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Abstract. Currently, cancer metastases remain a major 
clinical problem that highlights the importance of recognition 
of the metastatic process in cancer diagnosis and treatment. 
A critical process associated with the metastasis process 
is the transformation of epithelial cells toward the motile 
mesenchymal state, a process called epithelial-mesenchymal 
transition (EMT). Increasing evidence suggests the crucial role 
of the cytoskeleton in the EMT process. The cytoskeleton is 
composed of the actin cytoskeleton, the microtubule network 
and the intermediate filaments that provide structural design 
and mechanical strength that is necessary for the EMT. The 
dynamic reorganization of the actin cytoskeleton is a prerequi-
site for the morphology, migration and invasion of cancer cells. 
The microtubule network is the cytoskeleton that provides the 
driving force during cell migration. Intermediate filaments are 
significantly rearranged, typically switching from cytoker-
atin-rich to vimentin-rich networks during the EMT process, 
accompanied by a greatly enhanced cell motility capacity. In 
the present review, the recent novel insights into the different 
cytoskeleton underlying EMT are summarized. There are 
numerous advances in our understanding of the fundamental 
role of the cytoskeleton in cancer cell invasion and migration.
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1. Introduction

Despite considerable advances, cancer metastases, the 
spreading of cancer cells to another part of the body causing 
secondary cancer, remains a major clinical problem that high-
lights the importance of recognition of the metastatic process 
of carcinoma in cancer diagnosis and treatment. A critical 
process associated with the metastasis process is the transfor-
mation of epithelial cells toward a motile mesenchymal state, 
a process called epithelial-mesenchymal transition (EMT) (1). 
During this transfer, in addition to modifying their adhesive 
repertoire, cancer cells involve morphological changes from 
epithelial cells with an apical-basal polarity to spindle-like 
mesenchymal phenotypes with various migratory protrusions 
that are required for cell invasion and migration (2). Various 
types of migratory organelles have been reported such as podo-
somes, invadopodia, filopodia and lamellipodia. Although 
the specific shapes of these organelles are different, they are 
evolved from dynamic actin cytoskeleton remodeling (3-5). 
Shankar et al (4) first proposed the important role of actin 
dynamics and therefore, membrane protrusions on the induc-
tion of transforming growth factor-β (TGF-β)‑induced EMT. 
The study identified 19 pseudopod‑enriched proteins from 
various cancer metastatic cells, such as AHNAK, septin‑9, 
eukaryotic translation initiation factor 4E and S100A11, which 
have been associated with malignant tumors. Inhibition of 
one of these proteins leads to reduction of actin cytoskeleton 
dynamics, inhibition of cell migration and invasion, as well as 
reversion of EMT that could be restrained by the steadiness 
of the actin cytoskeleton. This study indicated a direct link 
between EMT and actin dynamics demonstrating a significant 
role of the actin cytoskeleton in the generation and develop-
ment of tumor. In recent years, investigators have also begun 
to pay attention to the effect of the reorganization of the actin 
cytoskeleton on cell polarity, cell proliferation and cell cycle 
progression (6,7). In the present review, the current available 
insights into the cytoskeleton underlying EMT are summa-
rized.

2. Actin cytoskeleton

The cytoskeleton, composed of the actin cytoskeleton, the 
microtubule network and the intermediate filaments provide 
structural design and mechanical strength that is necessary to 
mold cell shape (8). Although these cytoskeletal components 
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act synergistically, it is the actin cytoskeleton that provides 
the driving force required for cell migration (9). Thus far, 
two isoforms, the β- and γ-actins, have been discovered and 
confirmed to exist in non-muscle cells. Numerous studies 
have indicated different distributions and roles between the 
two actin isoforms (10). β-actin, responsible for cell connec-
tion and contraction, is distributed mainly in circular bundles, 
ventral stress fibers, intercellular junctions and contractile 
mitotic rings. γ-actin is predominantly located in dorsal stress 
fibers in stationary cells, while in motile cells it participates 
in the formation of lamellar, cortical and lamellipodia struc-
tures. In cells lacking β-actin, the number of stress fibers 
are reduced and wide protrusions are formed, while cells 
lacking γ‑actin tend to the formation of thick actin bundles 
and the reduction of lamellar and lamellipodia structures. In 
neoplastically transformed cells, β‑actin is downregulated and 
transformed to a dispersed state with increased cell transfor-
mation, as it is found diffusely located in the cytoplasm and 
distributed in the regions of lamellar activity in ruffles along 
the whole cell perimeter, instead of contributing to intercel-
lular junctions (10). No difference in γ‑actin distribution is 
found between neoplastically-transformed cells and normal 
keratinocytes, but the amount of γ‑actin is increased. In SiHa 
and CaSki cells underlying EMT, the number of β‑actin fibers 
are further reduced and the distribution of β‑actin is more 
diffused. The location of γ‑actin is not significantly changed. 
These results demonstrated that the degree of cell transforma-
tion was closely associated with changes in the distribution 
and amount of cytoplasmic actin isoforms (11).

