune function, the underlying mechanisms

of which are unclear. It has been suggested that oxidative

damage and mitochondrial dysfunction may play an

important role in the immune dysfunction in diabetes

[81]. This hypothesis was tested using mitochondrial tar-

geting nutrients in a diabetic rat model. Administration

of a combination of mitochondrial targeting nutrients,

including carnitine, suggested carnitine may be effective

in improving immune function in type 2 diabetes through

enhancement of mitochondrial function, decreased oxi-

dative damage, and delayed cell death in the immune

organs and blood [81].



Flanagan et al. Nutrition & Metabolism 2010, 7:30

http://www.nutritionandmetabolism.com/content/7/1/30

Page 6 of 14

Glutaryl-CoA dehydrogenase (GCDH) deficiency is an

inborn error of lysine and tryptophan metabolism that

results in increased formation and excretion of glutaric

acid (GA), 3-hydroxyglutaric acid (3-OH-GA), glutaconic

acid and glutarylcarnitine [82]. Secondary carnitine

depletion due to increased formation and urinary excre-

tion of glutarylcarnitine is suggested to play an important

role in the neuropathogenesis of GCDH deficiency,

inducing excitotoxic neuronal damage and mitochondrial

dysfunction [83]. GCDH can be controlled nutritionally

and supplementation includes L-carnitine to avoid sec-

ondary carnitine depletion [84-87].

Hyperthyroid patients exhibit higher urinary carnitine

concentrations compared with controls while hypothy-

roid patients exhibit concomitantly lower levels [88].

However ameliorating thyroid therapies normalizes car-

nitine levels [1].

Patients with type 2 diabetes (particularly those who

are insulin dependent or have disease-related complica-

tions) seem to be at increased risk for carnitine deficiency

[5]. Diabetic polyneuropathy (DPN) is the most common

late complication of diabetes mellitus. Experimental rat

models of DPN have identified early metabolic abnormal-

ities affecting nerve conduction velocities and endoneur-

ial blood flow [89]. These abnormalities can lead to

perturbed lipid peroxidation and expression of neu-

rotrophic factors which ultimately cause degenerative

nerve function. As the structural changes progress, they

become increasingly less amendable to metabolic inter-

ventions. In both experimental models and human dia-

betic subjects, there is an initial metabolic phase that is

responsive to metabolic corrections [90,91]. As the dis-

ease progresses however it becomes increasingly non-

responsive to therapeutic interventions [92,93].

Acetyl-L-carnitine (ALC) acts on a number of levels in

the treatment of type 1 DPN. Clinical trials of ALC have

shown ameliorating effects on nerve conduction slowing,

neuropathic pain, axonal degenerative changes and nerve

fiber regeneration [89].

Trauma, sepsis and wound healing

The metabolic process in trauma and sepsis includes

greatly accelerated proteolysis and resulting protein loss

in skeletal muscle [94]. It is known that sepsis patients

have depleted carnitine stores at the cellular level [95]. In

the liver, the rate of synthesis of selected proteins (i.e.,

albumin, transferrin, prealbumin, retinol-binding pro-

tein, and fibronectin) is decreased, whereas acute phase

protein synthesis is accelerated [94]. Tissues character-

ized by fast replicating cells also show reduced protein

synthesis. Carnitine has been trialed in cases of sepsis

and found to retard protein loss without affecting protein

metabolism in target tissues [94].

The pathophysiology of bacterial-endotoxin mediated

tissue damage may involve the interplay of reduced host

carnitine levels and pathogenic requirement of carnitine

for growth and survival in the host [95]. The endogenous

carnitine pool could be a major determinant of mounting

an effective immune and inflammatory response towards

invading pathogens [95]. This altered carnitine metabo-

lism has been implicated in the multiple organ failure in

subjects with systemic inflammatory response syndrome

and toxic shock. Carnitine levels are reduced in patients

suffering Gram-negative sepsis and urinary loss of carni-

tine is proportional to the degree of injury [96]. Prophy-

lactic use of carnitine in such situations has been shown

to reduce the endothelial damage caused by lipopolysac-

charide (LPS) and TNF-α. It has been further suggested

that carnitine deficiency might negatively impact cardiac

function which might in turn, further contribute to the

outcome of patients suffering sepsis [97-99]. There has

even been suggestion that maintenance of normal carni-

tine levels might inhibit muscle wasting, hepatic lipogen-

esis, hypertriglycerdemia and decreased fatty acid

oxidation that are seen in sepsis [95].

