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Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes

and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important

in the regulation of several of these autonomic gastrointestinal (GI) functions including

motility, secretion and visceral sensitivity. While several 5-HT receptors are involved

in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately

involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is

released from enterochromaffin cells in response to mechanical or chemical stimulation

of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal

afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons,

including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The

central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase

glutamatergic synaptic transmission to second order neurons of the nucleus tractus

solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors

modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus

of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons

themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors

may modulate the excitability and activity of gastrointestinal vagal afferents at multiple

sites and may be involved in several physiological and pathophysiological conditions,

including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well

as visceral hypersensitivity.
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VAGO-VAGAL REFLEX CONTROL OF GI TRACT

Despite intrinsic (enteric) neural plexuses that allow a considerable degree of autonomy over
digestive functions, the central nervous system (CNS) provides extrinsic neural inputs to the GI
tract that govern, regulate and modulate these functions. The GI tract receives extrinsic neural
inputs from both parasympathetic and sympathetic pathways derived (or controlled) from caudal
brainstem nuclei (Browning and Travagli, 2014). While the sympathetic nervous system exerts a
predominantly inhibitory effect upon GI muscle and mucosal secretion and regulates GI blood
flow via neurally-dependent vasoconstriction, the parasympathetic nervous system exerts both
excitatory and inhibitory control over gastric and intestinal motility and tone suggesting a more
finely tuned regulation of GI functions (Travagli et al., 2006). The esophagus, stomach, and upper
GI tract, in particular, receive a dense parasympathetic innervation, the intensity of which decreases
as one progresses distally through the intestine (Berthoud et al., 1991).
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The parasympathetic innervation to the stomach, small
intestine and proximal colon is provided by the vagus nerve.
A mixed nerve, containing both sensory and motor fibers,
the vagus contains approximately 70–80% sensory fibers that
transduce physiological events within the GI tract and relay
this information to the CNS. Anatomical and physiological
studies have characterized several different types of vagal
afferent fibers that can be distinguished based upon their
responses to muscle tension or pressure (mostly low-threshold
mechanosensors although high-threshold nociceptors are also
present), the location of the afferent fibers receptive field (muscle,
mucosal, or serosal/mesenteric) and their principle stimulus
modality (chemical, osmotic, mechanical) as well as the region
of the GI tract they innervate (Powley and Phillips, 2002; Beyak
and Grundy, 2005).

The cell bodies of vagal sensory afferents, which lie
within the paired nodose ganglia or nodose-jugular complex,
serve the classic afferent functions and relay the peripheral
sensory information from the GI tract to the brainstem via
a glutamatergic synapse at the level of the nucleus tractus
solitarius (NTS). NTS neurons assimilate this enormous volume
of sensory information and integrate it with inputs received from
other brainstem and higher CNS centers involved in autonomic
homeostatic functions. Indeed, the NTS has either reciprocal
connections with, or receives inputs from, the hypothalamus,
amygdala, nucleus accumbens, raphe, trigeminal, vestibular, and
parabrachial nuclei as well as the area postrema, all of which help
to sculpt and shape these vagal afferent visceral sensory inputs.
The integrated signal is then relayed from the NTS to the adjacent
dorsal motor nucleus of the vagus (DMV) which contains the
preganglionic parasympathetic motorneurons which supply the
parasympathetic output to the upper GI tract via the efferent
vagus nerve (Figure 1; Travagli et al., 2006; Browning and
Travagli, 2014).

5-HT3 RECEPTORS AND VAGAL SENSORY
FUNCTIONS

5-HT is an important neurotransmitter in several GI functions,
and >90% of the total body 5-HT is contained with the GI
tract, either within specialized enteroendocrine cells, termed
enterochromaffin (EC) cells or within neurons. Excellent recent
reviews have provided in depth coverage of the role of 5-HT
within the GI tract (Gershon and Tack, 2007;Mawe andHoffman,
2013); this review, therefore, will concentrate on the role of 5-
HT3 receptors in gut-brain and brain-gut signaling outside the
GI tract itself. Electrophysiological studies have demonstrated
functionally active 5-HT3 receptors on vagal afferent neurons
and fibers (Leal-Cardoso et al., 1993; Hillsley et al., 1998; Kreis
et al., 2002; Moore et al., 2002; Lacolley et al., 2006a; Babic
et al., 2012) and activation of 5-HT3 receptors induces a short
latency, transient increase in firing rate of vagal afferents (Hillsley
and Grundy, 1998; Hillsley et al., 1998) or a brief, rapid inward
current (or membrane depolarization), in isolated neurons (Leal-
Cardoso et al., 1993; Peters et al., 1993; Babic et al., 2012)
consistent with its function as a ligand-gated cation channel
(Derkach et al., 1989).

