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Sessile plants possess an assembly of signaling pathways that perceive and transmit 

environmental signals, ultimately resulting in transcriptional reprogramming. Histone is a 

key feature of chromatin structure. Numerous histone-modifying proteins act under 

different environmental stress conditions to help modulate gene expression. DNA 

methylation and histone modi�cation are crucial for genome reprogramming for tissue-

speci�c gene expression and global gene silencing. Different classes of chromatin 

remodelers including SWI/SNF, ISWI, INO80, and CHD are reported to act upon chromatin 

in different organisms, under diverse stresses, to convert chromatin from a transcriptionally 

inactive to a transcriptionally active state. The architecture of chromatin at a given promoter 

is crucial for determining the transcriptional readout. Further, the connection between 

somatic memory and chromatin modi�cations may suggest a mechanistic basis for a 

stress memory. Studies have suggested that there is a functional connection between 

changes in nuclear organization and stress conditions. In this review, we discuss the role 

of chromatin architecture in different stress responses and the current evidence on somatic, 

intergenerational, and transgenerational stress memory.

Keywords: chromatin remodeling, transcription, nucleosome, histone variants, abiotic stress, epigenetics, 

intergenerational, transgenerational

PLANTS UTILIZE EPIGENETIC AND CHROMATIN-MODIFYING 
STRATEGIES TO DEAL WITH STRESS

Plants utilize highly evolved mechanisms to improve their growth and development to face 
various biotic and abiotic stresses, in part due to their sessile nature. �e plasticity of plants 
allows them to adapt and survive through these environmental challenges (Gratani, 2014). 
Chromatin modi�cations, o�en associated with alterations in gene expression, have been 
recognized as signi�cant mechanisms that facilitate plant growth under challenging environments 
(Fan et  al., 2005). �e highly condensed and tightly coiled chromatin complex is composed 
of DNA and histone proteins (Cedar and Bergman, 2009). �e tight coiling of chromatin, 
which is the default state, limits the access of RNA polymerase and other transcription factors 
to genes. To enable transcription, this compact structure must be  opened: this process is 
termed chromatin remodeling (Bannister and Kouzarides, 2011), and it facilitates the conversion 
of chromatin from a transcriptionally inactive to a transcriptionally active state. �e maintenance 
of gene activity is controlled by numerous biochemical modi�cations of chromatin structure, 
including DNA methylation (Grewal and Moazed, 2003). Some of these modi�cations can 
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be  stably inherited through generations, suggesting that 
transgenerational adaptation to diverse stresses also has a genetic 
basis (Pecinka and Scheid, 2012). However, in plants, a limited 
number of studies have been carried out to validate this 
transmission of stress-induced changes in chromatin structure. 
Due to changes in chromatin structure, composition, and 
location, plants can modify transcription according to changing 
conditions and can maintain developmental and physiological 
changes for the long term (Vriet et  al., 2015; Perrella et  al., 
2020). To cope with extreme environmental changes, plants 
have the power to remember the earlier stress and thus respond 
more e�ciently when they encounter the stress again; this 
phenomenon is known as priming, which is o�en related to 
chromatin modi�cation and may be  maintained independently 
from transcription (Baurle and Trindade, 2020). It is di�cult 
to understand chromatin folding in polyploid plants because 
polyploidy causes several copies of similar or related genomes 
in one nucleus. A study was conducted in wheat to understand 
chromatin architecture, which shows that there are three levels 
of large-scale spatial organization and concluded that for gene 
transcription in polyploidy plants, a three-dimensional 
conformation at multiple scales is the main factor (Concia 
et  al., 2020). �e use of high throughput next-generation 
sequencing (NGS) technologies, well-assembled genome 
sequences, and the availability of antibodies for a plethora of 
DNA and histone modi�cations have all bene�ted the studies 
of chromatin remodeling under stresses. �is review focuses 
on the scope and relevance of chromatin architecture in plant 
stress adaptations.

CHROMATIN REMODELING ALLOWS 
POLYMERASES, TRANSCRIPTION 
FACTORS, AND OTHER NUCLEAR 
PROTEINS TO ACCESS DNA

In all eukaryotes, chromatin is packed into nucleosomes; the 
histone family of proteins makes up a large portion of the 
chromatin protein component. A nucleosome is a repetitive 
unit composed of 147  bp of DNA coiled in 1.67 le�-handed 
turns around a histone octamer comprised of pairs of H2A, 
H2B, H3, and H4 histones (Luger et al., 1997). Histone proteins 
bear a positive charge and hence can come into close proximity 
with DNA. H3 and H4 are a part of core histones; they are 
present on the inside of the nucleosome and are bound to 
DNA before other histones. Variants of H2A and H2B have 
been found, which vary in their level of interaction with DNA. 
Linker DNA is a short strand of a nucleotide sequence that 
helps in compacting chromatin structure and gene expression 
regulation (�oma et  al., 1979; Lorch et al., 1999).

When highly condensed, the chromatin architecture prevents 
access by transcription factors, polymerases, and other nuclear 
proteins to DNA. Some modi�cations due to stress signals 
take place in the chromatin structure, which enables DNA to 
become accessible. �ese chromatin remodeling includes shi�ing 
or removing histones, introducing histone variants, or 

posttranslationally modifying existing histones (Eberharter and 
Becker, 2002).

�ere are two di�erent strategies among many processes 
involving two di�erent enzymatic mechanisms to accomplish 
chromatin organization: One operates through chromatin 
remodelers that change DNA-histone interactions via ATP 
hydrolysis, and the other utilizes specialized enzymes that 
methylate DNA or modify histone residues through the addition 
of covalent modi�cations (Cedar and Bergman, 2009).

CHROMATIN REMODELING COMPLEXES 
CONTAIN ATPASE/HELICASE OF THE 
SWI2/SNF2 FAMILY CATALYTIC CORE

�e SWITCHING DEFECTIVE2/SUCROSE NON-FERMEN 
TING2 (SWI2/SNF2) family of chromatin remodeling complexes 
(CRCs), part of a large superfamily of helicases and translocases, 
use the energy obtained from ATP hydrolysis to gain access 
to DNA sequences (Clapier and Cairns, 2009). �e SWI2/
SNF2 family CRCs are further subdivided into four classes/
subfamilies (Clapier et  al., 2017; Ojolo et  al., 2018; Table  1).

SWI/SNF Subfamily Remodelers
�e SWI/SNF subfamily remodelers comprise 8–14 subunits 
initially puri�ed from Saccharomyces cerevisiae (Mohrmann 
and Verrijzer, 2005). A C-terminal bromodomain, a helicase-
SANT domain, and a post-HSA domain are present in the 
catalytic ATPases of most SWI/SNF subfamily remodelers. 
Homology, dependent on arrangements of SNF2_N and HelicC 
areas, distinguishes two Arabidopsis likely proteins, At5g19310 
(CHR23) and At3g06010 (CHR12), and two a�rmed proteins, 
At2g28290 (SPLAYED or SYD) and At2g46020 (BRM), as the 
nearest homologs of yeast and human SWI/SNF ATPase subunits. 
BRM and SYD (2193 and 3574 amino acids) represent huge 
proteins, while CHR12 and CHR23 (1132 and 1054 amino 
acids) are altogether more modest. AT-hook motifs are present 

TABLE 1 | The four families of chromatin remodeling proteins and their 

respective structural domains.

Chromatin 

remodelers 

family

Subunits Domains References

SWI/SNF 

(SWItching 

defective/Sucrose 

NonFermenting)

BAF, PBAF HSA, DExx, 

HELICc, Bromo

Peterson and 

Workman, 2000

ISWI (Imitation 

SWItch)

ACF,RSF, CERF, 

CHRAC, NURF, 

NoRC, WICH, 

b-WICH

DExx, HELICc, 

HAND, SANT, 

SLIDE

Boyer et al., 2000

CHD 

(Chromodomain, 

Helicase, DNA 

binding)

CHD1, CHD2, 

CHD3, CHD4, 

CHD9, NuRD 

subunits

Chromo, DExx, 

HELICc

Boyer et al., 2000

INO80 (INOsitol 

requiring 80)

INO80, Tip60/

p400, SRCAP

HSA, DExx, 

HELICc

Clapier and Cairns, 

2009
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in the C-terminal regions of BRM and SYD, whereas there is 
no such distinctive C-terminal domain in the CHR12 and 
CHR23. Decrease in DNA methylation 1 (DDM1) encodes a 
SWI2/SNF2-like protein, showing that chromatin remodeling 
is a crucial process for maintenance of DNA methylation 
(Jeddeloh et  al., 1999). In Arabidopsis thaliana, DDM1 is one 
of the important plant epigenetic regulators required for 
maintaining cytosine methylation in genomic DNA (Dubin et 
al., 2015). DDM1 is found to enable methylation of DNA 
bound to the nucleosome. Nucleosomes are prominent barriers 
to DNA methyltransferases in the absence of remodeling (Lyons 
and Zilberman, 2017). In Arabidopsis, mutations in DDM1 
show major methylation losses in all sequence contexts (especially 
in heterochromatic TEs); small losses can also be seen in genes 
(Ito et  al., 2015). Arabidopsis histone H1 inactivation partially 
rescues the ddm1 hypomethylation phenotype, showing that 
DDM1 provides methyltransferase access to H1-containing 
chromatin (Zemach et  al., 2013). A genome-wide reduction 
in DNA methylation was observed in ddm1 mutants especially 
in repeated regions of the genome. ddm1 mutation induces 
epigenetic variation, which leads to the steady transmission 
of morphological phenotypes throughout generations, even if 
outcrossed from the original mutant backgrounds. Even though 
the major molecular phenotype of ddm1 or met1 mutants is 
a depletion of DNA methylation, instances of genetic variation 
as genomic rearrangements, copy number variants (CNVs), 
and successive DNA transposition have additionally been noticed 
and may represent a considerable amount of phenotypic variability 
(Zemach et  al., 2013). �ere are four nonallelic variants of 
SWI3-type proteins reported in Arabidopsis and �ve in rice. 
�e four Arabidopsis variations AtSWI3A, AtSWI3B, AtSWI3C, 
and AtSWI3D, just as their rice partners, all o�er the trademark 
SWIRM (Swi3p, Rsc8p, and Moira), SANT (Swi3, Ada2, N-Cor, 
and TFIIIB), and Leucine Zipper space with yeast SWI3 and 
its orthologs in mouse (Srg3), Drosophila (Moira), and human 
(BAF170 and BAF155).