A proportion of infants and children with sepsis prog-

ress to cardiac failure as part of multiple system organ

failure (hepatic, renal, cardiac, pulmonary) [100]. Eaton et

al. [100] have suggested that inhibition of myocardial

CPT I activity may be a common feature of systemic

inflammation, or of inflammation localized to the heart.

A study of plasma and urinary levels of free carnitine

and short-chain acyl-carnitines in surgical patients

showed that the septic state was associated with

increased urinary excretion of free carnitine and lower

plasma levels of short-chain acyl-carnitines [101]. The

authors suggested that theoretically, carnitine supple-

mentation during total parenteral nutrition might be of

benefit in sepsis.

Literature regarding wound healing and carnitine is

sparse. In relation to burns and wound healing; one study

involving 14 patients with severe burns over eight days

showed dramatically increased levels of excreted carni-

tine [102]. There was a positive relationship between

extent of burn and carnitine output [1]. Decreased wound

healing exhibited by dialysis patients is most likely a con-

sequence of the malnutrition suffered by these patients.

McCarty and Rubin suggest supplementation of micro-

nutrients including carnitine to aid wound healing in dia-

betics [103].

It has been shown that carnitine has a significant dose-

dependent effect in promoting random pattern skin flap

survival [104]. However Koybasi and Taner found that

although there was a tendency toward faster healing, in a

group of experimental rats receiving the drug L-carnitine,

there was no significant promotion of secondary wound

healing [105].
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Malnutrition, fasting and vegetarianism

Reduced plasma carnitine levels have been noted in mal-

nourished children [106] and adults [107]. Levels gener-

ally improve with dietary intervention [1]. Kwashiorkor

and marasmus represent clinical forms of protein-energy

malnutrition (PEM) [108]. Carnitine levels in children

suffering PEM are low but reach normal levels following

protein repletion [108]. Malnourished children have low

levels of many enzymes and it is likely that cofactors for

carnitine could be lacking as well. There is a positive cor-

relation between albumin and plasma carnitine levels in

PEM and plasma albumin is a widely used indicator of

PEM [108]. A negative correlation between free carnitine

and both triglycerides and cholesterol indicates that L-

carnitine may be utilized under conditions of augmented

lipolysis. There have been varying reports of urinary free-

carnitine excretion with PEM as either increasing [108]

or decreasing [109]. Finally, incremental growth was seen

in 22 of 33 carnitine-administered patients who pre-

sented with failure to thrive [110] and this was attributed

to the role of carnitine as a muscle growth factor.

Experiments with fasted and calorie-restricted rats

showed increased mRNA concentrations of acyl-CoA

and CPT-1 in the liver, heart and kidneys compared to

control animals due to upregulation of PPARα [111].

These studies demonstrated that fasting upregulates the

plasma membrane OCTN2 carnitine transporter in the

liver, heart, kidneys and in rats with strong caloric restric-

tion, additionally in skeletal muscle [111]. Fasting or

caloric restriction was shown to increase the ratio of free

carnitine to acetylcarnitine in most tissues analyzed. The

authors suggest that the amount of Acetyl-CoA in the

mitochondrion available for esterification of free carni-

tine was reduced in fasted or energy-restricted animals

leading to increased tissue carnitine concentrations while

acetylcarnitine levels were reduced [111]. These meta-

bolic adaptations during fasting, that are triggered by

PPARα, serve to minimize the use of protein and carbo-

hydrates as fuel to allow survival during long periods of

energy deprivation.

Oxidized fat was shown to upregulate PPARα and

OCNT2 and lead to reduced rate of weight gain com-

pared to controls, indicating an impairment of the feed

conversion ratio [112]. Since there is increased OCTN2

expression in the small intestine in response to oxidized

fat, and OCTN2 binds not only carnitine but various

drugs, it is suggested by the authors that OCTN2 might

be harnessed to improve absorption of various drugs

[112].