When released from EC cells, 5-HT triggers smooth muscle
activity via activation of 5-HT3 receptors on intrinsic primary
afferent neurons (IPANs; Tuladhar et al., 1997; Zhou and
Galligan, 1999; Bertrand et al., 2000; Gwynne and Bornstein,
2007). Such motor responses can, and do, activate extrinsic vagal
and spinal afferent fibers, possibly via 5-HT2 receptors secondary
to smooth muscle activity (Blackshaw and Grundy, 1993; Hillsley
and Grundy, 1998; Hillsley et al., 1998). The released 5-HT also
activates extrinsic primary afferent terminals directly, however,
via activation of 5-HT3 receptors (Paintal, 1951; Hillsley et al.,
1998). EC cells release 5-HT in response to mechanical (Bulbring
and Lin, 1958; Blackshaw and Grundy, 1993; Mazda et al., 2004)
as well as chemical stimulation. Luminal micronutrient content,
in particular carbohydrates and hyperosmotic stimuli, induce
strongly the release of 5-HT (Raybould and Zittel, 1995; Zhu
et al., 2001; Raybould et al., 2003; Wu et al., 2005). Vagal afferent
nerve terminals innervate the apical tips of mucosal villi as
well as intestinal crypts and are likely, therefore, to be in close
apposition to GI neurohormones, including 5-HT, released from
mucosal enteroendocrine cells (Powley et al., 2011). While a
large proportion of the 5-HT from EC cells may be released in
close proximity to 5-HT3-containing primary afferent terminals,
a significant amount is still absorbed into the bloodstream,
and circulating platelet-free 5-HT levels rise almost three-fold
following a meal (Houghton et al., 2003). In this regard, it is
important to note that (1) 5-HT3 receptors are also present
on nodose neuronal membranes (Leal-Cardoso et al., 1993;
Moore et al., 1999, 2002; Lacolley et al., 2006a), including those
innervating the GI tract (Daly et al., 2011; Babic et al., 2012),
(2) 5-HT3 receptors are also present on the central terminals of
vagal afferents within the brainstem (Glaum et al., 1992; Ramage
and Mifflin, 1998; Wan and Browning, 2008b; Takenaka et al.,
2011; Cui et al., 2012; Hosford et al., 2014), and (3) circulating
mediators have far freer access to vagal soma and the brainstem
than perhaps thought previously (Figure 1; Lacolley et al., 2006b;
Baptista et al., 2007). This suggests that EC-derived circulating 5-
HT has the potential to modulate vagal afferent neuronal activity
at sites distinct from the GI tract and may, therefore, prolong or
amplify local GI signaling.

Within the brainstem, activation of 5-HT3 receptors on vagal
afferent terminals increases glutamatergic transmission to second
order NTS neurons causing their activation (Glaum et al., 1992;
Jeggo et al., 2005; Wan and Browning, 2008b; Takenaka et al.,
2011; Cui et al., 2012; Hosford et al., 2014). NTS neurons
are critically important in the regulation and modulation of
a wide variety of autonomic homeostatic functions including
cardiovascular as well as gastrointestinal processes (Andresen
and Kunze, 1994; Travagli et al., 2006). Activation of vagal 5-HT3

receptors has been shown to be important in in baroreceptor and
chemoreceptor reflex control of the cardiovascular system (Sévoz
et al., 1996, 1997; Callera et al., 1997; Jeggo et al., 2005; Jordan,
2005; Ramage and Villalon, 2008) as well as pancreatic secretion
(Mussa et al., 2008, 2010), meal termination, early satiety, and
appetite regulation (Hayes and Covasa, 2006a; Wu et al., 2012).

