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Plants require an endogenous regulatory network and mechanism to cope with diurnal
environmental changes and compensate for their sessile nature. Plants use the circadian
clock to anticipate diurnal changes. Circadian rhythm predicts a 24-h cycle with 16 h
of light and 8 h of darkness in response to abiotic and biotic factors as well as
the appropriate temperature. For a plant’s fitness, proper growth, and development,
these rhythms synchronize the diurnal photoperiodic changes. Input pathway, central
oscillator, and output pathway are the three components that make up the endogenous
clock. There are also transcriptional and translational feedback loops (TTFLs) in the
clock, which are dependent on the results of gene expression. Several physiological
processes, such as stress acclimatization, hormone signaling, morphogenesis, carbon
metabolism, and defense response, are currently being investigated for their interactions
with the circadian clock using phenotypic, genomic, and metabolic studies. This
review examines the role of circadian rhythms in the regulation of plant metabolic
pathways, such as photosynthesis and carbon metabolism, as well as developmental
and degenerative processes, such as flowering and senescence. Furthermore, we
summarized signaling pathways related to circadian rhythms, such as defense response
and gene regulatory pathways.

Keywords: circadian rhythms, carbon metabolism, gene regulatory pathways, plant metabolism, signaling
pathways, photosynthesis, flowering and senescence, defense response

INTRODUCTION

Living organisms, such as animals, cyanobacteria, and plants, have an internal endogenous
oscillator known as the circadian clock, which predicts the alteration during the light and dark
cycles. The term “circadian” was first coined in 1959 by Franz Halberg, originated from two
different Latin words “circa” means “around” and “diem or dies” means “day” (McClung, 2006;
Srivastava et al., 2019; Man et al., 2020). It permits organisms to synchronize and assemble for
daily or seasonal changes depending on the surrounding environmental conditions. The circadian
clock is an internal biological timekeeper that helps the plants to attain fitness, proper growth,
and development (Inoue et al., 2017). This endogenous oscillator is generally comprised of three
different modules: (i) input pathway, which gives information about the surrounding environment;
(ii) central oscillator that consists of “canonical clock gene,” which composes the elite clock design;
and (iii) the output pathway that constitutes the clock-driven downstream processes. The central
oscillator includes complex TTFLs (de Dios et al., 2018) that blend with the post-transcriptional
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and post-translational modifications (Dalchau et al., 2011; Yan
et al., 2021). The circadian clock has a self-reliant mechanism and
their metabolic processes can also be administered by circadian
rhythm, which was previously studied with the model plant
Arabidopsis, also in the potato, and rice crops (Kim et al., 2017;
Inoue et al., 2018).

The circadian rhythm oscillates daily for about 24 h in
the period of light and dark cycles in response to biotic and
abiotic factors (Kiełbowicz-Matuk et al., 2014). From the studies
of Harmer (2009), it was detected that there are observed
three feedback loops, such as morning, central, and evening
loops, from the central oscillator, in the model organism
Arabidopsis thaliana. The central loop consists of CIRCADIAN
CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED
HYPOCOTYL (LHY) (Kim et al., 2016) encode MYB-related
transcription factors that are classified as the morning expressed
genes. CCA1 modulates clock-independent and clock-dependent
responses (Lei et al., 2019). TIMING OF CAB EXPRESSION
(TOC1) is an evening expressed gene from the core or central
loop, which is from the family of Pseudo-Response Regulator
(PRR) (Shogo et al., 2008). Thus, these core loops combine
with the morning and evening loops and help in the primary
construction of circadian rhythm in plants (Wang and Ma, 2013).

From the previous studies, it was perceived that in the
morning loop,CCA1 or LHY gene forms a negative feedback loop
by combining with a PRR7 or PRR9 and represses the expression
of CCA1 and LHY (Farré et al., 2005; Nakamichi et al., 2010).
Likewise, in the evening loop, the TOC1 gene forms a negative
feedback loop along with GIGANTEA (GI); also it represses
an unknown Y factor, which further activates the expression of
the TOC1 gene (Huq et al., 2000; Mizoguchi et al., 2005; Chen
et al., 2013; Saini et al., 2019). GI activates ZEITLUPE (ZLT)
protein and then acts along with it and targets TOC1 protein
for degradation (Figure 1). In addition, LUX ARRHYTHMO
(LUX) is a gene and EARLY FLOWERING (ELF), such as ELF
3 and ELF 4, that is the protein of the evening complex (EC),
which forms various sets of interlocked negative feedback loops
(Nohales and Kay, 2016). In the previous studies (Rawat et al.,
2011; Rugnone et al., 2013; Wu et al., 2016), it is mentioned
that REVEILLE (RVE) genes, LIGHT-REGULATEDWD (LWD) 1
and 2 genes (transcriptional coactivators) (McClung, 2019), and
NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED (LNK)
genes were the positive regulators found in the loops of the
circadian oscillator.