A study by Karlic and colleagues found that a vegetar-

ian diet has a significant impact on genes regulating

essential features of carnitine metabolism [113]. Elevated

plasma membrane OCTN2 carnitine transporter expres-

sion was observed in vegetarians compensating for lower

carnitine levels obtained from the diet. Thus a vegetarian

lifestyle has an impact on fat metabolism causing a

remarkable stimulation of carnitine uptake [113].

Neuroprotection and dementia

In the brain, the role of carnitine in isotonicity is crucial

since alteration of tonicity would affect nerve excitability

due to ion fluctuation. Further, brain cells are unable to

swell due to the rigidity of the skull [19].

Hepatic encephalopathy (HE) is a significant cause of

morbidity and mortality in advanced cirrhotic patients

[58]. Although the mechanisms by which carnitine pro-

vides neurological protection are unknown, a systematic

review of the literature confirmed that L-acyl-carnitine is

promising as a safe and effective treatment for HE [58].

One suggested mechanism of carnitine action is its

reduction of serum ammonia levels leading to improved

psychometric measures [63-65]. Acetyl-L-carnitine is

neuroprotective when administered at supraphysiological

concentration [114]. There is much interest in its clinical

application in various neural disorders such as

Alzheimer's disease and painful neuropathies [114].

Neuronal ceroid lipofuscinoses (NCLs) are a group of

autosomal-recessive hereditary lysosomal storage dis-

eases caused by mutations in at least 8 genes (CLN1-

CLN8) [115]. These disorders are characterized by mas-

sive accumulation of autofluorescent lysosomal storage

bodies in most cells of the CNS and associated severe

degeneration of the CNS [115]. There appears to be an

anomalous storage of mitochondrial ATP synthase sub-

unit c that is neither the result of mutation nor enhanced

expression of the protein but rather a slower degradation

of the mitochondrial ATP synthase in comparison with

normal cells [116]. Acetyl-L- carnitine has been shown to

be therapeutic in treatment of this disease [114]. Traina

and colleagues suggest that ALC might rebalance the dis-

orders underlying neuronal ceroid lipofuscinosis disease

which are related to a disturbance in pH homeostasis.

This lack of homeostasis affects acidification of vesicles

transported to the lysosomal compartment for degrada-

tion [114].

Several investigators have studied the effect of acetyl-L-

carnitine administration on older individuals with

dementia [117]. Although the statistical evaluation of sev-

eral of these "studies" were inadequate with some reports

presenting only "clinical impressions," all investigators

noted some improvement in cognitive function and posi-

tive effects of neuropsychological parameters in elderly

patients with dementia subsequent to the administration

of acetyl-L-carnitine [117].

An increasing number of studies have demonstrated

the efficacy of secondary antioxidants, such as acetylcar-

nitine, to reduce or to block neuronal death that occurs in

the pathophysiology of Alzheimer's disease. These studies
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have suggested that there may be mechanisms beyond

antioxidant activities playing a neuroprotective role

[118]. Based on the evidence that heat-shock proteins

(Hsps) can exert neuroprotective effects against oxidative

stress-related injury and that nutritional antioxidants are

able to upregulate Hsps in neurons, use of nutritional

antioxidants such as carnitine/acetyl-L-carnitine has

been advocated to counteract the oxidative stress-

induced brain damage in Alzheimer's disease [67,119].

Similarly, carnitine/acetyl-L-carnitine has been used in

treatment of degenerative neuronal function in older

Down's Syndrome patients since upon autopsy it was

revealed that almost 100% of these patients over 40 years

of age had symptoms of dementia [117]. However acetyl-

L-carnitine was not found to benefit young men suffering

Down's Syndrome [117].

Heart disorders and supplementation in cardiovascular 

disease

Human skeletal and cardiac muscles contain relatively

high concentrations of carnitine received from the

plasma, since they are incapable of carnitine biosynthesis

[1]. The heart is one of the organs most affected in carni-

tine-acylcarnitine carrier (CAC) deficiency [120]. By cat-

alyzing the carnitine/acylcarnitine exchange, CAC allows

the import of fatty acyl moieties into the mitochondria

where they are oxidized by the β-oxidation pathway. This

pathway is the major source of energy for the heart [120].