The source of 5-HT activating 5-HT3 receptors on the central
terminals of vagal afferents is the subject of some debate. 5-HT3

receptor selective antagonists decrease glutamatergic synaptic
transmission from central vagal afferent terminals (Wan and
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FIGURE 1 | Schematic illustration of the location of 5-HT3 receptors on vagal neurocircuits. 5-HT is released from intestinal enteroendocrine cells in

response to ingested carbohydrates and acts locally on 5-HT3 receptors present on vagal afferent peripheral terminals to increase vagal afferent fiber firing. Circulating

5-HT may also modulate vagal afferent fiber excitability via actions at 5-HT3 receptors on the soma of subpopulations of nodose ganglion neurons, as well as the

central terminals of vagal afferent fibers within the brainstem. Some nodose ganglion neurons are themselves serotonergic, although it is unclear whether they release

5-HT in a physiologically-relevant manner; serotonergic medullary raphe neurons are an additional potential source of 5-HT input into vagal brainstem neurocircuits. An

increase in vagal afferent fiber excitability, as results from activation of 5-HT3 receptors, increase glutamatergic transmission to second order NTS neurons. It is

unclear whether NTS and DMV neurons themselves display functional 5-HT3 receptors or whether the observed alterations in their activity is subsequent to the

modulation of vagal afferent fiber neurotransmission.

Browning, 2008b; Cui et al., 2012; Hosford et al., 2014) suggesting
the receptors are active tonically, although other studies have not
observed this ongoing receptor activation (Cui et al., 2012). Such
disparities may be explained by either experimental differences,
since tonic 5-HT3 receptor activation was noted in studies
employing coronal rather than horizontal brainstem slices, or
species differences, being noted in studies involving rats, rather
than mice. Immunohistochemical studies have demonstrated a
dense serotonergic input into the dorsal vagal complex (i.e., NTS,
DMV, and area postrema from the raphe nuclei (Steinbusch,
1981; Thor and Helke, 1987, 1989) the projections of which
are more likely to remain intact in the coronal plane. It
should also be noted, however, that the dorsal vagal complex is
essentially a circumventricular organ with fenestrated capillaries
and a leaky blood brain barrier (Cottrell and Ferguson, 2004;
Fry and Ferguson, 2007) and circulating neurohormones or
neuromodulators may have freer access to neurons within these
areas (Baptista et al., 2007). It remains to be determined,
however, whether elevations in circulating platelet-free 5-HT

levels that occur in response to meal ingestion or mechanical
stimulation exert any modulatory role on central vagal afferent
neurotransmission. It should also be noted, however, that a
subpopulation of nodose ganglion neurons have been shown
to synthesize 5-HT (Gaudin-Chazal et al., 1982; Thor et al.,
1988; Nosjean et al., 1990), although it is unclear whether vagal
afferents are able to release 5-HT centrally under physiological
conditions.

5-HT3 RECEPTORS AND VAGAL MOTOR
FUNCTIONS

Surprisingly, it is not clear whether NTS and DMV neurons
themselves display functional 5-HT3 receptors. Extracellular
brainstem recordings have certainly demonstrated an alteration
in NTS and DMV neuronal activity in response to both
peripheral and central administration of 5-HT3 receptor agonists
(Wang et al., 1996; Pires et al., 1998; Jeggo et al., 2005; Ramage
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and Villalon, 2008) while nerve recordings have demonstrated
that vagal efferent activity is modulated following activation of
5-HT3 receptors (Mussa et al., 2010). The location of these 5-HT3

receptors has not been elucidated precisely; electron microscopy
has shown that 5-HT3 receptors are present on neurons and
glial cells within the brainstem suggesting an involvement in
modulating postsynaptic neuronal responses as well presynaptic
neurotransmitter release (Huang et al., 2004). Indeed, one
relatively early study (Glaum et al., 1992) demonstrated that
NTS neurons were depolarized by exogenous application of
a 5-HT3 receptor agonist in a manner resistant to synaptic
blockade, suggesting a postsynaptic receptor location. The
alteration in neuronal activity in the majority of the remaining
studies, however, could conceivably be the downstream response
following increased glutamate release subsequent to activation of
vagal afferent terminal 5-HT3 receptors.