In model organism A. thaliana, it was found that circadian
cycle duration can be extended or lengthened significantly using
the overexpressed transcription factors BBX18, BBX19, and
BBX32 (B-Box); also BBX18 increases the speed of this biological
cycle and BBX32 overexpression may even lead to late flowering
(Yuan et al., 2021). Circadian gating is the process where the
circadian rhythm balances the plant response with different
environmental cues; thus, the response depends upon the
daytime (Belbin et al., 2019). The regulation of the circadian clock
is intrinsically connected with the responses toward decreasing
in temperature. Adaptation of cold has proteins involved, such as
C-REPEAT/DRE BINDING FACTOR (CBF), which has a role as
a key regulator (Panter et al., 2019).

The input pathway reveals to extend some of the
environmental variations or signals, recognized by the
photoreceptors, such as Phytochrome B (PHY B) and
Cryptochromes (CRYs), which develops the components of
the negative loops and temperature to entrain the stage and
waveform of the circadian oscillator (Aguilar-Arnal and Sassone-
Corsi, 2015). The output pathway controls several processes,
such as reproductive development, hormonal production,
defense responses, and the minimal percent of expression of
the genome (Shor et al., 2017). Various physiological processes
take place, such as stress acclimatization, hormone signaling,
morphogenesis, carbon metabolism, and defense response
including phenotypic, genomic, and metabolic studies in the
later stages, along with the interaction with this circadian clock
(Sanchez et al., 2011).

Circadian research has been extremely interdisciplinary,
attracting researchers from a wide range of scientific disciplines.
The existence of circadian rhythms was demonstrated by
astronomer Jean Jacques d’Ortous deMairan in 1729. Jean Jacques
d’Ortous deMairan discovered that the daily leaf movements
of the heliotrope plant, Mimosa pudica, continued in complete
darkness that implies the existence of an endogenous time-
generating mechanism in accordance with geophysical time.
Bünning, however, provided the first evidence for a genetic basis
of circadian rhythms two centuries later. Bünning reported that
in common beans, the offspring’s period lengths ranged between
the extremes of the parent generation’s period lengths.

Circadian rhythms generate a biological time of day
measurement. Circadian regulation is an important adaptation
in plants to their changing environment. The majority of our
understanding of the molecular aspects of circadian regulation in
plants comes from controlled laboratory experiments. However,
it is becoming clear that the circadian clock plays complex
roles in transcriptome coordination under natural conditions,
in both naturally occurring plant populations and crop species.
This review has a work scheme based on the role of circadian
rhythms in the regulation of plant metabolic pathways, such
as photosynthesis and carbon metabolism, the regulation of
developmental processes, such as flowering and degenerative
processes, i.e., senescence, the regulation of plant signaling
pathways, such as defense response, and the gene regulatory
pathways interrelated with the circadian rhythms. Further,
the review will also be highlighted with the research gaps
that identify new domains and suggest recommendations for
future investigation (Table 1).

REGULATION OF PHOTOSYNTHESIS BY
CIRCADIAN RHYTHM

The continual pattern of the circadian rhythm in many
organisms, mainly in plants, leads to the opening of stomata
during daytime and the closing of stomata during the nighttime
(Webb, 2003). The circadian rhythm plays an essential role
in the interaction between photosynthesis activities and the
diurnal variation based upon the availability of light (Hennessey
and Field, 1991). The minute opening in the leaves is said
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FIGURE 1 | A simplified representation of the suppression of genes having the proteins and photoreceptors present during the functioning of 24 h circadian rhythm.
In the presence of light, these photoreceptors Cryptochromes (CRYs) and Phytochrome B (PHY B), which are represented in yellow and pink squares, help in the
functioning of genes and proteins; along with the formation of two different negative loops. That is, these morning loop genes [CIRCADIAN CLOCK ASSOCIATED 1
(CCA1) or LATE ELONGATED HYPOCOTYL (LHY )] combine with Pseudo-Response Regulators (PRR7 or PRR9) and suppress the action of CCA1 or LHY
(represented with black lines with arrows). On the other hand, TIMING OF CAB EXPRESSION (TOC1) combines with GI, which then leads to the activation of the
TOC1 gene. ZEITLUPE (ZTL) is activated with the help of GI, and then GI itself combines with ZTL and suppresses the function of TOC1 (indicated with the black
lines along with arrows).

to be stomata; thus, the opening and closing of stomata
that concern the balanced amount of carbon dioxide taken
inside along with the proportion of water and oxygen are
released out. Photosynthesis itself is a salient circadian rhythm
in the plant, which is composed of various molecular and
physiological processes, such as stomatal opening, chlorophyll
contents, chlorophyll fluorescence, and net carbon assimilation
rate (Rascher et al., 2001; Pan et al., 2015).