The actin network is a dynamic structure with continuous 
directional polymerization and disassembly (12). The mono-
mers of actin are regarded as globular-actin (G-actin), while 
the polymers are known as filamentous-actin (F-actin). 
G‑actin commonly tends to polymerize into actin filaments 
in physiological salt circumstances. The actual equilibrium 
between G-actin and F-actin depends on the actin critical 
concentration. When the actin concentration is above the set 
point, the process of actin polymerization starts (13). In cancer 
cells undergoing an EMT process, G-actin polymerizes to 
form actin filaments to initiate the formation of a leading edge. 
Newly formed actin filaments subsequently interacted with 
binding proteins and contractile proteins, such as myosin II, 
leading to the movement of actin fibers on the substrate toward 
the leading edge (14). Thus, dynamic reorganization of the 
actin is a prerequisite for the morphology, migration and inva-
sion of cancer cells (15,16).

The actin-depolymerizing factor (ADF)/cofilin family of 
proteins, which is composed of cofilin‑1, cofilin‑2 and ADF, 
are regarded as the most important regulators of dynamic 
actin reorganization (17). The LIM domain kinases (LIMKs) 
function through directly inactivating the ADF/cofilin 
family of proteins to rearrange the actin cytoskeleton (18). 
The LIMK/cofilin pathway is directly under the manage-
ment of the integrin-linked kinase (ILK)/b-parvin/bPIX/cell  
division control protein 42 (Cdc42)/p21-activated kinase 
(PAK) signaling axis, which participates in supporting 
abundant f i lopodium-like protrusions display. The 
ILK/b-parvin/bPIX/Cdc42/PAK/LIMK/cofilin signaling 
pathway suppresses the cleavage of actin fibers, resulting 
in the stabilization of filopodium-like protrusions during 

the EMT process. This pathway also plays a vital role 
in governing cell proliferation, tumor-initiating poten-
tial and metastatic aggressiveness (4). P120-catenin, a 
fundamental regulator of anchorage-independent growth, 
is identified to cause the suppression of the ras homolog 
(Rho)/Rho‑associated protein kinase/LIMK/cofilin signaling 
pathway that act synergistically with the p190RhoGAP 
signaling and the mitogen-activated protein kinase 
kinase/mitogen‑activated protein kinase signaling to regulate 
the actin reorganization (19).

Shibue et al (20) also identified Rho in filopodia 
(Rif)/mouse diaphanous 2 (mDia2) signaling as polym-
erizing machinery of actin to stimulate the formation 
of filopodium-like protrusions. Mellor (21) uncovered 
the essential combined efforts of Rif and mDia2 on 
the induction of actin nucleation and subsequent exten-
sion of actin filaments. The Rif/mDia2 signaling and the 
ILK/b-parvin/bPIX/Cdc42/PAK/LIMK/cofilin signaling 
cooperate to induce and maintain the filopodium‑like protru-
sions involved in the EMT program (22). As an immediately 
early effector downstream of the TGF-β-Smads signaling 
through transcription repressor activating transcription 
factor 3 (23), JunB plays significant roles in the EMT 
process (24). It induces the organization of actin stress fibers 
and focal adhesions, including integrins and palladin, through 
the regulation of tropomyosin α-1, which belongs to the tropo-
myosin family (25).