In Arabidopsis, only BSH (At3g17590) shows signi�cant 
similarity to SNF5 (in yeast), which plays a key role in the 
organization and functioning of SWI1/SNF1 complexes. �e 
Arabidopsis genome encodes two exceptionally comparable 
homologs of yeast SWP73: At3g01890 (named AtSWP73A) and 
At5g14170 (named AtSWP73B), which show 83.7% arrangement 
personality to one another. SWP73 has a functional role in 
transcriptional activation. �e SWI2/SNF2-type ATPase domain 
belongs to the helicase and NTP-driven nucleic acid translocase 
superfamily 2 (SF2). �is SF2 facilitates interaction with di�erent 
targeting domains and functional modules, which activates 
remodeling activities in chromatin structure and thus helps 
in transcription regulation and DNA repair (Hopfner et al., 2012).

Imitation Switch Subfamily Remodelers
�e Imitation Switch (ISWI) subfamily remodelers comprise 
of two to four subunits initially puri�ed from Drosophila 
melanogaster. �ese remodelers consist of plant bromodomains, 
homeodomains, additional DNA-binding motifs, as well as 
DNA-binding histone fold motifs (Corona and Tamkun, 2004). 
In most of the eukaryotes, some specialized proteins form 

these ISWI family complexes using one or two di�erent catalytic 
subunits. Nucleosome spacing is optimized by some ISWI 
family complexes like chromatin-assembly and remodeling factor 
(ACF) and chromatin-accessibility complex (CHRAC) promoting 
chromatin assembly and repressing transcription. Whereas 
certain complexes like nucleosome remodeling factor (NURF) 
can assist RNAPII activation by randomizing spacing. At the 
C terminus of the ISWI family, ATPases nucleosome recognition 
module is formed by a SANT domain (yADA2, ySWI3, hTFIIIB, 
and hNCoR) adjacent to a SLIDE domain (SANT-like ISWI), 
which binds to an unmodi�ed histone tail and DNA. �e 
studies on the polytene chromosomes in Drosophila larvae 
suggested the signi�cant impact of ISWI in regulating higher-
order chromatin structure.

Chromodomain Helicase DNA-Binding 
Subfamily Remodelers
�e chromodomain helicase DNA-binding (CHD) subfamily 
remodelers comprise of 1–10 subunits �rst puri�ed from Xenopus 
laevis. �ey vary in their structure due to the diversity in 
their chromodomains. �ey can act as transcriptional activators 
or repressors depending on CHD (Marfella and Imbalzano, 
2007). In lower eukaryotes, the catalytic subunit is monomeric; 
however, in vertebrates, it can be in large complexes. To promote 
transcription, nucleosomes are ejected or slid by some CHD 
remodelers whereas some other CHD remodelers have repressive 
roles like the vertebrate Mi-2/nucleosome remodeling and 
deacetylase (NuRD) complex [histone deacetylases (HDAC1/2) 
and methyl CpG-binding domain (MBD) proteins]. CHD1 
(identi�ed as a murine protein) interacts with promoter sequences 
of immunoglobulin and is the founding member of the CHD 
family. A DNA-binding domain is present at the C-terminal 
of Chd1 and chd2 proteins that speci�cally bind to the AT-rich 
DNA region. �e other two proteins CHD3 and CHD4 (a 
member of the second subfamily) do not contain standard 
DNA binding domains in their C terminus. However, a pair 
of PHD Zn-�nger-like domain is present at the N-terminal 
of these proteins. �is PHD Zn-�nger-like domain is present 
in several nuclear proteins participating in chromatin-based 
transcriptional regulation. At C terminus of CHD6 to CHD9 
(part of the third subfamily), additional functional motifs like 
SANT domain or BRK domain are present. �ere is a discrepancy 
in the identi�cation of CHD5, as it contains both PHD �ngers 
as well as SANT domain. PHD �ngers show interaction with 
HDAC1 within NuRD in CHD3 and CHD4. CHD remodelers 
bind with enhancers and help in transcription activation.

Inositol Requiring 80 Subfamily 
Remodelers
�e inositol requiring 80 (INO80) subfamily initially puri�ed 
from S. cerevisiae is characterized by the presence of a split 
ATPase subunit with a long insertion found in the middle of 
the ATPase domain, which binds with the helicase-related 
(AAA-ATPase) Rvb1/2 proteins and one ARP protein. It is 
involved in transcription activation and DNA-double-strand 
break (DSB) repair (Bao and Shen, 2007). Higher orthologs 
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of the INO80 family include hINO80, hSRCAP (SNF2-related 
CREB-activator protein), and p400, also having HAT activity. 
CRCs from di�erent subfamilies are involved in diverse plant 
physiological processes like cell di�erentiation, meristem 
establishment, �oral morphogenesis, organ development, 
phytohormone signaling, and biotic and abiotic stress tolerance. 
RuvB-like helicases, the unique proteins for INO80 and SWR1 
complexes, are related to the bacterial RuvB helicase, which 
takes part in DNA repair. �e member of this family binds 
to the histone variants of H2A: H2A.X and H2A.Z. In vivo 
INO80 complex is involved in nucleosome eviction, while the 
SWR1 complex catalyzes the replacement of a canonical H2A-H2B 
dimer with an H2AZ-H2B variant dimer. �e ATPase subunits 
of the INO80 family and other ATPases in the SNF2 helicases 
are di�erent, as a long spacer region is present in the INO80 
complex that splits the conserved ATPase domain. �is region 
binds with RuVB-like subunits and Arps. �e helicase-SANT 
domain (HAS domain) necessary for the binding Arps and 
actin components is also present in the motor subunits of 
INO80 protein. �e involvement of IN080 complexes in DNA 
repair is suggested by the presence of RuvB-like helicases.

CHROMATIN MODIFICATIONS IN PLANT 
STRESS TOLERANCE

Plants exploit chromatin modi�cation mechanisms, (i) CRCs 
and (ii) chromatin-modifying enzymes, to overcome various 
biotic and abiotic stresses (Asensi-Fabado et  al., 2017). In 
Arabidopsis, during stress, RESTRICTED TO NUCLEOLUS 1 
(REN1) was found to be  incorporated with nucleoli and helps 
in pollen development (Reňák et al., 2014). STRESS RESPONSE 
SUPPRESSOR 1 and 2 (STRS1 and 2) are DEAD-box RNA 
helicases; loss-of-function mutations in these proteins result 
in plants resistant to various stresses (Kant et al., 2007), whereas 
overexpressing STRS1 or STRS2 results in stress hypersensitivity. 
�ese proteins have a transient interaction with the nucleolus 
during diverse stress conditions, with di�erent kinetics. 
RNA-directed DNA methylation (RdDM) pathways can inactivate 
some genes (Figure  1).

In plants, histone acetyltransferases (HATs) and HDACs 
catalyzing histone acetylation and deacetylation show a role 
in cold responses (Kim et al., 2015). In Arabidopsis, HISTONE 
DEACETYLASE 6 (HDA6) is upregulated by cold stress and 
positively regulates freezing tolerance (Luo et al., 2017). HDACs 
appear to directly activate maize (dehydration responsive element 
binding protein 1) DREB1 (ZmDREB1) gene expression and 
histone hyperacetylation under cold stress (Yu et  al., 2018; 
Ding et  al., 2019). According to a recent study to regulate 
the expression of COR genes (COR47 and COR15A), HOS15 
works together with HISTONE DEACETYLASE 2C (HD2C) 
by directly binding to their promoters (Park et  al., 2018; 
Figure  1).

In Arabidopsis, salinity tolerance is determined by expression 
levels of DEK3 (a DEK domain-containing protein), which 
acts in association with DNA topoisomerase (Waidmann et al., 
2014). Members of the acetylation lowers binding a�nity (ALBA) 

family are expressed in rice plants under drought stress, but 
their exact mechanism in chromatin organization is not yet 
evident (Verma et  al., 2014). According to a recent study in 
A. thaliana seedlings subjected to four abiotic stresses (heat, 
cold, salt, and drought), there was no change observed in a 
large portion of chromatin. Chromatin accessibility was increased 
in case of extreme temperatures, while the result for chromatin 
accessibility did not change much in case of drought and salt 
stresses (Raxwal et  al., 2020).

Epigenetic regulators have been found to a�ect the intranuclear 
localization of STRSs, hence showing that they have a role to 
play in the silencing of stress response genes with chromatin 
alterations (Khan et al., 2014). Sumoylation (attachment of SUMO 
moiety) is one of the common posttranslational protein 
modi�cations in response to several plant stresses (Miller et  al., 
2013; Elrouby, 2017). During stress, SUMOylation could play 
an essential part in changing the messenger RNA (mRNA) 
pro�le. SUMOylation of RNA binding proteins and elements 
engaged with 3' pre-mRNA processing, RNA editing, transcription 
termination, and mRNA export (Richard et al., 2013; Lamoliatte 
et  al., 2014) have assisted with extending the function of this 
modi�er to the �eld of RNA processing and metabolism (Rouviere 
et al., 2013). It is found that SUMO pathway enzymes colocalize 
in nuclear bodies and substructures along with segments of the 
RNA processing machinery. A few individuals from the protein 
inhibitor of STAT (PIAS) family of SUMO E3 ligases localized 
to nuclear speckles, which are subnuclear structures advanced 
for pre-mRNA splicing factors (Lamond and Spector, 2003; Hall 
et al., 2006). According to a study, SUMO-1 and the E2-conjugating 
enzyme ubc9 are localized to Cajal bodies (sites of maturation 
of snRNPs) necessary for pre-mRNA processing (Navascues 
et  al., 2008). Multiple putative SUMO targets are present in 
functional capping, splicing, polyadenylation, termination, and 
mRNA export processes (Richard et  al., 2017). During heat 
stress, SUMOylation has been accounted for controlling DNA 
methylation patterns, which, along with the stress-up-regulated 
SUMOylation of Arabidopsis variants of histone acetylases/
deacetylases, for example, GCN5/ADA2B (Sterner et  al., 2006) 
and HDA19 (To et  al., 2011), may then assist in the conversion 
of euchromatic regions into heterochromatic regions during stress.