The opening of stomata is an essential process for net carbon
assimilation. It is also essential for the carbon dioxide diffusion
into mesophyll cells from the atmosphere, based on the cost
of water. Naturally, photosynthesis production gets affected by
the action of circadian responsiveness or closing of stomata
(Youngsung et al., 2017). Furthermore, the rhythm produced in
stomatal conductance could affect the carbon assimilation rate
by restricting the flow of carbon dioxide into the leaves. The
process of photosynthesis influences plant metabolism; thus, it
synchronizes the Photosystem II activity or stomatal opening
and movement of the chloroplast. From the previous study on
A. thaliana (Dodd et al., 2015), the overexpression of CCA1 in
the plant could lead to the reduction of net carbon assimilation,

which may also lead to the reduction of net carbon assimilation
maximal plant fitness.

There is a bidirectional relationship between the biological
clock and photosynthesis because photosynthesis gets affected by
circadian regulation. In addition, the circadian clock has a core
structure due to which it gets affected by photosynthesis (Haydon
et al., 2013). The regulation of this oscillator affects the diurnal
fluctuation in the stomatal conductance and photosynthesis
process and various processes, such as respiration and growth.
Even the behavior of stomata gets affected by circadian regulation
(de Dios et al., 2020). The fraction of the diurnal pattern of
variation in the stomatal conductance, which is allocated to the
clock, is higher in amount during the changes in the daytime than
in the changes allocated to the clock by photosynthesis. Thus, this
indicates that the stomatal conductance has a vigorous circadian
regulation than photosynthesis (de Dios et al., 2018).

Several studies on A. thaliana found that the endogenous
rhythm controls photosynthesis and physiology, and the plant
attains a peak of fitness (Green et al., 2002; Dodd et al.,
2005; Müller et al., 2014). The regulation of the circadian
oscillator raises the plant productivity, viability of seed, and
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TABLE 1 | Specific genes and proteins present in plant circadian rhythm and its major functions.

S. no. Names of the genes or proteins Major functions References

1. CCA1/LHY It is induced by the light; also they trigger the genes managed by the
clock that is expressed fast in the daytime. Whereas, suppressing
genes are expressed in the nighttime.

Green and Elaine, 2002

2. CRY It is a blue light-dependent photoreceptor, which has a major role in the
development and growth of plants. It helps in promoting flowering
duration in plants; mainly it induces hypocotyl growth.

Lopez et al., 2021

3. PHY It mainly helps in controlling the development of plants, from the seed
germination step to the flowering stage. It is a red light-dependent
photoreceptor, which interacts directly with ELF 3. Also, in circadian
rhythm, it has an essential role in the Red (R) light-mediated
entrainment.

Yeom et al., 2014

4. GI It has a major role in the flowering pathway; mainly it helps in regulating
the circadian rhythm and also the flowering stage. GI acts in between
the circadian rhythm and CO, where CO stimulates the flowering by
increasing the mRNA abundance of CO protein and FT gene.

Mizoguchi et al., 2005

5. PRR 9/PRR 7/PRR 5 These are triple alleles of PRR, and it has a crucial role in the formation
of either positive or negative loop in plant circadian rhythm. Along with
their severe phenotype, the photoperiod-dependent flowering can be
noticed which can even be the late flowering stage. PIF (Phytochrome
Interacting Factors) activity gets inhibited with the help of PRR 5 and
PRR 7, which could further result in the lodging of plants.

Nakamichi et al., 2005, 2010;
Franklin, 2020

6. ELF 3 ELF 3 gene has its main role in the input pathway, along with light. It
also sends an altered signal about the sensitivity of the central oscillator
to the light at a specific time during the circadian cycle.

Hicks et al., 2001

7. ELF 4 Generally, these ELF genes have an important role during the flowering
stage in various light conditions in the presence of circadian rhythm. It is
crucial for the sustainability of rhythmicity under certain constant
conditions and the entrainment to the environmental cycle.

McWatters et al., 2007; Fukuda
et al., 2020

8. LUX ARRHYTHMO (LUX or
PHYTOCLOCK1)

These LUX genes along with ELF genes has a vital role in the
maintenance of circadian rhythm and also in adjusting the development
and growth of plants

Liew et al., 2017; Zhang C.
et al., 2019

9. ZTL It is an important E3 ligase that helps in maintaining proper periodicity
during circadian rhythm.

Feke et al., 2021

10. TOC 1 It is present in controlling the elongation of hypocotyl growth which is
phytochrome dependent; it also, helps in inducing the red-light
production of CCA 1/LHY. It mainly helps in synchronizing the signaling
of light from PHY to outputs of the clock. It also has a role in controlling
gene expression and light-dependent development processes.