Certain regulators of local actin reorganization were also 
identified to have significant roles in tumor cell migration 
and invasion, such as the actin-related protein2/3 (Arp2/3) 
complex, cortactin, fascin, epidermal growth factor receptor 
kinase substrate 8, α-actinin, filamin and LIMK/cofilin 
belonging to the Wiskott-Aldrich syndrome protein (WASP) 
family (4). Arp2/3 is a protein complex, involved in the initia-
tion of actin filament polymerization. Arp2/3 is frequently 
overexpressed in malignant tumors, such as breast and liver 
carcinomas, suggesting a strong correlation between dynamic 
actin reorganization and cancer progression (26-28). Cortactin, 
an actin-binding protein, is thought to activate Arp2/3, which 
promotes actin filament polymerization at the leading edge. 
The overexpression and phosphorylation of cortactin is closely 
correlated with cell migration and metastasis (29,30). Fascin 
is significantly associated with time to recurrence, metastatic 
spread, tumor seeding and cancer prognosis (31). It is an 
actin-bundling protein mainly located in the invadopodia 
and filopodia, involved in the regulation of cell assembly and 
turnover. The upregulation of fascin promotes cell migration 
by stimulating the formation of protrusion and increasing the 
activity of cell migration (32).

Gay et al (33) first revealed the refilin proteins, including 
RefilinA and RefilinB, as a novel family of actin regula-
tors. RefilinA dimer promotes the actin‑binding filamin A 
(FLNA) to form a polymolecular complex on filamentous 
actin (F-actin) and functions to convert FLNA from an 
actin-branching protein into an F-actin bundler. RefilinB 
combined with FLNA organize a unique perinuclear actin 
network at the apical surface during the EMT. The refilin 
proteins perform their function through the downstream 
effector, FLNA to regulate the dynamic actin cytoskeleton 
reorganization (34).
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Another family of actin-binding proteins is the tropo-
myosins, including over 40 isoforms (35). Altered tropomyosin 
isoforms stabilize actin filament bundles in different degrees 
and show certain correlation with different focal adhe-
sion morphology based on their ability to affect size and 
signaling of focal adhesion (36). The synchronous effects of 
various tropomyosins on the actin cytoskeleton and the adhe-
sion-cytoskeleton linkage are critical for precise control of the 
initiation and arresting of cell invasion and metastasis (37). 
Bach et al (38) identified the tropomyosin isoform Tm5NM1 
that stabilizes focal adhesions and actin filaments concurrently 
to affect cell migration in 2D and 3D cultures. The modulation 
of the actin cytoskeleton by tropomyosins is also thought to 
have a large impact on anchorage‑independent growth (39).

The WASP/WASP family verprolin-homologous protein 
(WAVE) is a family of actin-binding proteins composed 
of five members; WASP, NWASP, WAVE1, 2 and 3 (40). 
Taylor et al (5) demonstrated that WAVE3 is required for the 
initiation of EMT through the involvement of DNA synthesis, 
the cell cycle progression, the migration and the formation of 
protrusions in triple-negative breast cancer cells. In response 
to the Rho GTPases, the WASP/WAVE proteins increase the 
activities of Arp2/3 able to promote assembly of actin filaments 
and remodeling of actin cytoskeleton dependent upon the 
involvement of nucleation-promoting factors (NPFs). Notably, 
the WASP and WAVE subfamilies are part of the NPFs, indi-
cating the persistence of an extremely positive feed-forward 
mechanism during the actin cytoskeleton reorganization 
process (41,42). The activity of NPFs is also regulated by Cdc42 
and ras-related C3 botulinum toxin substrate (Rac) that are 
required for the activities of the WASP/WAVE family (43,44). 
Rac1 and Cdc42 are localized in the front edge toward the 
direction of migration (45). Cdc42 stimulates long unbranched 
bundles of actin for the formation of filopodia, which receive 
outward stimulation (46). Rac1 regulate branched actin polym-
erization for the formation of protrusion, which are thought 
to drive the cell forward (47). Interferon regulatory factor 4 
binding protein (IBP) has been identified to mediate the activi-
ties of Cdc42, Rac1 and ras homolog gene family, member A 
(RhoA) in breast cancer. It can induce the actin cytoskeleton 
remodeling, stimulate the formation of filipodium and lamelli-
podia and regulate cell morphology. Zhang et al (48) identified 
IBP in the involvement of epithelial mesenchymal transition 
induced by epidermal growth factor.