PHYSIOLOGICAL ROLES OF VAGAL 5-HT3

RECEPTOR SIGNALING

The physiological, rather than pathophysiological, role of vagal
afferent 5-HT3 receptors following GI-mechanical or distention-
related 5-HT release appears to still be open to debate. Several
studies have demonstrated that mechanical stimulation of the GI
tract activates vagal afferents; some studies describe this as direct
activation of peripheral primary afferent 5-HT3 receptors (Mazda
et al., 2004; Hayes and Covasa, 2006b), while others show this
clearly to be an indirect effect, secondary to stimulation of local
motor activity in response to the released 5-HT (Blackshaw and
Grundy, 1993; Hillsley and Grundy, 1998; Hillsley et al., 1998).
Indeed, recent work has suggested that while release of 5-HT
from intestinal EC cells may not be a requirement for either
the initiation or propagation of colonic motor complexes, 5-HT
certainly modulates these peristaltic reflexes in a manner that
appears to involve 5-HT3 receptors (Keating and Spencer, 2010;
Spencer et al., 2011).

In contrast, chemically-stimulated 5-HT release has well-
defined actions to activate vagal afferent 5-HT3 receptors directly.
Ingestion of carbohydrates such as glucose, for example, induces
a vagally-dependent gastric relaxation and delay in gastric
emptying that is dependent upon peripheral vagal afferent
5-HT3 receptor activation; furthermore, peripheral application
of 5-HT3 receptor selective agonists decrease gastric motility
and delay gastric emptying (MacGregor et al., 1976; Rayner
et al., 2001; Zhu et al., 2001; Raybould et al., 2003). Indeed,
peripheral vagal afferent 5-HT3 receptor activation appears to
play an ongoing modulatory role in the regulation of gastric
motility and emptying since administration of 5-HT3 receptor
selective antagonists accelerates gastric transit, suggesting the
receptorsmay be under some degree of tonic activation (Coleman
et al., 2003; Raybould et al., 2003; Gentilcore et al., 2007).
The physiological role that 5-HT3 receptors on the central
terminals of vagal afferents plays in the glucose-induced, vagally-
dependent decrease in gastric motility and tone has still to
be elucidated. Studies have demonstrated, however, that the
response of vagal afferents to ingested glucose can be modulated

by intravenous glucose (Mei, 1978) implying that glucose is
capable of modulating vagal activity at sites other than afferent
terminals within the GI tract. Indeed, studies have shown that
a some GI-vagal afferent neurons are glucose-sensitive, that
is, glucose can modulate the excitability of a subpopulation
of GI nodose ganglion neurons via actions at ATP-sensitive
potassium channels, in a manner similar to the canonical model
of pancreatic β–cells (Grabauskas et al., 2010). This implies that,
in addition to increasing vagal afferent activity via 5-HT release
and subsequent 5-HT3 receptor activation, once absorbed form
the GI tract, circulating glucose may also regulate nodose neuron
excitability to modify the increase in vagal activity induced by
luminal glucose. In addition to these actions of glucose, however,
we have demonstrated that extracellular glucose levels are also
able to modulate the density and function of 5-HT3 receptors on
GI nodose neurons. In particular, increasing extracellular glucose
levels induces the trafficking of existing 5-HT3 receptors to the
membrane of GI-projecting vagal afferent neurons and increases
the magnitude of the 5-HT-induced inward current, whereas
decreasing glucose levels induce 5-HT3 receptor internalization
and decrease the 5-HT-dependent inward current (Babic et al.,
2012). Thus, ingested glucose may be able to amplify and prolong
its afferent signaling by first releasing 5-HT from intestinal EC
cells, and then by increasing the number of 5-HT3 receptors on
vagal afferents available for activation.

The glucose-dependent modulation of 5-HT3 receptor
trafficking and function also appears to occur centrally. We, and
others, have demonstrated that extracellular glucose regulates
the density of 5-HT3 receptors on vagal afferent central
terminals; elevating extracellular glucose increases spontaneous
and evoked glutamate release from vagal afferent terminals
via actions in a 5-HT3 receptor-dependent manner (Wan and
Browning, 2008a; Hosford et al., 2014) although the role
of vagal afferent 5-HT3 receptors in the glucose-dependent
modulation of gastric functions remains to be defined. Similarly,
the concentration of glucose within the NTS parenchyma, and
fluctuations in response to alterations in circulating glycemic
levels, remain to be determined but concentrations within the
cerebrospinal fluid are typically two-thirds those of circulating
levels. As discussed previously, the dorsal vagal complex is a
circumventricular organ and NTS neurons and fiber terminals
may well be exposed to higher glucose levels than those
measured elsewhere within the CNS (Dunn-Meynell et al., 2009).
While the majority of electrophysiological studies in brainstem
slice preparations certainly use non-physiological levels of
glucose, we have demonstrated previously that glucosemodulates
glutamate release from vagal afferent terminals at much lower
levels of extracellular glucose (0.5–5mM; Browning, 2013)
implying this is a physiological, rather than pathophysiological,
phenomenon.