Cardiomyopathy, cardiac arrhythmia, (likely due to the

accumulation of long-chain fatty acids and acylcarnitines

that cannot be oxidized), cardiac insufficiency and respi-

ratory distress arise from CAC deficiency [120]. Carni-

tine deficiency has been associated with heart failure [5].

The mechanism(s) underlying the effects of L-carnitine

(LC) in cardiovascular diseases are not well clarified.

Miguel-Carrasco et al. [121] demonstrated in a rat model

that chronic administration of LC reduces blood pressure

and attenuates the inflammatory process associated with

arterial hypertension.

In opposition to the reported beneficial effects of carni-

tine overload, Diaz et al. [122] demonstrated that carni-

tine worsened the recovery of contractile function in

transient ischemia. In addition, carnitine supplementa-

tion increased contracture of the heart shortly after rep-

erfusion. Diaz and colleagues concluded that in

conditions where it does not increase glucose oxidation,

carnitine supplementation worsens both injury and

recovery of contractile function after transient ischemia

in perfused rat heart [122].

L-carnitine has been shown to have favorable effects in

patients with severe cardiovascular disorders, such as

coronary heart disease, chronic heart failure and periph-

eral vascular disease [123-125]. In patients with chronic

heart disease, administration of L-carnitine over 12

months led to attenuation of left ventricular dilatation

and prevented ventricular remodeling while reducing

incidence of chronic heart failure and death [125]. In

ischemia, L-carnitine reduces myocardial injury mainly

through improving carbohydrate metabolism and by

reducing the toxicity of high free fatty acid levels [124].

The protective effect of L-carnitine on ST-elevation myo-

cardial infarction has been documented. Following an

acute myocardial infarction prompt L-carnitine adminis-

tration and subsequent maintenance therapy attenuates

progressive left ventricular dilatation [126]. L-carnitine

reduces early mortality but not overall risk of death or

heart failure at 6 months [127]. L-carnitine supplementa-

tion also prevents ventricular enlargement and dysfunc-

tion, reduces the infarct size and cardiac biomarkers, and

diminishes the total number of cardiac events including

cardiac deaths and nonfatal infarction [128,129]. Xue and

colleagues suggest that the beneficial effects of L-carni-

tine in cardiovascular disease are due to the resumption

of normal oxidative metabolism and restoration of myo-

cardial energy reserves [128,129].

Carnitine has been widely recommended as a supple-

ment in cardiovascular disease. However, it should be

noted as mentioned previously, in conditions where it

does not increase glucose oxidation, carnitine supple-

mentation worsens both injury and recovery of contrac-

tile function after transient ischemia in the perfused rat

heart [122].

Neuromuscular disease

Myopathy can be seen with biochemically defined defects

in mitochondrial substrate transport or utilization,

including the myopathic form of carnitine deficiency;

CPT II deficiency (which most often presents with exer-

cise intolerance and myoglobinuria and is discussed

below) [130]. Patients with Duchenne dystrophy and

Becker dystrophy showed lower carnitine levels in muscle

biopsies than controls [131] though these levels were

higher than in patients suffering primary carnitine defi-

ciency as a result of severe muscle damage [1].

CPT II Type 1 "muscle" phenotype, which is the most

frequent clinical presentation, is characterized by recur-

rent episodes of muscle pain, rhabdomyolysis (a poten-

tially fatal disease that occurs suddenly and with great

force destroying skeletal muscle) and myoglobinuria.

This deficiency is often triggered by heavy exercise, and

can also manifest as a result of exposure to cold, infec-

tion, emotional distress, and/or fasting [132].

Drug interactions

Cyclosporin A induced nephrotoxicity has been dis-

cussed above. Valproic acid (VPA) is a broad-spectrum

anti-epileptic drug [133]. It is usually well tolerated, but

rare serious complications such as VPA-induced hepato-
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toxicity (VHT) and VPA-induced hyperammonaemic

encephalopathy (VHE) may occur in some patients who

receive VPA chronically [133]. It has been suggested that

VHT and VHE may be promoted by carnitine deficiency,

either pre-existing or deficiency induced by VPA [134].