Formins are conserved members of actin nucleating 
proteins that can enhance actin nucleation at the F-actin 
end (49). Due to the ability to profoundly change the actin 
cytoskeleton, formins have been regarded as important 
regulators of cell movement, development and organization. 
The activity of formins is modulated by Rho GTPases, which 
control the assembly of stress fiber, the formation of protru-
sions and the mode of cell motility (50,51). Formins have a 
crucial role in EMT as molecular switches to remodel the 
actin cytoskeleton and spindle-shaped morphology. Formin 
homology domain protein (FHOD1) is mainly found in mesen-
chymal cells in human tissues and is proposed to induce the 
formation of actin filaments directly (52). Gardberg et al (49) 
reported that FHOD1 is upregulated at the leading edge in 
mesenchymally-transformed cells upon EMT. This poorly 
studied formin promotes the actin cytoskeleton reorganization 

and stress fiber formation, which are essential for cancer cell 
invasion and migration. The knockdown of FHOD1 inhibits 
the formation of protrusions to prevent the EMT process. 
FHOD1 can also increase the expression of myosin light 
chain 2 (MLC2) and affect MLC2 phoshorylation at Thr18 and 
Ser19. The phosphorylated MLC2 is required for the formation 
of stress fibers and myosin filaments, which provide contractile 
activity to enhance migration of cancer cells (53).

Several proteins once identified to have specific functions 
are now designated to have a close association with the actin 
cytoskeleton. The metaderin (MTDH) complex, which was first 
identified as a component section of the tight junction, is now 
regarded as an actin cytoskeleton regulator by Yao et al (54). 
MTDH protein is dominantly co-localized with occludins and 
zonula occludens-1 in the cytoplasm of the polarized epithelial 
cells. Overexpression of MTDH significantly decreases the 
F‑actin‑enriched filopodia, increases the cell size and weakens 
the mesenchymal feature. MTDH overexpression inhibits the 
ability of cell migration and invasion, while MTDH suppression 
induces the epithelial mesenchymal transition analogous to the 
TGF-β stimulation 24918821. Cytokines may regulate the actin 
cytoskeleton remodeling at the polarized edge through specific 
intracellular signaling pathways to form protrusions (55,56). 
Cyclin A2 plays a novel and critical role in regulating basic 
cell division as it mediates the switch between S phase and 
G2/M transition. It triggers DNA synthesis in association 
with cyclin-dependent kinase 2 during S phase and it initiates 
the activation of cyclin B1-CDK1 at G2/M transition (57). 
Bendris et al (58) found that cyclin A2 is a novel regulator 
of the actin cytoskeleton. In cells deficient of cyclin A2, the 
cytoskeleton is evidently deranged and the localization of 
focal adhesions is markedly changed, which may be rectified 
by cyclin A2 based on the RhoA-ROCK signaling pathway.

3. Microtubule network

The microtubule network is another type of cytoskeleton that 
provides the driving force during cell migration (59). The 
microtubule is a polymer form of tubulin dimers. α-tubulin 
modifications are regulated at a posttranslational level to 
affect cell motility (60). During the EMT program, the tubulin 
tyrosine ligase enzyme is downregulated, leading to the dety-
rosination of α-tubulin at the invasive side. The accumulation 
of detyrosinated α-tubulin is essential for the formation of 
microtentacle, which is a microtubule-based membrane exten-
sion. Glu-tubulin and Twist expression levels exhibit good 
concordance in vivo and in vitro, particularly at the earliest 
stages of tumor migration and invasion (61).

In the monolayer culture, stress fibers and microtubules 
act in concert to support the certain cell shape (59). In the 
3D culture, actin filaments were distributed mainly at the 
surface of the cell body and few stress fibers were observed 
in the center of the protrusions in the EMT-induced cells; by 
comparison, microtubules were mainly detected in the protru-
sions. In cells without EMT induction, microtubules exhibit 
uniform distribution in the cytoplasm. The morphology of 
protrusions in the 3D collagen gel culture also appear to be 
markedly different from that in the 2D culture, demonstrating 
that the living environment of cells has an affect on the 
protrusion formation. The result that colchicine, rather that 
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cytochalasin B, efficiently prohibited the formation of invasive 
protrusions demonstrates that the invasive protrusions are 
microtubule-based structures. The cell protrusions cannot 
be blocked by inhibitors for membrane type 1 matrix metal-
loproteinase 1, proto-oncogene tyrosine-protein kinase and 
phosphoinositide-3 (PI3) kinase. This result further demon-
strates that the invasive protrusions in 3D collagen gel are not 
supported by the actin cytoskeleton (62).

The microtubule-associated protein tau plays a funda-
mental role in the regulation of tubulin assembly required 
for the formation of membrane protrusions (63). Protein 
phosphatase 2 and heat‑shock protein 90 act on tau to regulate 
the microtubule stability, which are required for the protrusion 
formation (64,65). Certain actin cytoskeleton regulators, such 
as PI3K-Akt signal and Rho GTPases, were newly recognized 
essential regulators of the microtubule stability (66,67). 
Further investigations are required to prove the specific regula-
tory mechanism for the actin cytoskeleton and the microtubule 
network.