PATHOPHYSIOLOGICAL ROLES OF VAGAL
5-HT3 RECEPTOR SIGNALING

The sensory vagus nerve is generally considered to relay
predominately non-noxious, interoceptive information from the
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GI tract to the brainstem although growing evidence suggests the
involvement of the vagus nerve in pain processing (see Randich
and Gebhart, 1992) Certainly, some vagal afferent fibers appear
responsive to nociceptive stimulation although the primary
response to noxious vagal afferent stimulation may be nausea,
rather than pain (Chen et al., 2008).

Vagal neurocircuits have a well-described role in nausea and
vomiting (see Babic and Browning, 2014) and the role of vagal
afferent fibers in emesis have been most extensively studied
in the context of chemotherapy-induced nausea and vomiting
(CINV) or postoperative nausea and vomiting (PONV). Several
chemotherapy agents induce the release of 5-HT from EC cells
which activates 5-HT3 receptors on vagal afferent terminals
(Endo et al., 1990, 2000; Horn et al., 2004); vagotomy decreases
emesis induced by cytotoxic drugs while 5-HT3 receptor selective
antagonists are particularly efficacious clinically in preventing
CINV and PONV (Hawthorn et al., 1988; Andrews et al.,
1990; Endo et al., 2000; Darmani and Johnson, 2004; Andrews
and Horn, 2006). The presumed site of action of these 5-HT3

receptor selective antagonists is at peripheral vagal afferent
terminals (Endo et al., 2000) although it should be noted
that centrally applied 5-HT3 receptor antagonists also attenuate
CINV, suggesting actions at brainstem 5-HT3 receptors (Leslie
et al., 1990; Reynolds et al., 1991; Liu et al., 2003; Darmani
and Ray, 2009) while 5-HT-induced disruptions in normal GI
motility patterns may also contribute to CINV and PONV
(Endo et al., 2000; Glatzle et al., 2002; Tonini, 2005). Similarly,
the nausea and vomiting associated with several infectious
agents, including rotavirus (Hagbom et al., 2011), Salmonella
typhimurium (Jensen et al., 1997), and campylobacter (Blakelock
and Beasley, 2003) has also been associated with the activation
of vagal afferent 5-HT3 receptors subsequent to intestinal 5-HT
release.

The role of vagal afferent 5-HT3 receptors in various
forms of visceral hypersensitivity and nociceptive processing
has been the focus of considerable attention from several
groups although there are conflicting reports as to the extent
of the involvement of vagal, rather than spinal, pathways.
Several studies have suggested that vagal afferent fibers, and
vagal afferent 5-HT3 receptors in particular, are important in
the inhibitory modulation of spinal nociceptive transmission.
Briefly, when administered intravenously, 5-HT induces a dose-
dependent inhibition of the tail flick reflex, and this anti-
nociceptive effect is dependent upon intact vagal pathways
since it is abolished by either cervical vagotomy, nodose
ganglionectomy, or neonatal capsaicin pretreatment (Meller
et al., 1992). In a similar manner, vagotomized rats display
an enhanced visceromotor response to colorectal distention
(allodynia), effects that are lost following application of the
local anesthetic lidocaine to the abdominal vagus (Chen et al.,
2008). The specific involvement of 5-HT3 receptors in these
responses was confirmed by studies investigating stress-induced
visceral hyperalgesia, which demonstrated that subcutaneous
administration of 5-HT3 receptor selective antagonists increased
the visceromotor response to colorectal distension, actions that
were prevented by perivagal capsaicin (Bradesi et al., 2007, NB—
it should be noted that perivagal capsaicin does not produce

a selective vagal deafferentation but also causes a significant
degree of damage to vagal efferent motoneurons, Browning
et al., 2013a). Thus, it appears that 5-HT3 receptor-dependent
activation of vagal afferents inhibits the noxious stimulation of
spinal afferents although the central nuclei responsible for this
descending modulation have not been defined fully (Ren et al.,
1990; Randich and Gebhart, 1992).