�e MORC family is a subfamily of microrchidia (MORC) 
GHKL ATPases (Gyrase, Hsp90, histidine kinase, and MutL) 
superfamily. MORC protein was initially isolated from mouse, 
which is important for meiotic nuclear division (Watson et  al., 
1998). �erea�er, MORC genes have been identi�ed in mammals 
(Pastor et  al., 2014), Caenorhabditis elegans (Moissiard et  al., 
2012), and di�erent plant species, including Arabidopsis (Kang 
et  al., 2008), tobacco, barley, and potato. In Arabidopsis, seven 
members of MORC are identi�ed and �ve members in barley. 
Microrchidia (MORC) subfamily is highly conserved and 
comprises widespread domain architectures, which enables it 
to link with epigenetic regulation and signaling-dependent 
chromatin remodeling (Lorković, 2012; Li et  al., 2013). �e 
role of MORC in chromatin-based transcriptional gene silencing 
(TGS) is studied in Arabidopsis (Lorković, 2012). MORCs 
interacts with other proteins and derive versatility in chromatin-
associated functions. Mutations in two Arabidopsis genes, 
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AtMORC1 and AtMORC6 (members of conserved MORC 
ATPase family), show de-repression of DNA-methylated genes 
and TEs. Enhanced interaction of pericentromeric regions and 
the genome, decondensation of pericentromeric heterochromatin, 
and transcriptional defects that are mainly focused on loci 
residing in pericentromeric regions are noticed in atmorc1 and 
atmorc6 mutants. In eukaryotes, MORC ATPases are proposed 
to be  the conserved regulators of gene silencing (Moissiard 
et  al., 2012). �e MORC proteins are a subset of the GHKL 
ATPase superfamily. �ese proteins have been described as 
components involved in plant immunity in Arabidopsis. Resistance 
to Phytophthora infestans in solanaceous plants was compromised 
in silenced StMORC1 in potato and enhanced in overexpressing 
lines, indicating that StMORC1 positively a�ects immunity, 
whereas the resistance to P. infestans in SlMORC1 silenced in 
tomato or NbMORC1 silenced in N. benthamiana was increased. 
It was also observed that transient expression of StMORC1 in 
N. benthamiana triggers cell death, initiated by infestin1 (INF1), 
while SlMORC1 or NbMORC1 expression represses it (Manosalva 
et  al., 2015). Arabidopsis MORC1, formerly named CRT1 
(compromised for recognition of TCV 1), identi�ed as a 
hereditary screen to recognize components associated with the 
TCV resistance signaling pathway (Kang et al., 2008). Arabidopsis 

CRT1 is necessary for e�ector-triggered immunity. CRT1 
possesses the ATPase and 5S domains, which is a characteristic 
of MORC proteins. �ese proteins are involved in DNA 
modi�cation and repair (Kang et  al., 2012) It has been studied 
that CRT1 and CRH1 (closest homolog of CRT1) are necessary 
for basal resistance, pathogen-associated molecular pattern 
(PAMP)-triggered immunity, systemic acquired resistance, and 
nonhost resistance. �e level of CRT1  in the nucleus increases 
by PAMP treatment or infection with an avirulent pathogen. 
In Arabidopsis, resistance to Turnip crinkle virus (TCV) is 
represented by the resistance protein HRT (HR to TCV) and 
its related avirulence factor, the viral coat protein. Plants not 
having HRT fail to build up an HR a�er TCV infection permits 
systemic viral spread and results in the death of the plant. 
CRT1 physically interact with HRT and 10 other R proteins; 
these R proteins are mainly inactive. CRT1 possesses two close 
and four distant homologs; silencing of the two closest homologs, 
CRH1 (CRT1 homolog 1) and CRH2, compromised TCV 
resistance to a far extent in comparison to crt1. crt1-1 mutation 
and silencing of CRT1 family members compromise cell death 
triggered by the R proteins. Reduced resistance to avirulent 
Pseudomonas syringae (Pst) and Hyaloperonospora arabidopsidis 
was observed in double knockout (dKO) in the Col-0 background, 

FIGURE 1 | Chromatin architecture under different stresses in plants. BRM (SNF/Brahma), CHROMATIN REMODELING 12 (CHR12) acts as a negative 

regulator. The receptors of drought stress deactivate CHR12 to promote plant productivity. During stress, BRM activity gets inhibited. BRM has been reported to 

control ABI5 expression especially by regulating the nucleosomal stability in the promoter and coding regions of this gene. BRM inhibits the expression of ABI5, 

thus initiating ABA biosynthesis. In heat stress, switching defective/sucrose nonfermenting (SWI1/SNF1) complex interacts with GCN5 and ARP6, which 

dissociates H2A.Z. The dissociation of H2A.Z causes transcription of downstream genes. Normally, the complex of ARP6 with SWI1/SNF1 plays important role 

in the insertion of H2A.Z into the nucleosome and replacing H2A. In the case of salinity, the receptors of salt stress inhibit the binding of SWI3B and HAB1. Due 

to this nonassociation, SNF1-related kinase (SnRK2) remains active, which leads to phosphorylation of transcription factors and �nally transcription of genes. 

Under cold stress, ADA2b, which is a transcriptional activator of HATs, interacts with GCN5 (Arabidopsis HAT) and enhances the HAT activity of GCN5. This 

interaction increases the histone acetylation level.
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crt1-2 crh1-1, which lacks CRT1 and its closest homolog. �e 
knockout of CRT1 gene results in severe susceptibility to both 
virulent and avirulent H. arabidopsidis. �ese results show that 
CRT1 is a very crucial factor in multiple levels of plant immunity 
(Kang et  al., 2012). GHKL ATPase motif is present in several 
prokaryotic and eukaryotic proteins; these proteins are involved 
in heat shock responses (Hsp90), rearranging DNA structure 
(gyrase or topoisomerases), signal transduction (histidine kinase), 
or DNA mismatch repair (MutL; Iyer et al., 2008). In Arabidopsis, 
nucleosome assembly proteins (NAPs; NRP1 and NRP2) localized 
in the nucleus, formed protein complexes, and acted as H2A/
H2B chaperones. �ese protein complexes help in the regulation 
of chromatin organization in epigenetic inheritance, as they 
speci�cally bind to histones H2A and H2B (Zhu et  al., 2006). 
NAP1 is evolutionary preserved from yeast to humans. In 
Arabidopsis, these NRP proteins are involved in many biological 
processes, for example, cell-cycle control, heat tolerance, somatic 
homologous recombination, DNA repair, root meristem 
formation, and genome defense under genotoxic stress (Gao 
et  al., 2012). NRP proteins localized predominantly in the 
nucleus (Gonzalez-Arzola et  al., 2017) genetically interact with 
the SWR1 core components and link with H2A.Z. It is proposed 
that, in Arabidopsis, NRP proteins counteract the activity of 
the SWR1 complex and associate with the dynamic regulation 
of H2A.Z (Wang et  al., 2020).

Evolutionary conserved SnRK1 kinases (Snf1-RELATED 
KINASE1) govern metabolic adaptation during low extended 
darkness by controlling C/S1-bZIP signaling in A. thaliana 
(Pedrotti et  al., 2018). Plants face continual environmental 
�uctuations because of their sessile nature, which may harm 
their energy storage. Plant SnRK1s adjust metabolic, developmental, 
and transcriptional processes due to such challenges (Hey et  al., 
2010; Smeekens et  al., 2010). SnRK1s KIN10 and KIN11 handle 
energy loss by controlling the stress-responsive genes expression 
and signaling of abscisic acid in Arabidopsis (Baena-Gonzalez 
et  al., 2007; Jossier et  al., 2009). Calcineurin B-like interacting 
protein kinase 15 controls rice OsSnRK1 (Lee et  al., 2009) and 
further derepresses the expression of (glucose) Glc-repressed 
gene in the embryo (Lu et  al., 2007) to modulate early seedling 
growth and seed germination. During evolution, SNF1/AMPK-
related kinases proliferated and diversi�ed to mediate the signaling 
of various abiotic stresses (Zu, 2016). Chromatin remodeling 
complexes have been found to be active during responses towards 
di�erent stresses, such as AtCHR12, which is an SNF2/Brahma-
type chromatin remodeling protein. Its paralog, AtCHR23, mediates 
growth responses under abiotic stress (Mlynárová et  al., 2007; 
Folta et  al., 2014), while SPLAYED (SWI/SNF class chromatin 
remodeling ATPase in Arabidopsis) is involved in biotic stress 
signaling and resistance towards pathogen (Walley et  al., 2008). 
In the Solanaceae plants, the expression of the SlyWRKY75 gene 
is induced in response to biotic stress (López-Galiano et al., 2018).

Role of Histone Chaperones in Stress 
Tolerance
Genome-wide responses, independent of transcriptional 
reactivation, inclusive of reduction in nucleosomal density, 
provide the �rst evidence of involvement of histone chaperones 

in poststress periods. In this context, mutants of CHROMATIN 
ASSEMBLY FACTOR 1 (CAF1; Pecinka et  al., 2010; a histone 
chaperone complex facilitating H3 and H4 incorporation onto 
the neosynthesized DNA molecule) were impaired in nucleosome 
reassociation. FASCIATA 1 (FAS1), FASCIATA 2 (FAS2), and 
MULTICOPY SUPPRESSOR OF IRA 1 (MSI1) are three subunits 
of CAF1 (Figure  2). It is observed in A. thaliana that the 
vigor of CAF1 mutants reduced over several generations (Kaya 
et al., 2001). When developmental phenotypes, transcriptomes, 
and DNA cytosine-methylation pro�les were compared in CAF1 
mutant plants of various generations, it was seen that phenotypes 
related to shoot and root growth were majorly a�ected in 
successive generations of CAF1 mutants. Limited changes in 
the expression of the gene were found in early and late generations 
of the fasciata (fas)2-4 CAF1 mutant. �e maternal participation 
to the phenotype severity is more than the paternal contribution 
when early and late generation fas2-4 plants were crossed. It 
shows that the preferred maternal transmission uncovers a 
more prominent reprogramming of epigenetic data in the male 
in comparison to female germline. Epigenetic mechanisms 
underlie the progressive developmental phenotype aggravation 
in CAF1 mutants in Arabidopsis (Mozgova et  al., 2018).

Fasciata mutants have been reported to show pleiotropic 
e�ect in A. thaliana. Arabidopsis CAF1 is necessary for the 
maintenance of seedling architecture, trichome di�erentiation, 
and proper leaf size. CAF1 mutants show defects in shoot 
meristems. As leaf shape is primarily maintained during 
outgrowth of leaf primordia, the function of CAF1 is necessary 
for developing lateral organs and organ primordia, suggested 
by the strong FAS1 expression in leaf primordia (Exner et  al., 
2006). fas mutants have been observed to fail in maintaining 
proper expression of WUSCHEL (WUS) in SAM and 
SCARECROW (SCR) in RAM (Schoof et al., 2000). �is shows 
the critical role of CAF1  in the organization of SAM and 
RAM during postembryonic development. In Arabidopsis, fas1 
and fas2 mutants show dark green, abnormally shaped leaves, 
abnormal �oral organs, short roots, the inability of the breakdown 
of meristem for distinct organs development, and thus reduced 
fertility (Leyser and Furner, 1992). FAS5, which is a TOP1ALPHA, 
a DNA topoisomerase, is not part of the CAF1 complex, and 
like other fasciata mutants, fas5 mutant shows pleiotropic 
defects. �e fas5 mutation results in a change in the leaf and 
stem shape and favors the transition to the reproductive phase, 
leading to SAM fragmentation and tumor development on the 
stem. �e notable increase in the SAM size in fas5 plants in 
comparison with the wild-type plants suggests the role of 
FAS5  in WUS activity (Albert et  al., 2015).