Tian et al (68) reported a novel mechanism of 
microtubule regulation via hepatocyte growth factor 
(HGF)/Rac1/PAK1/stathmin signaling pathway. HGF stimu-
lates the phosphorylation of the stathmin through the Rac1 
activation to regulate the microtubule dynamics (69). HGF 
also increases the peripheral microtubule and stimulates the 
growth of acetylated tubulin (70). Stathmin is involved in 
regulating cell migration and cell cycle and a recent study has 
provided evidence indicating that stathmin has a significant 
role in regulating microtubule dynamics (71). Stathmin has 
been indicated in regulating the destabilization of the micro-
tubule network by disassembling the microtubule polymer 
into α/β-tubulin heterodimers and by raising the catastrophe 
frequency (72). The phosphorylation of the stathmin at its four 
serine residues is closely associated with its activity to desta-
bilize microtubules (73). The interaction between stathmin 
and the α/β-tubulin heterodimers also modulates the activity 
of stathmin. Li et al (74) reported that Siva1 restrained the 
activity of the stathmin through the Siva1-CaMKII-stathmin 
signaling to promote the microtubule formation and inhibit the 
EMT and tumor metastasis. Siva1 functions to stabilize the 
microtubule network to suppress EMT.

Anaphase-promoting complex (APC)/β-catenin-rich 
complexes are mainly distributed among membrane extensions 
and they have a robust impact on tumor cell behavior (75,76). 
The APC is generally localized at protrusion tips depending 
on the microtubule network but not the actin cytoskeleton (77). 
β-catenin was also concentrated at the protrusion ends (78). 
The APC/β-catenin-rich complex activation, which is adjusted 
by the phosphorylation level, controls cytoskeletal dynamics 
that regulate tumor cell morphology and the migratory 
potential. Odenwald et al (79) identified that these complexes 
were dependent on an intact microtubule network to be fully 
functioning. The suppression of the protrusion-associated 
APC/β-catenin complex would intensely prevent the invasion 
and migration of tumor cells, but does not have a profound 
effect on cell proliferation.

Certain antitumor drugs have been reported to func-
tion through impact on microtubule dynamics, resulting 
in abnormal apoptosis and mitosis. Taxol was the first drug 
known to promote tubulin assembly and inhibit microtubule 

disassembly to interrupt the mitosis. It can then steadily fix the 
cancer cells in the mitotic phase from rapid reproduction (80). 
ABT-751, a type of orally-active anticancer compound, works 
through binding firmly to the tubulin dimers to stabilize 
them (81). Vinca alkaloids, an anticancer drug, increase the 
tubulin expression and change the mitotic spindle microtubule 
dynamics, inhibiting cell mitosis (82). As microtubules have 
a significant effect on tumor migration and invasion during 
EMT, the mechanism of these antitumor drugs may function 
not only through inhibiting cell division, but also through 
inhibiting the formation of the microtubule network-based 
membrane protrusions that provide the driving force during 
cell migration and cell invasion (83-85).

4. Intermediate filaments

Intermediate filaments are essential constituents of cytoskel-
etal proteins, ubiquitous in eukaryotic cells, and are ~10 nm 
in diameter (86). Helfand et al (87) reported that the largest 
genes family of the human genome encodes the intermediate 
filaments, which are one of the most rubbery and insoluble 
structures in cells. This family has six isoforms with different 
amino acid sequences, including type I-VI, of which vimentin 
and nestin attract the most attention (88). Although different 
isoforms have different structures, they are organized with 
similar structural domains (89).

Intermediate filaments function in supporting the plasma 
membrane and maintaining the cell shape (90). As they are 
localized to the plasma membrane through transmembrane 
proteins, they are involved in maintaining the traction forces 
between cells and protecting cells from disruption. Unlike the 
actin cytoskeleton and the microtubule cytoskeleton, interme-
diate filaments show distinct patterns of tissue expression (91).

A type I intermediate filament, keratin, is specifically 
expressed in epithelial cells, while type III intermediate fila-
ments are mostly expressed in the endothelial, mesenchymal 
and hematopoietic cells (92‑94). During the EMT process, 
intermediate filaments are significantly rearranged, typically 
switching from cytokeratin‑rich to vimentin‑rich networks (95). 
Cell motility capacity is significantly enhanced due to the 
intermediate filament change. Under the stress stimulation, 
intermediate filaments are also significantly upregulated to 
induce the rearrangement of the cytoskeleton (96,97).