Such an anti-nociceptive role of vagal afferent 5-HT3 receptors
appears consistent across several visceral hypersensitivity
models suggesting common mechanistic pathophysiologies. In
experimental models of duodenal acidification-induced gastric
hypersensitivity, for example, intestinal acidification enhances
the pressor response observed in response to gastric distention;
this pressor response is enhanced by 5-HT3 receptor selective
agonists (Nakata-Fukuda et al., 2014) while administration of
5-HT3 receptor selective antagonists inhibits the sensitization to
distention that occurs in humans (Vanuytsel et al., 2011).

Activation of vagal afferent 5-HT3 receptors also have well
described roles in the immune responses elicited by antigen
challenge in sensitized animal models, where 5-HT released
following mast cell degranulation activates vagal afferents to
modulate the visceral hypersensitivity and motor response to
the immune challenge (Castex et al., 1995; Jiang et al., 2000;
Chen et al., 2009). It should be noted, however, that other
studies have suggested that the principle action of the sensory
vagus in these antigen challenged models may be to monitor
GI activity during the anaphylactic response, rather than playing
a critical role in symptom generation (Scott et al., 1998). In
this regard, studies have noted that the role of vagal afferents
to inhibit nociceptive signaling may have temporally restricted
actions, triggering endogenous antinociception at the early stages
of allergen challenge and thereafter declining over time (Chen
et al., 2009).

In part, this time-dependent decline in response may be
related to the functional presence and activity of 5-HT3 receptors
on vagal afferents; prolonged activation of 5-HT3 receptors
leads to receptor desensitization and internalization (Freeman
et al., 2006) and a decrease in receptor mRNA levels has
been observed following chronic immune challenge (Chen
et al., 2009). Also of relevance in this regard are the altered
expression levels of serotonin transporters, particularly the
serotonin-selective reuptake transporter (SERT) in several
visceral hypersensitivity disorders. 5-HT signaling is terminated
by reuptake into intestinal epithelium or nerve terminals via
specialized transporter systems; alterations in SERT levels,
therefore, are critical in regulating the availability, activity and
duration of 5-HT signaling. SERT expression is downregulated
in several hypersensitivity disorders including intestinal
inflammatory conditions such as IBD as well as some, but not
all, patients with diarrhea-predominant IBS (Coates et al., 2004;
Camilleri et al., 2007; Foley et al., 2011). It is unclear whether
such alterations in SERT contribute to dysregulated vagal afferent
signaling in these groups, however. It is also unclear whether
SERT expression levels are altered centrally in response to
visceral hypersensitivity disorders; blocking SERT activity in the
brainstem decreases glutamatergic synaptic transmission from
the central terminals of vagal afferents due to the activation of
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presynaptic 5-HT1A receptors, the activity of which are more
tightly regulated by physical proximity to uptake transporters
(Hosford et al., 2014). An increase in brainstem 5-HT levels
in response to altered SERT activity may, therefore, have the
potential to dramatically alter the gain of GI vagal afferent
information transfer.

Many chronic pain syndromes, including IBS, are significantly
more prevalent in women suggesting a role for gonadal hormones
in the modulation of visceral sensitivity (Mulak et al., 2014).
Estradiol has been shown to increase the secretion of 5-HT from
intestinal mucosal mast cells in rats (Yan et al., 2014) causing
the activation vagal afferent 5-HT3 receptors and an inhibition
of the visceromotor response to colorectal distention in rats. It
should also be noted, however, that estradiol has pronociceptive
actions via spinal mechanisms; an imbalance between vagal
antinociceptive and spinal pronociceptive pathways as estrogen
levels fluctuate during the menstrual cycle may potentially
exacerbate visceral sensitivity in susceptible IBS females (Yan
et al., 2014).