In Arabidopsis, MSI1 is having an important function in 
polycomb repressive complexes (PRC2) due to which msi mutants 
are lethal to the embryo (Köhler et  al., 2003; Guitton et  al., 
2004 or Derkacheva et  al., 2013). CAF1 plays an important 
role in the heterochromatin organization. It also helps in the 
maintenance of transcriptional gene silencing, which includes 
regulation of endoreduplication, homologous recombination, 
inactivation of certain TEs, and regulation of cell cycle duration 
(Mozgova et  al., 2018). Stress-responsive genes mainly show 
progressive transgenerational upregulation in fas2 and also a�ected 
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by nucleosome depletion in fas2. �ese genes lack transcriptional 
repression in fas1 and fas2 mutant plants. �erefore, Arabidopsis 
CAF1 play a role in the stable repression of stress-responsive 
genes. CAF1 is necessary for e�ective resetting of stress-induced 
chromatin modi�cations, due to which it may be  recommended 
that the enhanced stress responses along with inability to reset 
stress-induced chromatin states underlie the transgenerational 
aggravation of the CAF1 mutant phenotype. �ese histone 
chaperones are responsible for histone storage, assembly (Zhu 
et  al., 2006), and eviction. Histone chaperones are di�erentially 
controlled in di�erent plants under similar stress conditions 
(Tripathi et  al., 2015). Stress-responsive genes are upregulated 
in mutants absent in ASF1 or CAF1 proteins and other H3/
H4 chaperones (Schönrock et al., 2006; Weng et al., 2014). Plants 
lacking ASF1 or having the truncated NUCLEOSOME ASSEMBLY 

PROTEIN 1 (NAP1) and H2A-H2B chaperone (Weng et  al., 
2014) show hypersensitivity to stress (Chen et  al., 2018a).

Role of Histone Modi�cations in Stress 
Tolerance
Gene expression can be  a�ected by epigenetic factors by the 
addition of small functional groups (methyl, acetyl, etc.) on 
DNA or histones (Banerjee and Roychoudhury, 2017). Methylation 
of DNA by DNA methyltrasferases (DNMTs) and 
chromomethylases (CMTs) brings about gene silencing. Histone 
methylation can be  a positive mark of transcription if lysine 4 
of histone 3 is methylated (H3K4Me1/2/3), but methylation of 
lysine 9 of histone 3 is a repressive mark of transcription 
(H3K9m2), a hallmark of constitutive heterochromatin. A similar 
case is reported for H3K27me1  in plants. However, H3K27me3 

FIGURE 2 | Chromatin modi�cations and plant development. Chromatin remodelers FIA and HDA3 play an important role during normal seed development. During 

stress, because of abscisic acid (ABA) accumulation, histone deacetylases (HDACs) get activated and helps in seed germination. HDA9 shows involvement in seed 

dormancy and germination (Baek et al., 2020). HDA15 regulates light-controlled hypocotyl elongation and regulates seed germination in the dark (Chen et al., 2020). 

FAS1 (FASCIATA), FAS2, EMBRYONIC FLOWER 2 (EMF2) [EMF genes repress reproductive development by delaying the vegetative-to-in�orescence (V/IF) and 

in�orescence-to-�ower (IF/F) transitions]. The early-�owering/terminal �ower phenotypes of the transgenic plants harboring the antisense EMF2 support this 

hypothesis. emf2-like and t�1-like phenotypes demonstrate the role of EMF2 in the repression of the V/IF and IF/F transitions, whereas early �owering under SD 

conditions suggests that EMF2-mediated, photoperiod-dependent regulation of the V/IF transition, PICKLE (PKL), Imitation Switch (ISWI), SYD, fertilization-

Independent Endosperm (FIE), CLF (CURLY LEAF), and TFL2 helps in normal vegetative growth. During abiotic stress, HDA6, HDA9, and PKL activates ABI3 and 

ABI5. VRN2 functions during �oral induction. In a stressed condition, BSH (SNF5-type protein) gets activated and binds to SWI3A and SWI3B, which activates FCA. 

FIS2, MEA (MEDEA), and fertilization-independent endosperm (FIE) proteins operate in the same system of control of seed development. In Arabidopsis, the genes 

MEA and FIS2 encode the polycomb group (PcG) protein. The genes MEA, FIS2, and FIE repress seed development until the double fertilization event that follows 

pollination provides the signals for embryo and endosperm development. After fertilization, the activity of MEA, FIS2, and FIE can be detected in the endosperm 

tissue, and the activity of FIE activity is also found in some other sporophytic tissues (Guitton et al., 2004). LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) has been 

proposed as a plant-speci�c subunit of PRC1 that could bind the H3K27me3, which is established by PRC2, and is required for a functional plant PcG system. 

LHP1 has been observed to control �owering time primarily by recognizing and binding to H3K27me3 and interacts with FLOWERING LOCUS T (FT) chromatin 

repression of FT expression (Feng and Lu, 2017). During stress, FLC gets repressed; in the senescence of plants, HDACs, HDA6, and HDA19 play vital roles 

(Wageningen Seed Lab, 2007).
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deposited by the polycomb pathway is a mark of “facultative” 
heterochromatin, involved mostly in the repression of 
developmentally regulated genes. Acetylation of histones by 
histone acetyltransferases (HATs) increases the negative charge 
on protein surfaces, reducing interaction with negatively charged 
DNA. Acetylation of histones thus results in the loosening of 
condensed chromatin, facilitating transcription. On the contrary, 
the removal of an acetyl moiety from histones by HDACs (also 
referred to as lysine deacetylases) facilitates condensation of 
chromatin (Füßl et al., 2018; Table 2). In rice, OsDSI modulates 
histone deacetylation to repress salt stress (Julkowska, 2018).

It was shown in Arabidopsis and rice that, upon stress, 
histone variants are also di�erentially expressed like histone 
chaperons (Hu et  al., 2008). �e H2A variant H2A.Z is 
downregulated under drought or salt stress in rice and Arabidopsis 
(Nguyen et  al., 2017). H2A.Z has been found to be  a key 
element for the role as a thermosensor (Kumar and Wigge, 
2010) and shows the function of H2A.Z in chromatin responses 
during stress (Talbert and Heniko�, 2014). H2A.W found in 
heterochromatin is involved in decondensation induced by 
stress (Yelagandula et  al., 2014).

Furthermore, Plants contain a distinct subclass of variants of 
H1 that are stress inducible (Jerzmanowski, 2007) and, when 
overexpressed, confer tolerance to several abiotic stresses (Wang 
et  al., 2014). In Arabidopsis, H1 variants are having a major role 
in the molecular and spatial chromatin organization. H1 takes 
part in gene expression, as it is having distinct roles in euchromatin 
and heterochromatin (Rutowicz et  al., 2019). �ree variants of 
H1, H1.1, and H1.2 (canonical H1 proteins that are constitutively 
expressed), and H1.3 (involved in plant stress tolerance) are 
present. H1.3 is upregulated during high or low light stress 
conditions. H1.3 is required for both stomatal functioning under 
typical growth conditions and adaptive developmental responses 
to combat light and water de�ciency. H1.3 is expressed in stomatal 
guard cells and can be  induced by drought or stresses that signal 
through abscisic acid (Rutowicz et  al., 2015). Plant chromatin 
combats stress by modulating histones by posttranslation 
modi�cations (Kim et  al., 2015; Meyer, 2015). In response to 
stress, changes in a speci�c histone modi�cation can either 
be  global or local. Speci�c changes including the formation of 
H3K9ac (Lee et  al., 2014; Widiez et  al., 2014) and H3K4me3 
(Ding et al., 2019) in salt or drought-responsive genes (Tardieu et al., 
2018) in various plant species are responsible for stress tolerance. 
Abiotic stresses result in global hyperacetylation of histones in 
rice and maize (Fang et  al., 2014; Makarevitch et  al., 2015).

Role of DNA Modi�cations in Stress 
Tolerance
DNA can also be modi�ed by methylation in response to diverse 
stresses. Gene expression is maintained by the balance of methylation 
and demethylation at target promoters (Le et al., 2014). Modi�cation 
in this equilibrium can a�ect the biotic stress response either 
negatively (Lee et  al., 2014) or positively (Dowen et  al., 2012). 
Stress conditions induce necessary changes and modi�cations in 
chromatin structure, which facilitate selective gene expression. It 
remains to be  understood how stress signals are coordinated to 
drive gene activation and changes in the higher-order organization.

CHROMATIN ARCHITECTURE AT 
PROMOTERS DURING PLANT STRESS 
TOLERANCE

�e promoter is an array of cis-regulatory elements that helps 
in the expression of the gene present downstream to it. �e 
function of the core sequences like ACGT (Mehrotra and Mehrotra, 
2010; Mehrotra et  al., 2013), TGAC (Dhatterwal et  al., 2019),  

TABLE 2 | Chromatin-associated factors and chromatin remodeling proteins.