VPA is used to treat psychiatric disorders and as such

there is an association with accidental or deliberate over-

dose, the incidence of which is increasing [135,136]. Ben-

efits of oral L-carnitine in relation to VPA-associated

deficiency and related adverse effects have been reported

[137-139]. Carnitine supplementation during VPA ther-

apy in high-risk patients is now recommended by some,

especially by pediatricians [133]. L-carnitine therapy

could also be valuable in those patients who develop

VPA-induced hepatotoxicity or VPA-induced hyperam-

monaemic encephalopathy [133].

Al-Majed and colleagues [140] found that carnitine

deficiency and oxidative stress are risk factors during

development of cisplatin (CDDP)-induced cardiomyopa-

thy and that carnitine supplementation, using propionyl-

l-carnitine, prevents the progression of CDDP-induced

cardiotoxicity.

Aging and bone loss

Adverse effects of aging are, in part, attributed to

decreases in mitochondrial function and increases mito-

chondrial oxidant production [141]. L-carnitine levels in

tissues have been found to decline with age [142]. Acetyl-

L-carnitine (ALCA) fed to aged rats was shown to reverse

age-related declines in tissue L-carnitine levels and also

reversed a number of age-related changes in liver mito-

chondrial function; however, high doses of ALCA

increased liver mitochondrial oxidant production [143].

Liu et al. demonstrated that memory loss in old rats is

associated with brain mitochondrial decay and RNA/

DNA oxidation. Partial reversal was obtained by feeding

acetyl-L-carnitine and/or R-alpha -lipoic acid [144].

ALCA, together with alpha-lipoic acid, was shown to

improve mitochondrial energy metabolism and decrease

oxidative stress leading to improved memory in aged rats

[144,145]. Several studies have reported that supplement-

ing rats with both L-carnitine and alpha-lipoic acid halts

age-related increases in reactive oxygen species (ROS),

lipid peroxidation, protein carbonylation, and DNA

strand breaks in heart, skeletal muscle and brain, con-

comitant with improvement in mitochondrial enzyme

and respiratory chain activities [146-149]. In a clinical

trial of Levocarnitine-treated elderly patients [150], there

was significant improvement in total fat mass, total mus-

cle mass, total cholesterol, LDL-C, HDL-C, triglycerides,

apoA1, and apoB with concomitant decreases in physical

and mental fatigue. These data suggest that administra-

tion of levocarnitine to healthy elderly subjects may result

in reduction of total fat mass, and increase of total muscle

mass, may be reduce fatigue and serum lipids.

Carnitine levels decrease with age [151]. Patano and

colleagues suggest that this decrease in energy availability

might compromise osteoblast activity and bone remodel-

ing in an age-related manner [152]. It has been shown

that cells of the osteoblastic lineage generate 40-80% of

their energy demands through fatty acid oxidation [153].

Patano et al. [152] suggest that modulation of fatty acid

oxidation may regulate the amount of energy available for

protein synthesis in osteoblasts. Using an aging ovariec-

tomized rat model they found supplementation of L-car-

nitine can influence bone density and slow the rate of

bone turnover by slowing bone loss and improving bone

microstructural properties through decreasing bone

turnover [154]. The study reported that benefits of carni-

tine are comparable with other drugs of choice in terms

of effectiveness in preventing BMD loss due to aging.

Colluci and colleagues [150] used an in vitro model to

suggest that carnitine supplementation in the elderly may

stimulate osteoblast activity and decrease age-related

bone loss.