Although, the regulation of food intake and energy
homeostasis is generally considered to involve the integration
of “higher” CNS centers with autonomic nuclei, the role of
vago-vagal neurocircuits in the regulation of early satiety
signaling has been the subject of renewed attention by several
laboratory groups (Page et al., 2012; Dockray, 2013; de Lartigue,
2014; Kentish and Page, 2014). Diet-induced obesity is known
to compromise the excitability and responsiveness of GI vagal
afferent fibers (Covasa et al., 2000a,b; Swartz et al., 2010;
Kentish et al., 2012) and neurons (Donovan et al., 2007; Paulino
et al., 2009; Daly et al., 2011; de Lartigue et al., 2011). The
mechanism responsible for this attenuated excitability has not
been elucidated fully although studies in both obese mice and
rats demonstrating a decreased membrane input resistance
and increased membrane capacitance are suggestive of an
increase in resting background potassium conductance(s) (Daly
et al., 2011; Browning et al., 2013b). Studies have suggested
that 5-HT3 receptor expression is downregulated following
short term exposure to a high fat diet (Nefti et al., 2009)
and 5-HT3-dependent activation of vagal afferent neurons is
attenuated in diet-induced obese mice (Daly et al., 2011) but it
is unclear whether this reflects the obesity-induced generalized
decrease in vagal afferent excitability or a more specific decline
in 5-HT3 function. In our recent studies in pre-obese rats fed a
high fat diet, however, we have not observed an attenuated or
compromised response of gastric vagal afferent fibers to 5-HT3

receptor activation (Troy et al., 2015), suggesting that obesity
itself, rather than exposure to a high fat diet, may be responsible
for the compromised 5-HT3 receptor signaling.

Evidence from several fields have suggested that vagal
neurocircuits are not static relay networks where afferent
activation triggers formulaic and unmodulated output responses.
Rather, vagal neurocircuits display a remarkable degree of
plasticity with their excitability and responsiveness being
modulated readily by diet, insult or injury (Browning and
Travagli, 2001, 2011; Bielefeldt et al., 2002a,b; Kollarik and
Undem, 2002; Dang et al., 2004; Kang et al., 2004, 2005;
Tolstykh et al., 2004; Hermes et al., 2008; Kentish et al., 2012,

2014; Browning et al., 2013b). In this regard, it is interesting
to note that allergic challenge in sensitized animals induces a
5-HT3-dependent exposure of tachykinin receptor responses in
respiratory vagal afferents and neurons (Weinreich et al., 1997;
Moore et al., 1999, 2000, 2002); similar changes in GI afferents
and neurons may also play a role in visceral hypersensitivity. Also
of relevance is the finding that, despite being asynaptic, cross-
talk exists between nodose ganglion neurons, where excitation
of one neuron may influence that of a neighboring neuron
by neurotransmitter-dependent and -independent means (Oh
and Weinreich, 2002). The nodose ganglion (or nodose-jugular
complex) houses the cell bodies of all vagal afferent neurons;
although a generalized viscerotopic organization of soma has
been proposed with neurons innervating the esophagus and
aortic depressor nerve being located more rostrally with neurons
innervating the stomach and pancreas being located more
caudally (Zhuo et al., 1997), clearly cross-talk between neurons,
may provide a means by which neurons innervating different
visceral organs, or different GI areas, may influence or modulate
activity of unrelated neurons.

CONCLUSIONS

5-HT and 5-HT3 receptors in particular, are clearly important
in gut-brain signaling and in the regulation and modulation
of several vagally-mediated GI physiological reflexes and may
play additional roles in several pathophysiological conditions.
5-HT3 receptors also appear open to modulation; extracellular
glucose levels, for example, traffic 5-HT3 receptors to and from
the neuronal membrane of GI nodose neurons amplifying or
attenuating the 5-HT-induced response, while some, but not all,
reports suggest alterations in receptor function by diet induced
obesity. It would be surprising, however, if dietarymicronutrients
were the only mediators 5-HT3 receptor plasticity. Antigen
challenge, for example, has been shown to induce 5-HT3 receptor
dependent unmasking of tachykinin functions in respiratory
nodose neurons; future studies investigating whether similar
changes occur in GI nodose neurons may provide novel
treatment strategies for allergen induced visceral hypersensitivity.
Also intriguing is the apparent dichotomy between vagal afferent
5-HT3 responses; excessive activation of vagal afferent 5-HT3

receptors induces nausea and vomiting whereas several reports
suggest an initial, temporally discrete anti-nociceptive response
in stress-induced hypersensitivity. These (and other) diverse 5-
HT3 receptor-dependent responses present obvious problems to
the therapeutic use of receptor selective agonists or antagonists
yet their more readily accessible nature means that vagal afferent
5-HT3 receptors still present an attract target for translational
research.
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