Chromatin-associated 

factors and chromatin 

remodeling proteins

Functions References

HAT Transcriptional response to 

various biotic and abiotic 

stress

Stockinger et al., 2001; 

Vlachonasios et al., 

2003

Subunit of elongator 

HAT complex

Phenotypes of oxidative  

stress tolerance, ABA 

hypersensitivity, and increased 

accumulation of anthocyanin 

in the mutants of four subunits

Zhou et al., 2013; Pfab 

et al., 2018

HDAC Salinity stress tolerance 

phenotype in transgenic 

plants overexpressing 

AtHD2C

Sridha and Wu, 2006

Homolog of human TBC Freezing stress-

hypersensitive phenotype in 

hos15 mutants

Zhou et al., 2013

Subunit of polycomb 

group protein

Drought stress tolerance 

phenotype in cosuppression 

transgenic plants of MSI1

Alexandre et al., 2009; 

Wang and Shen, 2018

HMG protein Phenotype of decreased 

seed germination rate in 

transgenic plants 

overexpressing HMGB1, 

phenotypes of retarded 

germination and subsequent 

growth in transgenic plants 

overexpressing HMGB2

Lildballe et al., 2008

ATP-dependent 

chromatin remodeling 

factor

Phenotype of growth arrest 

of primary buds and stems 

under the drought and heat 

stress in transgenic plants 

overexpressing AtCHR12, 

phenotype of less growth 

arrest under the drought and 

heat stress in atchr12 

mutants, phenotype of 

reduced sensitivity to ABA-

mediated inhibition of seed 

germination and growth in 

swi3b mutants

Mlynárová et al., 2007; 

Saez et al., 2008

CHD4 Signaling and repair after 

DNA damage

Larsen et al., 2010

BRM (BRAHMA) Modulates response to ABA 

by preventing premature 

activation of stress response 

pathways during germination

Buszewicz et al., 2016

CHR5 Plant immune responses and 

nucleosome occupancy

Zou et al., 2017

CHD3 Promotion of sporophytic and 

gametophytic generations

Carter et al., 2016

SWI3C Modulates gibberellin 

responses

Sarnowska et al., 2013
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a cis-regulatory element, and many others have revealed that 
cis-regulatory elements in�uence the gene expression either 
positively or negatively. Mehrotra et  al. (2011) have discussed 
strategies to design synthetic promoter modules. Mehrotra et  al. 
(2017) have discussed the modular nature of transcription and 
discussed the principles of rational combinatorial engineering; 
furthermore, they highlighted the importance of customized 
transcriptional units. A synthetic promoter is a region of DNA 
with a core-promoter region (or minimal promoter sequence) 
and multiple repeats or combinations of heterologous upstream 
regulatory elements (cis-motifs or TF-binding sites). Synthetic 
promoters are designed by the fusion of a minimal promoter 
to a heterologous promoter sequence at its 5' end and to a 
reporter gene (GUS, LUC, CAT, etc) at its 3' end (Lange et  al., 
2018). �ese synthetic constructs are introduced in plant cells 
by Agrobacterium-mediated transformation, biolistics, or, 
electroporation, and then, the expression of the reporter gene 
is studied. �e core promoter region contains TATA box, which 
recruits RNA polymerase II, thus forming the preinitiation complex 
by assembling general transcription factors. �e synthetic 
transcriptional units are the precise combination of coding and 
regulatory DNA sequences designed for the desired function in 
crop plants (Liu and Stewart, 2015). �is synthetic biology is an 
important tool for the genetic modi�cation of plants, thus can 
increase crop productivity under di�erent environmental stresses.

SWI/SNF complexes also regulate noncoding transcription 
arising from promoters, enhancers, intergenic regions, and 
transcription termination sites (TTS) of protein-coding genes. 
Arabidopsis BRM binds to proximal promoter regions as well as 
the distal region of the promoter, gene bodies, and gene terminators, 
whereas yeast SNF2 ATPases bind speci�cally to promoters near 
the TSS site. Archacki et  al. found that the binding of BRM at 
terminator sequences, depending on the locus, can promote or 
repress the transcription of antisense transcripts. �us, it is for 
the e�ect of BRM at its gene targets that can positively or negatively 
regulate their transcription. In plants, SWI/SNF complex regulates 
promoter-centered gene function as well as controls the expression 
of a large number of its direct targets through their 3' ends. �e 
regulation of noncoding RNA (ncRNA) originating from TTS by 
BRM does not depend on the presence of linked sense promoters, 
which suggests that 3'-bound BRM utilizes antisense promoters 
to maintain sense expression of those genes. It has been observed 
that the antisense transcripts arising therefrom and the TTS regions 
of genes have been implicated in environmental signals sensing 
in many systems, including cold sensing by the FLC 3' region 
and sulfur sensing by the 3' untranslated region (UTR) of SULTR2; 
1  in plants, or yeast, the requirement for the 3' region of KCS1 
for phosphate sensing. �is suggests that a large fraction of the 
3' SWI/SNF targets are stress-related genes (Archacki et al., 2017).

SOMATIC MEMORY-CHROMATIN 
ARCHITECTURE

Chromatin is broadly investigated as a major regulatory component 
for gene expression; it is also pertinent to investigate epigenetic 
mechanisms. In vitro somatic embryogenesis induced in response 

to external signals is an example of plant developmental plasticity 
developed by the chromatin-regulating molecular machinery 
(Fehér, 2015; Lämke and Bäurle, 2017). Plants show an interesting 
phenomenon that furthers our understanding of somatic 
inheritance vis-à-vis stress. It has been observed that treating 
plants with mild stress facilitates accelerated and enhanced 
responses to future challenges (Holeski et  al., 2012), known as 
plant priming, of which chromatin is a part (Box 1). �e term 
acquisition of thermotolerance is used when a plant is primed 
due to moderate heat stress (HS) and thus can tolerate high 
temperatures in comparison to an unadapted plant. �e primed 
state is maintained over several days (known as maintenance 
of acquired thermotolerance or HS memory) a�er returning to 
normal temperatures, and this maintenance is genetically 
distinguished from HS priming. During HS priming, heat shock 
transcription factors (HSFs) get activated and increases the 
expression of heat shock proteins (HSPs), which then, through 
their chaperone activities, assist in protein homeostasis. �is 
HS response is preserved in animals, animals, and fungi. In 
plants, more than 20 members of the HSP family are reported. 
At least eight HSFs are observed to play role in heat stress 
response in Arabidopsis. �e knowledge regarding the mechanism 
of HS memory is not well understood. Using microarray analyses, 
a number of HS memory-related genes are identi�ed, comprising 
genes encoding small HSPs (such as HSP21, HSP22.0, and 
HSP18.2) and ASCORBATE PEROXIDASE 2. �e expression 
pattern of these genes found to be strong in the case of inducible 
HS when comparing with nonmemory genes (like HSP70 and 
HSP101). HSFA2 was reported to be  the most strongly heat-
induced HSF, as it is required speci�cally for HS memory. �e 

BOX 1 | Plant priming: preparing plants to tolerate future adverse 

conditions. 

Plant priming/defense priming (Martinez-Medina et  al., 2016), which is also 

known as hardening, can be initiated in response to environmental stress [light 

(Han et al., 2018), temperature (Friedrich et al., 2019), water, etc.] event that 

acts as a cue indicating an enhanced probability of facing that speci�c stress 

factor in the future (Filippou et al., 2013). Plants enter in the primed state (PS) 

following perception of the cue in which the activation of the protection 

responses is faster and stronger when a stress pressure is encountered 

(Beckers and Conrath, 2007; Conrath, 2009; Ellouzi et al., 2013; Sani et al., 

2013). The impact of stress exposure on the physiology and growth of primed 

plants can be  remarkably diminished in comparison with nonprimed plants. 

Plants can also enter the PS by chemical priming, which involves exposure to 

a natural or synthetic chemical compound that acts as a priming agent 

(Savvides et al., 2016). Chemical priming gives opportunities for more effective 

use of plant priming in plant stress physiology studies and crop stress 

management. There are several types of molecules having the potential to act 

under speci�c conditions as a priming agent against a range of different abiotic 

stresses (Islam et al., 2009). A review reveals a vast range of chemical priming 

agents, including amino acids [e.g., proline (Li et al., 2014)] hormones [e.g., 

salicylic acid (Tanou et  al., 2009)], reactive oxygen-nitrogen-sulfur species 

[RONSS (Christou et al., 2014)] and even water [i.e., hydropriming (Casenave 

and Toselli, 2007)]. These agents are effective in inducing plant tolerance to 

several individually applied abiotic stresses or biotic stresses. Primed plants 

show either faster and or stronger activation of the various defense responses 

that are induced by either pathogens or insects, or in response to abiotic 

stress. If the stress recurs, the bene�t to the plant being primed for that 

particular stress response is in facilitating a more rapid response. This provides 

the advantage of enhanced protection without the costs associated with 

constitutive expression of stress related genes (Figure 3).
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�rst reported HS memory-associated gene, speci�cally involved 
in HS memory is HSA32. It was studied that HSA32 is required 
for HSP101 protein stability, which suggests a similar role to 
chaperons. ROF1, which is the peptidyl-prolyl-isomerase and 
member of the FK506-binding protein family, is also seen to 
be  speci�cally required for HS memory by directly interacting 
with HSP90.1, which further interacts with HSFA2 (Baurle, 2016).

A priming exposure of young Arabidopsis plant to mild salt 
stress, which does not a�ect growth, leads to enhanced salt tolerance 
following a subsequent exposure. �is tolerance is connected with 
gene and tissue-speci�c changes that last ~2  days (Sani et  al., 
2013). Higher resistance to bacterial pathogens, nonspeci�cally 
primed by various abiotic stresses, is associated with histone 
acetyltransferase HAC1 (Singh et  al., 2014; see Box 1). Changes 
in H3K4 trimethylation were observed by dehydration stress priming 
(Ding et  al., 2019) at particular “memory genes” (Crisp et  al., 
2016). To understand cold-induced epigenetic changes, vernalization 
was studied in Arabidopsis, which is a mechanism in plants by 
which they have a memory of earlier encounter of low temperature, 
and the plants thus �ower only in favorable condition. �e �ower 
repressor FLOWERING LOCUS C (FLC) is silenced during 
vernalization by the polycomb repressive complex 2 (PRC2), which 
accumulates H3K27me3 at target loci (Baurle and Trindade, 2020).

INTERGENERATIONAL AND 
TRANSGENERATIONAL STRESS MEMORY

Lamarck in the nineteenth century �rst hypothesized that traits 
acquired during an organism’s life could be  transmitted from 

one generation to the next generation, which is known as 
Lamarckism (Lamarck’s theory) or the theory of “inheritance 
of acquired characteristics.” According to Lamarck, alterations 
in phenotypic traits are a result of the environment and are 
associated with evolution. Lamarckism says that simple organisms 
tend to evolve into more complex ones by an adaptive force. 
�e environment creates needs to which organisms respond 
by utilizing features, which are then emphasized or weakened 
through use and disuse; this generates characteristics that an 
individual organism acquires and then are pass on to its o�spring. 
Plants have elaborate mechanisms to deal with di�erent 
environmental conditions. When the memory e�ect is present 
only in the �rst stress-free generation, it is called intergenerational 
memory, while if the memory is traceable in a minimum of 
two stress-free generations, it is termed transgenerational memory 
(Tardieu et  al., 2018; Figure  4). Transgenerational memory 
(TSM) likely consists of an epigenetic basis, i.e., the phenotypic 
traits possessed by the o�spring are a result of environmental 
stimulus in an earlier generation but not in the parent or 
o�spring. �ere are reports showing that there is an increase 
in somatic homologous recombination (SHR) in the parental 
generation when treated with the �g22 elicitor or UV-C irradiation 
that indicates the presence of a stress-induced transgenerational 
memory (Molinier et al., 2006), which remained elevated during 
numerous unstressed generations, showing an epigenetic basis 
(Kinoshita and Seki, 2014). During transgenerational memory, 
the DNA methylome is relatively una�ected by stress-induced 
changes in Arabidopsis (Ganguly et  al., 2017). According to 
some studies, hyperosmotic stress priming will develop when 
plants were subjected to stress during their vegetative development 