Dry eye and retinal disorders

Dry eye is a common disease of the ocular surface that is

associated with corneal surface irregularity and blurred

vision [155-158]. In artificial tear formulations, L-carni-

tine is considered a "compatible solute". Use of carnitine

in artificial tears has demonstrated rapid and consistent

improvements in signs and symptoms in patients with

dry eye [159] suggesting an intrinsic homeostatic role for

carnitine in the eye [160]. Recently, Pescosolido and col-

leagues [161] evaluated the presence of carnitine in tears

of dry eye patients and suggested that the damage

incurred on the ocular surface of dry eye patients may, in

part, be due to a lack of carnitine in the tear film of these

patients relative to the ocular surface cells and suggested

use of solutions containing carnitine to reduce this dam-

age. Increased tear osmolarity in dry eye disease has been

found to stimulate production of inflammatory cytokines

and matrix metalloproteinases by ocular surface epithe-

lial cells [155]. Tears of patients with dry eye show signifi-

cantly increased osmolarity, with a mean value of 343

mOsm compared with 302 mOsm in healthy controls

[162]. Corrales and colleagues [155] showed that osmo-

protectants such as L-carnitine reduce activation of

(mitogen-activated protein) MAP kinases, the phospho-

rylation of which leads to an increased expression of

cytokines, chemokines and matrix metalloproteases

[155]. These factors mediate and control immune and

inflammatory responses. Dysregulation of these factors

in the eye can lead to corneal melting and scarring with

deleterious consequences. Under hyperosmolar condi-

tions, L-carnitine was found to protect against stress acti-
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vation of corneal epithelial cells by reducing levels of

kinase [155]. This activity of carnitine can by likened to

the use of sunscreen reducing downstream effects of UV

(pain, redness, edema, exfoliation, melanin production,

collagen damage) by physically limiting the cellular dam-

age/stress from UV, not by the pharmacological targeting

of cytokines, receptors, etc. that otherwise bring about

the painful sunburn. Peluso et al. [19] further suggest that

decreased levels of carnitine in the eye in experimental

diabetes (as reported by Pessotto et al. [163]) might be

related to osmotic stress rather than pathological modifi-

cation of the eye lens and that chronic aberration of

osmotic pressure causes net loss of carnitine which can

lead to triggering of cataracts.

Mitochondrial trifunctional protein (MTP) defects are

disorders of mitochondrial fatty acid β-oxidation pathway

of which progressive pigment chorioretinopathy is a

long-term complication [164]. Chorioretinopathy

emerges during early childhood as granular pigmentation

of the central fundus with or without pigment clumping

which may progress to chorioretinal atrophy, high myo-

pia, posterior staphyloma and low vision [165]. Current

treatment includes a low fat, high carbohydrate diet and

avoidance of fasting which dramatically improves prog-

nosis allowing long term survival. However the dietary

impact is controversial [166]. Roomets et al. examined

the expression of CPT-1 isoforms in photoreceptor cells

and retinal pigment epithelial cells that are known to be

affected morphologically and functionally in complete

MTP deficiency and deficiency of long-chain 3-hydroxya-

cyl-CoA hydratase (LCHAD) [167]. They concluded that

the mitochondrial fatty acid β-oxidation pathway proba-

bly plays an active metabolic role in retinal pigment epi-

thelium and other neuroretinal cell types. They further

suggest that accumulation of 3-hydroxylated intermedi-

ates of long-chain fatty acids may contribute to the patho-

genesis of retinopathy in MTP deficiencies [164].

Conclusion
Carnitine as a nutritional supplement has, since the

1960s, been promoted as beneficial in a number of disor-

ders of human carnitine deficiency of impaired fatty acid

oxidation, suggesting that nutritional or pharmacologic

supplements of carnitine might be beneficial in some dis-

orders [168]. However it should be noted that according

to Stanley [168], over the past 40 years, there have been

only two clear examples of disorders directly due carni-

tine deficiency that have provided evidence of unequivo-

cal benefit from carnitine treatment.

Most healthy people, including vegetarians, produce

and gain sufficient carnitine from their diets. Carnitine is

thus considered a "conditionally essential" nutrient since

individuals' requirements might exceed dietary intake

during specific disease states. The increase of L-carnitine

in plasma via oral administration, even up to and exceed-

ing 2 mg, is limited, since L-carnitine has a very poor

absorption and bioavailability, a very high renal clearance,

and active uptake into tissues. Intravenous administra-

tion of L-carnitine might prove more effective, however

where kidney function is not impaired, as more than 95%

of L-carnitine filtered by glomeruli is retained and excess

exogenous L-carnitine is readily excreted once the active

transporters are saturated.

Despite this, in a number of disease states much work

has been done regarding the effects of prophylactic levels

of carnitine though some controversy and misconcep-

tions relating to its use in general nutrition need to be

addressed. Carnitine is a natural compound, free from

toxicity when given in oral doses up to several grams and

thus supplements are often recommended in primary and

secondary deficiencies. Since carnitine is readily

excreted, supplemental ingestion is well tolerated. Evi-

dence from both rodent and human studies supports

health-related benefits when used as a therapeutic agent.
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