A type III intermediate filament, vimentin, is a typical 
marker for the mesenchymal cell (91), which is attracting 
increasing attention as a classical EMT biomarker. Vimentin 
maintains the cell shape in a quiescent cell; however, it is 
involved in the highly dynamic remodeling of the cyto-
skeleton in a motile cell (98). Vimentin has previously 
been indicated to be upregulated during EMT in epithelial 
cells, resulting in a more mesenchymal phenotype and 
motile behavior (99). Liu et al (100) used time-lapse video 
microscopy to indicate that vimentin is closely associated 
with the metastatic potential of epithelial cells measured by 
the wound healing assay. Silencing of vimentin may inhibit 
the invasion and migration of renal cell carcinoma (RCC) 
cells. As it is found that silencing vimentin would switch 
mesenchymal cells into epithelial phenotype and that the 
transfection of vimentin would change epithelial cells into 
mesenchymal phenotype, the level of vimentin expression 
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is strongly linked to mesenchymal phenotype. The level of 
vimentin expression was significantly upregulated in clinical 
RCC specimens, as compared to normal tissues by immuno-
histochemistry assay. Vimentin is regulated by miR‑138 and 
miR‑141, which participates in cell migration, adhesion and 
signaling processes (101).

A type VI intermediate filament, nestin, was initially 
characterized as a biomarker of functional stem cells, such as 
central nervous system stem cells, but now it is described as a 
biomarker of various cancer stem cells, including ovarian, head 
and neck, prostate and brain tumors, based on the phenomenon 
that nestin are found abundant in the invasive edge of cancer 
stem cells (102). Nestin reportedly interacts with vimentin or 
desmin to form heterodimers or polymers; these structures 
provide cellular mechanostructural support, maintain cellular 
membranes and restrict organelles to a limited area (103).

Nestin has also been found to function through interac-
tion with other intermediate filaments, such as vimentin 
and desmin, to regulate apoptosis-related factors, to support 
cellular mechanostructure and to coordinate cytoskeleton 
reorganization during mitosis (104).

Kawamoto et al (105) indicated that nestin played a signifi-
cant role in stromal and nerve invasion. Matsuda et al (106) 
suggested that nestin is involved in the process of cell 
invasion and migration through impacting on the actin cyto-
skeleton and cell adhesion behaviors. Nestin not only takes 
part in the EMT process, but it also participates in a positive 
feed-forward loop that regulates the tumor metastasis. TGF-β1 
was found to upregulate nestin expression predominantly by 
the Smad4-dependent pathway, while nestin overexpression 
was shown to increase the expression of TGF-β1 and its 
downstream signals at the gene and protein levels through the 
same signal. The autocrine positive feedback regulatory loop 
between nestin and TGF-β1 is decisive to the tumor metastatic 
network, which provides novel ideas for the cancer treatment. 
Nestin overexpression was also demonstrated to provide 
tumor cells with a high metastatic motility, promoted cancer 
cell growth by degrading extracellular matrix and suppressed 
immune responses by nullifying interleukin 2, cytotoxic T 
lymphocyte and Toll-like receptors, which are all crucial 
molecules for host immune surveillance (107).

5. Future directions

The cytoskeleton is a dynamic network of three intracellular 
filaments that play a fundamental role in the management of 
cell shape and behaviors. It is an attractive potential therapeutic 
target for cancer metastasis due to its close association with 
EMT. However, there is an accumulation of evidence in the 
literature demonstrating that several metastatic and invasive 
cancers have not undergone a thorough EMT. These cancers 
may even lack signs of EMT, including the loss of epithelial 
features, the reduction of the epithelial marker E-cadherin and 
the increase of mesenchymal proteins (108). The TGF-induced 
EMT is also found to restrain cell invasion, which may be 
alleviated by overexpression of hyperactivated Ras (109). 
Thus, more research is required to understand the intricate 
association between cellular dynamic cytoskeleton and cancer 
invasion. Further study in more depth is also required to depict 
the features of the dynamic expression and arrangement of 

intracellular filaments during cancer invasion and migration. 
In anticancer research, the main difficulty lies in specifically 
inhibiting the dynamic cytoskeleton reorganization associated 
with cancer progression.
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