FIGURE 3 | Plant priming. Under abiotic stress, a plant that is not primed shows normal tolerance, while a primed plant shows enhanced tolerance by increasing 

molecular functions and inducing tolerance mechanisms. Epigenetic modi�cations like DNA methylation, chromatin modi�cations, and nucleosome positioning have 

a major role in response to stress in primed plants.
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for at least two generations (Pecinka et  al., 2009; Murgia et  al., 
2015). �e maternal parent is likely responsible for this 
intergenerational stress memory. It is suggested that, in the 
male gametes, DNA glycosylase DEMETER (DME) inhibits 
paternal inheritance, and it is restored in dme mutants (Choi 
et  al., 2002). DME encodes a protein having DNA glycosylase 
and nuclear localization domains, and it is expressed mainly 
in the central cell of the female gametophyte, the progenitor 
of the endosperm. DME is involved in the demethylation of 
transposable elements (TEs) and repetitive sequences, which 
lead to TE upregulation and small interefering RNA (siRNA) 
production in endosperm and vegetative cells (Saze et al., 2012). 
�e role of DME is also studied in genomic imprinting. Using 
base excision repair mechanism, DME can excise methylated 
cytosine bases from any sequence, which is similar to A. thaliana 
glycosylases DEMETER LIKE 2-3 (DML2-3) and REPRESSOR 
OF SILENCING 1 (ROS1; Ortega-Galisteo et al., 2008; Gehring 
et  al., 2009). DME demethylating repetitive sequences, TEs, 
and targeted regions seem to be partially identical in the central 
cell and the vegetative nucleus, as it is active in both the central 
cell of the female gametophyte as well as the vegetative cell 

of pollen (Park et  al., 2016). It has been proposed that the 
demethylation of TEs in the central cell and the vegetative cell 
is part of a defense mechanism so that these TEs can be silenced 
in the egg and sperm cells (Calarco et  al., 2012; Ibarra et  al., 
2012). Due to the demethylation of TEs, transcriptional activation 
gets promoted, and thus, production of siRNAs takes place 
(Slotkin et  al., 2009). �ese siRNAs can then promote DNA 
methylation via the noncanonical RNA-directed DNA methylation 
(RdDM) pathway, which uses them as guides and target the 
DNA methylation machinery to homologous sequences 
(Cuerda-Gil and Slotkin, 2016; Zhang et  al., 2018). It is 
hypothesized that the siRNAs that are produced in the central 
cell and vegetative nucleus travel to the adjacent gametes (the 
egg and sperm cells) and initiate DNA methylation of TE 
sequences there, resulting in their silencing (Calarco et  al., 
2012). As imprinted genes are o�en found to be  enriched in 
TEs in their �anking regions, DME-mediated methylation of 
these TEs may a�ect the expression of neighbor-imprinted genes 
(Hatorangan et  al., 2016; Yuan et  al., 2017). �e role of RdDM 
in initiating methylation of the paternal alleles of some MEGs 
and the activity of DNA METHYLTRANSFERASE 1 (MET1) 

A

B

FIGURE 4 | Intergenerational and transgenerational inheritance. Environmental conditions like heat stress, temperature �uctuations, light duration and intensity, 

insect attack, osmotic imbalance, etc. can in�uence future generations by different modes. (A) The offspring after these conditions with the altered epigenetic 

structure is the F0 generation. If the modi�cation is successfully passed on from the F0 generation only to their offspring, the F1 generation, the modi�cation is 

termed as an intergenerational inheritance. (B) If the modi�cation is successfully transferred from the F1 generation to the F2 generation and further generations, the 

change is termed as transgenerational inheritance.
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and CHROMOMETHYLASE 3 (CMT3) are needed for the 
CG and CHG methylation levels maintenance in sperm cells, 
leading to epigenetic inheritance (Calarco et  al., 2012). DNA 
methylation and H3K27me3, with some additional epigenetic 
modi�cations such as H3K9me2, are recognized to be responsible 
for the imprinting of some genes (Batista and Kohler, 2020). 
�ese variations occur for the transcriptional regulation of 
abiotic stress genes in plants. As these changes in the epigenome 
are stably inherited and passed to further generations, knowledge 
about these changes is crucial for stress management in plants. 
�e knowledge of speci�c epigenetic marks with particular 
stressors would permit the generation of stress-tolerant plants 
by identi�cation of the above-mentioned techniques.

RNA interference plays a critical role in epigenetic modi�cation 
of histones and DNA, as it can repress target genes at the 
transcriptional level. Constitutive heterochromatin is a major 
source of siRNAs involved in the silencing of transposable 
elements. siRNAs are required for maintenance of asymmetric 
DNA methylation (CHH context) following mitosis and meiosis 
to ensure epigenetic inheritance (Law and Jacobsen, 2010). 
Double-stranded RNA (dsRNA), which can increase 
posttranscriptional silencing of cognate genes, gets cleaved by 
the RNase III enzyme, Dicer into siRNAs. �ese siRNAs guide 
the target e�ector complexes, such as the RNA-induced silencing 
complex (RISC), to endogenous transcripts leading to degradation 
or translational inhibition. �ese �ndings suggested a preserved 
nuclear role for RNAi in transcriptional gene silencing (TGS). 
As it occurs in the germline, TGS can lead to transgenerational 
inheritance. In Schizosaccharomyces pombe, a role for RNAi in 
TGS was observed where it is necessary for the formation of 
constitutive heterochromatin at pericentromeric. �e release of 
the passenger strand from Ago1 and dsRNA requires catalytic 
activity and thus is necessary for the pairing of bases between 
loaded siRNA and their targets. �ese interactions provide the 
RNA-induced transcriptional silencing complex (RITSC) a critical 
place, integrating transcription and chromatin modi�cation, 
which creates a positive loop between siRNA generation, RITSC 
localization, and H3K9 methylation. In S. pombe, the coupling 
of transcription, production of siRNA, and silencing indicates 
that TGS occurs in cis; however, in plants, it has been seen 
that it can also occur in trans. In A. thaliana microRNA 
(miRNA)-directed siRNA biogenesis is a mechanism that 
particularly targets transposon transcripts and triggers epigenetic 
reactivation during reprogramming of the germ line (Creasey 
et  al., 2014). In Arabidopsis, hetrochromatin is majorly de�ned 
by transposable elements and related tandem repeats, under 
the e�ect of the chromatin remodeling ATPase DDM1. siRNA 
possesses these sequences, indicating a role in guiding DDM1. 
�e regulation of the euchromatic, imprinted gene FWA, as 
its promoter is hence can be  understood by DDM1 and the 
DNA methyltransferase MET1, as they provide the transposable-
element-derived tandem repeats that are associated with siRNAs 
(Lippman et  al., 2004). Analysis of small RNA pro�les and 
DNA methylation pro�les identi�es regions regulated by miRNA/
siRNA-mediated DNA methylation, which involves the epigenetic 
inheritance of stress e�ects. �us, the role of miRNA and 
siRNA in biotic and abiotic stresses in plants can be understood. 

�e knowledge of small RNA-guided stress regulatory networks 
provides new insights for genetically improved plant stress 
tolerance. Manipulation of miRNA or siRNA-guided gene 
regulation can be  used to engineer stress resistance in plants.

During cellular proliferation, the stable inheritance of 
epigenetic modi�cations is necessary to maintain cell identity. 
In plants, the transmission of H3K27me3-silenced state requires 
the replication-dependent histone variants H3.1 (Jiang and 
Berger, 2017). �is H3.1 provides PRC2 function, managing 
proper maintenance of H3K27me3 domains and ensuring the 
silencing of developmental genes. In A. thaliana, �owering is 
initiated when H3K27me3 established at the �oral repressor 
FLOWERING LOCUS C (FLC), which is a result of H3.1 
deposition during DNA replication. At FLC, H3K27me3-mediated 
silencing �nally reset in the future generation to ensure 
transcriptional reactivation in the early embryo (Tao et al., 2017).

�e involvement of active demethylation in the loss of 
H3K27me3 has been suggested as implicated in the epigenetic 
resetting of FLC. �e Jumonji-C family (JMJ) histone 
demethylases counteracts the activity of PRC2. �ere are three 
closely related JMJ H3K27 demethylases reported were EARLY 
FLOWERING 6 (ELF6), RELATIVE OF ELF6 (REF6), and 
JUMONJI 13 (JMJ13), and all are expressed in the sperm. As 
PRC2 is absent in the sperm, the H3K27me3 demethylation 
by JMJ proteins is supposed to occur globally, whereas in 
somatic tissues, H3K27 demethylases occupy the border of 
H3K27me3 domains in presence of PRC2 (Yan et  al., 2018). 
ELF6 and REF6 play important roles in H3K27me3 and 
H3K27me1 homeostasis (Antunez-Sanchez et  al., 2020). elf6 
ref6 jmj13 mutant showed elevated levels of H3K27me3  in the 
sperm when compared to wild type, suggesting the role of 
active demethylation by JMJ proteins in contribution to paternal 
H3K27me3 resetting. �ese JMJ proteins are found to demethylate 
the di-and trimethyl H3K27 but not H3K27me1 (Song et  al., 
2015; Zheng et al., 2019). JMJ demethylate H3K27me3 retained 
upon H3.10 depletion and convert it to H3K27me1  in the 
sperm. �e HTR10 encodes the sperm-speci�c histone variant 
H3.10 and indicates an increased level of H3K27me1, which 
is unlikely a result of mono-methylation by ATXR5/6, as its 
only substrate H3.1 is not expressed in wild type and htr 
sperm. In quadruple elf6 ref6 jmj13 htr10 mutant sperm, a 
reduction in H3K27me1 levels was observed while the level 
of H3K27me3 was increased, suggesting that the deposition 
of H3.10 replaces a prominent region of H3K27me3-marked 
nucleosomes and H3K27me1-marked nucleosomes formed by 
the action of JMJ demethylases (Borg et  al., 2020). During 
sexual reproduction, it has been seen that these chromatin 
marks are failed to reset, which leads to transgenerational 
inheritance of histone marks, resulting in loss of DNA methylation 
and transposon activation. Hence, in plants, JMJ-type histone 
demethylases help in maintaining transcriptional states through 
development as well as safeguard genome integrity during 
sexual reproduction (Borg et  al., 2020).

�e intergenerational memory is mediated by DNA 
demethylation and RNA-mediated DNA methylation pathways 
in case of hyperosmotic stress (Wibowo et al., 2016). Genome-
wide methylation analysis helped in the identi�cation of 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Bhadouriya et al. Chromatin Architecture in Plant Stress

Frontiers in Plant Science | www.frontiersin.org 13 January 2021 | Volume 11 | Article 603380

di�erentially methylated regions (DMRs) linked with this 
intergenerational memory (Ferreira et  al., 2019). �e promoter 
of the gene related to stress has two such DMRs involved in 
priming e�ect on gene expression (Wibowo et al., 2016). �ere 
are reports showing the role of intergenerational and 
transgenerational stress memory in biotic stresses as well (Pieterse 
et  al., 2012; Espinas et  al., 2016). (Luna et  al., 2012) showed 
that intergenerational or transgenerational memory is evidenced 
by increased salicylic-acid-related defense gene induction and 
susceptibility to biotrophic pathogens (Slaughter et  al., 2012). 
From there, it is suggested that, for environmental challenges 
that plants may encounter in their life, they prime their o�spring. 
It has been reported that, in the extremely challenging 
environmental conditions of a typical Arabidopsis habitat, 
transgenerational inheritance of priming may be disadvantageous 
over more than one generation (Luna et  al., 2012; Iwasaki 
and Paszkowski, 2014). A full understanding of how TSM is 
related to seed germination and development under 
environmental changes could be  important in research related 
to stress adaptation in plants and thus could help in the 
selection of stress-adapted genotypes.

CHROMATIN MODIFICATIONS AND 
PLANT DEVELOPMENT UNDER STRESS

In eukaryotic cells, cellular changes and gene expression are 
regulated by gene regulatory mechanisms in numerous biological 
processes, like a response to extracellular signals, recombination, 
developmental reprogramming, and genome stability (Zhu et al., 
2013). Changes in DNA methylation, histone variants, and 
histone N-tail modi�cations, which are induced by stress, 
regulate plant development under stress and stress-responsive 
gene expression. Control of gene expression like this in response 
to endogenous and environmental stimuli in plants controlled 
by chromatin modi�cations is crucial for reproductive success 
and proper development (Archacki et  al., 2013; Efroni et  al., 
2013; Sarnowska et  al., 2013; Qin et  al., 2014; Vercruyssen 
et al., 2014). A drastic change is triggered in seedling morphology 
when it �rst emerges from the soil due to rapid changes in 
histone modi�cations and gene expression including growth 
cessation of hypocotyls, the opening of apical hook and 
cotyledons, and the development of chloroplasts due to its 
encounter to light, which is known as photomorphogenesis. 
�e physiology, morphology, and development of the plant 
thus depend on the duration and quality of light as well as 
the presence of competitors, which can alter the amount of 
light reaching the plant (Perrella et  al., 2020).

�e embryonic and postembryonic phases are two phases 
of the plant developmental cycle (Chen et  al., 2018b). �e 
postembryonic phase includes the growth of the leaf, stem, 
and �ower meristems (Ojolo et  al., 2018). �e uniformity of 
seed germination and seedling establishment gets decreased 
during osmotic stress. Abscisic acid (ABA) accumulation induces 
several HDACs in Arabidopsis during seed development. 
Arabidopsis HDA6 and HDA19 have crucial roles in abiotic 
stress signaling through the formation of repressive complexes. 

HDA6 regulates the function of abiotic-stress-responsive genes 
(ABI1, ABI2, and ERF4) by interacting with HD2C (Luo et al., 
2012b), whereas HDA19 with ERF3, ERF4, ERF7, SIN3, and 
SAP18 are part of chromatin remodeling complexes in abiotic 
stress responses. �e mechanism of HDA9 function in signal 
transduction during abiotic stress responses is little known. A 
model is proposed for understanding the function of HDA9  in 
ABA-dependent drought stress signaling in plants (Fujita et al., 
2005; Baek et  al., 2020). During seed germination and plant 
development in wild-type plants, it was observed that, to regulate 
ABA homeostasis, the expression of ABA catabolism-related 
genes (CYP707As) changed ABA from an active to an inactive 
form (8′-hydroxyl ABA). Whereas, in the case of drought-
stress-exposed plants, HDA9 and ABI4 together function in 
inhibiting the expression of CYP707As. HDA9  in association 
with an ABA-related transcription factor functions in inhibiting 
gene expression by histone deacetylation. In the drought stress 
response of plants, HDA9 is a crucial negative regulator in 
transcriptional regulation of ABA-catabolism-related genes like 
CYP707A1 and CYP707A2. HDA9 also plays an important 
role in seed dormancy and stomatal closure (Figure  2). It was 
observed that, in the case of hda9 mutants, seed germination 
was signi�cantly increased in comparison to wild type when 
exposed to exogenous ABA. In the presence of ABA, hda9 
mutants showed a signi�cantly higher percentage of fully opened 
green cotyledons than the wild type. To suppress the e�ect 
of negative regulators of early ABA signaling, the MYB96 
transcription factor associates with the histone modi�er HDA15. 
�is MYB96 TF is known as a master transcriptional regulator 
that mediates several plant responses to ABA, for example, 
seed germination, stomatal conductance, drought tolerance, 
anthocyanin accumulation, hormone biosynthesis, lateral root 
development, and cuticular wax biosynthesis. �e MYB96-HDA15 
complex formed interacts with the promoters of a subset of 
RHO GTPASE OF PLANTS (ROP) genes (ROP6, ROP10, and 
ROP11) and removes acetyl groups of histone H3 and H4 
from the cognate regions, thus represses their expression 
speci�cally when ABA is present. A reduction in ABA sensitivity 
is observed in HDA15-de�cient mutants, thus are a�ected by 
drought stress. Various transcription factors from bZIP, MYC, 
NAC, and MYB families then get activated and initiate 
downstream ABA responses. HDA15 represses ROP genes and 
acts as a positive regulator of ABA signaling by repressing 
(Lemichez et al., 2001). Transgenic plants overexpressing HDA15 
and MYB96 possess hypersensitivity to ABA, whereas hda15 
and myb96 mutants show reduced ABA sensitivity (Lee and 
Seo, 2019). Drought stress tolerance in plants as an e�ect of 
ABA was additionally a�ected by HDA15. During seed 
germination and drought tolerance, MYB96 and HDA15 act 
synergistically to confer ABA sensitivity (Lee and Seo, 2019). 
�e HDA15 gene is observed to be induced by ABA treatment. 
HDA15 expression enhanced under various abiotic stress factors 
(mainly osmotic, cold stress). HDA15 activity also a�ects the 
expression of some ABA-responsive genes. �e expression of 
PKL (SWI/SNF type chromatin remodeling factor) is induced 
by seed imbibition in Arabidopsis, and it mediates the repression 
of embryonic traits during germination. Seed germination is 
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mediated by induction of ABI3 and ABI5 transcription factors 
expression in response to induced expression of PKL. �is 
discussion suggests that there is a change in expression or 
activity of HDACs due to ABA accumulation, which in turn 
regulates growth under stress (Figure  2).

Plant reproduction includes �owering and seed development. 
Flowering is an essential part of the reproductive process as well 
as a critical developmental stage that can be  susceptible to 
environmental stresses in plants (Kazan and Lyons, 2015). In 
appropriate environmental conditions, plants have mechanisms 
to �ower. In Arabidopsis, during vernalization, low-temperature 
epigenetic mechanisms get induced, which repress the FLOWERING 
LOCUS C (FLC, a MADS-box protein) gene, which remains until 
progression to �owering. Due to prolonged cold, COOLAIR, 
which is a set of long noncoding RNA (lncRNA)-transcribed 
antisense from FLC in A. thaliana, gets induced, which is a 
characteristic of polycomb silencing. As discussed earlier in the 
review, the polycomb group (PcG) proteins are responsible for 
gene silencing in higher eukaryotes. PcG regulates many genes 
and several developmental processes. It has been found during 
cold conditions that the expression of FLC gets reduced when 
COOLAIR gets associated with the FLC locus. �e synchronized 
replacement of H3K36 methylation with H3K27me3 gets disturbed 
at the FLC nucleation site when COOLAIR is removed during 
cold stress (Zeng et al., 2019). �e role of COOLAIR in natural 
variation can be  suggested by the slow repression of FLC in the 
slow vernalizing accession Var2-6 because of splicing of distally 
polyadenylated COOLAIR (Li et  al., 2015). Two more lncRNAs, 
COLDWRAP and COLDAIR, are found to be  responsible for 
the stable silencing of FLC by recruiting PHD-PRC2 to a speci�c 
chromatin region (Kim et  al., 2017). �e sequence similarity 
between lncRNAs across di�erent plant species is not signi�cant, 
while it has been found that they are positionally conserved. 
PRC2 is a very important complex in the developmental transition 
to �owering, which also takes part in several developmental 
processes in plants. In Arabidopsis, for PRC2-mediated H3K27me3, 
HISTONE DEACETYLASE 9 (HDA9)-mediated H3K27 
deacetylation is necessary (Qian et al., 2012). �e knowledge of 
COOLAIR could provide scope for understanding the mechanism 
of thermosensing during vernalization. LncRNAs acts as a guide 
for protein complexes mediating epigenetic regulation. Chromatin-
associated lncRNAs maintains chromatin conformation. As lncRNAs 
are mobile and long, they function as bridges to mediate chromatin 
looping and also helps in inter- or intrachromosomal interactions. 
RNA hybridizes with DNA and form R-loops contributing to 
gene regulation. Liquid-liquid phase separation is also mediated 
by RNA, as it can act as a multivalent sca�old for the binding 
of RBPs. �e role of lncRNAs in several gene regulatory networks 
associated with various biological processes like plant development 
and stress responses is studied. A few lncRNAs have been found 
to perform targeting functions by chromatin modi�cation complexes, 
coactivation or cosuppression of trans-acting RNAs.

In Arabidopsis, FCA and FPA proteins downregulate �owering 
repressor FLC and form an autonomous �owering pathway. 
DNA methylation can be  regulated by both FCA and FPA, 
which are RNA-binding proteins (Bäurle et  al., 2007). In the 
compartments without membrane, the concentration of proteins 

and nucleic acids is a very crucial part of cellular biochemistry. 
�e formation of these biomolecules takes place by measures 
including liquid-liquid phase separation, as the interactions 
between di�erent multivalent macromolecules generate clear 
liquid-liquid-demixing phase separations, creating micrometer-
sized liquid droplets in an aqueous solution. FCA involves in 
phase separation, as it possesses prion-like domains that phase 
separated in vitro and shows behavior in vivo. �e construction 
of FCA nuclear bodies requires a coiled protein, FLL2, which 
enhances the proximal polyadenylation of FCA. In the Arabidopsis 
genome, this proximal polyadenylation decreases transcriptional 
read through (Li et  al., 2012). �e expression of these FLL2 
has been seen to increase the number and size of FCA nuclear 
bodies. To increase polyadenylation at speci�c sites, FCA nuclear 
bodies compartmentalize 3'-end processing factors. It is observed 
that coiled-coil proteins can promote liquid-liquid phase 
separation (Fang et  al., 2019). FCA is considered as a part of 
the signaling pathways mediating plant adaptation responses 
to high temperatures (Lee et  al., 2015). FCA RNA-binding 
protein act as a transcriptional regulator through modifying 
RNA processing or chromatin modi�cation. Various enzymes 
and regulators associated with the transcriptional and 
posttranscriptional control of plant reactions to environmental 
signals are mediated by FCA. FCA generally works in these 
processes by RNA metabolism and chromatin alteration.

�e expression of PsSNF5, which is a chromatin remodeling 
gene, is induced by drought stress (Pisum sativum SNF5). 
PsSNF5 interacts with Arabidopsis SWI3-like proteins (SWI3A 
and SWI3B), which further interacts with FCA (Rios et  al., 
2007; Figure 2). Flowering time and stress responses are regulated 
by ABA-induced SNF5 and FCA by chromatin remodeling. 
Premature leaf senescence due to abiotic stresses leads to reduced 
photosynthesis. Jasmonic acid and ethylene-responsive-HDACs, 
HDA6 and HAD19 (Wu et al., 2008), alter leaf senescence, 
while HDA19 antisense transgenic plants/T-DNA mutants showed 
early senescence (Zhou et  al., 2005; Ay et  al., 2014; Figure  2).

EFFECT OF STRESS ON 
CHROMOCENTERS

Chromocenters are dense heterochromatic regions, heavily 
packed with DNA and proteins present in the nucleus of some 
cells. Emil Heitz (1928) historically identi�ed heterochromatin 
as the nuclear material that remains highly condensed within 
the interphase nucleus. He named these regions “heterochromatin” 
to distinguish them from the regions showing variable staining 
and condensation, which he called “euchromatin.” �e functional 
properties and composition of chromatin structure came into 
the picture very late; however, the distinction between 
heterochromatin and euchromatin was provided many years back 
(Passarge, 1979). A major point of discussion comes from the 
structure of heterochromatin, which is cytologically visible upon 
di�erent types of stresses within Arabidopsis nuclei. At a speci�c 
developmental stage or particular environmental condition, 
these chromocenters can be  transiently decondensed. It is 
proposed that nuclear organization modi�cations and stress 
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responses have a functional connection (Groves et  al., 2018). 
Stress can be accompanied by dramatic morphological alterations 
in the organization of plant nucleoli and the protein content. 
�ese changes are presumably related to alterations in diverse 
nucleolar transcriptional activity under stress conditions (Kalinina 
et  al., 2018). �e chromocenters are enriched in transposable 
elements, transcriptionally silent 45S and 5S rDNA arrays, and 
centromeric and pericentromeric satellites, which can be  seen 
clearly in Arabidopsis nuclei at interphase (Fransz and Jong, 
2011; Benoit et  al., 2013). �e formation of euchromatic loops 
from chromocenters has been visualized by DNA �uorescence 
in situ hybridization (FISH) experiments and more recent Hi-C 
analysis, revealing their role in the spatial organization of 
chromosomes (Ron et  al., 2013; Feng et  al., 2014). �us, 
chromocenter organization has been extensively utilized to 
understand chromatin modi�cations under stress or during 
development in Arabidopsis (Benoit et  al., 2013). Interestingly, 
the temporary decondensation of chromocenters that happens 
during the �oral transition occurs in terminally di�erentiated 
leaf tissue (Tessadori et al., 2007), and it is still unclear whether 
it occurs in the meristem as well.

At the time of seed germination and maturation, the alteration 
of chromocenter structure also takes place in the nuclei of the 
cotyledon (Zanten et al., 2012) and postgermination development 
(Mathieu et al., 2003; Douet et al., 2008). Chromatin modi�cations 
are related to process linked to the development of the plant 
as well as external stress signals, like temperature-stress-induced 
dedi�erentiation (van Dam, 2014), lightly shape nuclear 
architecture (Bourbousse et al., 2015) and gene expression (Kaiserli 
et  al., 2018), and reprogramming of microspores. �ere are 
some reports showing how the nuclear structure is a�ected by 
abiotic stresses unrelated to speci�c developmental processes in 
the rye and rice seedlings, in which upon heat stress, the 45S 
rDNA (Santos et  al., 2011) loci undergo decondensation. In 
Arabidopsis, it was found that the stem cell expression is mainly 
dependent on the developmental stage but also contain a core 
set of stem-cell-speci�c genes, some of these genes are involved 
in epigenetic silencing. In meristems before �ower induction, 
increased expression of transposable elements correlates with 
enhanced CHG methylation during development and reduced 
CHH methylation, before stem cells enter the reproductive lineage 
(Sasaki et al., 2019). �is shows the occurrence of epigenetic 
reprogramming at an early stage and its role in genome protection 
in stem cells during germline development (Gutzat et  al., 2020). 
In the Arabidopsis leaf tissue, a�er prolonged heat stress, 
centromeric repeats and 5S rDNA decondensation occur (Pecinka 
et  al., 2010). In Arabidopsis, HEAT INTOLERANT 4 (HIT4) 
was discovered for heat-stress-intolerant mutants; in excessive 
heat stress, it is required for chromocenter decondensation upon 
heat stress (Wang et al., 2013, 2015).

PLANT RESPONSE TO STRESS: THE 
CHROMATIN PERSPECTIVE

Plants cannot escape the myriad of biotic and abiotic stresses 
to which they are exposed during their life cycle. �e information 

available highlights those changes in chromatin features; 
particularly, histone modi�cations are a key feature in plant 
response and adaptation to environmental insults. According 
to a review by Dogan and Liu (2018) and Silveira (2018), 
it is expected that, in the near future, there will be  a wave 
of datasets focusing on plant epigenomes and transcriptomes 
in the 3D context, serving as an essential component in 
�nding key regulators of plant chromatin folding and 
positioning (especially for crop plants). Changes in temperature 
induce speci�c responses modifying chromatin con�gurations 
as reported for cold (Kim et  al., 2010; Roy et  al., 2014) and 
heat (Christina et  al., 2010; Kumar and Wigge, 2010; Pecinka 
et  al., 2010) stress in higher plants and algae (Schroda et  al., 
2001; Lee et  al., 2014). Due to global warming, guarding 
plants against decline due to heat stress and temperature 
�uctuations is becoming increasingly important (Ohama et al., 
2017). Small RNAs and epigenetic regulation are involved 
in transcriptional regulation and heat stress memory 
(Kapazoglou et  al., 2017). Drought signaled through abscisic 
acid is an extreme condition for plants and is also linked 
to chromatin modi�cations (Mehrotra et al., 2014). Experiments 
performed in Coffea canephora veri�ed that transcriptional 
memory alters drought-responsive gene expression (Guedes 
et al., 2018). Osmotic stress or salinity is frequently associated 
with responses at the chromatin level. Light de�ciency a�ects 
chromatin structure, signaled by light perception factors 
(Zanten et  al., 2010, 2012). Plants exposed to chemically 
induced DNA damage force chromatin modi�cations 
(Braszewska-Zalewska et al., 2013; Rosa et al., 2013). Chromatin 
structure is also disturbed by toxic components as demonstrated 
by the study on seawater algae with respect to cadmium 
(Greco et  al., 2012). In addition to these abiotic factors, it 
has been observed that the pathogen challenge is signaled 
to chromatin to induce defense gene expression (Berr et  al., 
2012; Schenke et  al., 2014). Eventually, intrinsic responses 
to senescence or wounding (Gnatowska et  al., 2014) can 
modify chromatin con�gurations.

Autotrophs like plants possess an impressive degree of 
metabolic �exibility to sense and survive under di�erent stress 
conditions. Knowledge in chromatin architecture and associated 
modi�cations is important to understand varied pathways 
through which plants adapt themselves to various stress 
conditions. Chromatin organization and epigenetic modi�cation, 
which can be altered by developmental or environmental stimuli, 
are dynamic in nature and provides a means to stabilize and 
condense DNA. Chromatin architecture is modulated to cope 
with various stresses that plants may experience. Numerous 
transcription factors, transcriptional memory, and small 
noncoding RNAs contribute towards gene expression modulation 
during plant stress responses (Avramova, 2015). �e 
rearrangement of chromatin between transcriptionally inactive 
to transcriptionally active state facilitates access of transcription 
factors or other DNA binding proteins to regulate gene expression.

Stress can induce transcriptional activation as well as 
transcriptional repression. To bring repression of transcription, 
transcriptional repressor proteins counteract the activity of 
positively acting transcription factors. In addition, transcriptional 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Bhadouriya et al. Chromatin Architecture in Plant Stress

Frontiers in Plant Science | www.frontiersin.org 16 January 2021 | Volume 11 | Article 603380

repression is o�en linked with chromatin reorganization. 
Numerous transcriptional repressor proteins communicate either 
directly or indirectly with proteins that remodel chromatin or 
would themselves be  able to impact chromatin structure. 
Transcriptional repression may also display “memory” of the 
prior transcriptionally inactive state, which is known as 
transcriptional repression memory (TREM). A study conducted 
in yeast shows that transcriptional repression of ∼540 genes 
occurs at a faster rate if, during carbon source shi�s, the genes 
have been previously repressed (Gaston and Jayaraman, 2003).

Various biochemical changes take place in chromatin structure 
to maintain gene activity: Some of these modi�cations have the 
capacity to be  stably transmitted through cell division stages, 
which suggest that modi�cations in the chromatin state could 
help in coping with di�erent biotic and abiotic stresses (Gallusci 
et al., 2017). Further studies may help to validate the transmission 
of stress-induced changes in chromatin. �e information can 
be  used to increase crop yield and thus improve agricultural 
systems. �is information can be utilized to �nd out the signi�cance 
of chromatin remodeling proteins in regulating transcription at 
each step, i.e., initiation, elongation, and termination.

OUTSTANDING QUESTIONS

 • What are the kinetics of changes in histone modi�cations and 
transcripts following the stress signal perception?

 • Which transcription factor interact with which coactivator 
or corepressors under a given stress situation and cell type?

 • What is the role of cell type in determining transcriptional 
regulation through its chromatin status?

 • What is the exact composition of native chromatin modifying 
complexes in di�erent tissues, developmental stages, and 
stress situations?

 • Can we design epigenetic switches to regulate agronomically 
important traits under stress conditions?

 • Can we  exploit the strength of epigenome modi�cation in 
horticultural crops since their breeding is di�cult? Can gra�ing 
change methylation and acetylation state in horticultural crops?
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