Más et al., 2003

plant survival. From de Dios et al. (2018), it is known that, in
the Calvin cycle, the rate of photosynthesis depends upon the
stomatal conductance and the mesophyll conductance and the
biochemical process. The adjustment made in the accumulation
of carbon dioxide present within the intercellular spaces by
the stomatal conductance helps in modulating the process
of photosynthesis. It is also known that there is a negative
interaction or lack of interaction between photosynthesis and
stomatal conductance. This suggests that the circadian regulation
in stomatal conductance is implausible to guide the regulation
of photosynthesis by circadian oscillation (Males and Howard,
2017). There is a primary role for endogenous rhythm in
mesophyll conductance in balancing the accumulation of carbon
dioxide in the chloroplast.

An endogenous rhythm in the framework of the light-
harvesting compounds is an essential feature for the circadian
rhythm in photosynthesis. The chlorophyll synthesis rate is
controlled by the circadian rhythm and diurnal variations in
chlorophyll a/b, which is also connected with an endogenous

rhythm in the process of photosynthesis. The gene light-
harvesting complex A/B protein (LHCB) activation occurs when
the CCA1 and LHY moderate; it also directly gets binding
with the promoters. The circadian regulation synchronizes the
gene transcription linked with the Calvin cycle. Photosynthesis
interacts with the PRR7 gene to manage the maintenance and
entrainment of vigorous circadian oscillators (Haydon et al.,
2013). In addition to this, the expression level of LHY/CCA1 and
PRR7/PRR9 has the capability to induce the performance of plant
growth and development (Müller et al., 2014).

In the C3 photosynthesis pathway or photosynthetic carbon
reduction (PCR) cycle (Furbank and Taylor, 1995), plants consist
of a single chloroplast that conducts many reactions; mainly, it
helps in the conversion of light energy into chemical energy.
Ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) is
the protein used to activate the initial fixation of carbon called
ribulose-1, 5-bisphosphate (RuBP), which is a five-carbon sugar-
phosphate, where carbon dioxide is getting converted as two
molecules in a three-carbon compound called 3-phosphoglyceric
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acid (PGA) or 3-carbon acid (Locke et al., 2018). It is also
found that the RuBisCO protein dispersed inside the chloroplast
changes according to the rhythmic duration; additionally, this
dispersal of RuBisCO protein interacts with the rhythm of carbon
dioxide fixation (Nassoury et al., 2001).

During the daytime, nicotinamide adenine dinucleotide
phosphate (NADPH) and adenosine triphosphate (ATP) are
produced with the help of a light reaction to charge the
assimilation of carbon. The carbon present, in addition, is
deposited as starch inside the chloroplast, which ends up as the
diurnal variations of starch concentration and reduction (Locke
et al., 2018). Photorespiration is the process where the oxygen
fixation gets activated, and then it directly takes place in the
carbon dioxide fixation. The coherence of C3 photosynthesis
in the air can be estimated based on the conflict between
carbon dioxide and oxygen and the cost of energyrelated by
reclaiming phosphoglycolate. In C4 plants, photosynthesis occurs
where NADP-malic enzyme (ME) helps transfer the malate from
mesophyll to bundle sheath chloroplast.

Jones (2017) described that crassulacean acid metabolism
(CAM) photosynthetic pathway allows enhanced productivity
of water usage by isolating the carbon dioxide fixation
for the opening of stomata during the daytime, and it
closes the stomata and controls the water loss. Thus, these
CAM plants open their stomata and fix the carbon dioxide
with the aid of phosphoenolpyruvate carboxylase (PPC) and
malate dehydrogenase activity during nighttime (Boxall et al.,
2020). The activity of PPC has synchronized the mixture of
PPC with circadian-regulated expression along with the PPC
phosphorylation, which further ends up changing the activity of
carboxylase. The circadian oscillator-related PPC activity initiates
malate, then deposited into vacuoles as the malic acid (Hartwell
et al., 2016). During the night, malate comes out of vacuoles. It
enters the cytosol, where the decarboxylation takes place with
the help of an enzyme Phosphopyruvate Carboxykinase (PCK) or
by NAD-malic enzyme (NAD-ME) on CAM variants. This could
further lead to an increase in the level of carbon dioxide in leaves,
which influences the stomatal closure authorizing RuBisCO to
return the carbon dioxide into the Calvin Benson cycle in the
presence of light.

REGULATION OF CARBON
METABOLISM BY CIRCADIAN
OSCILLATIONS

The circadian oscillation has been intimated for modulating
many enzymes included in plant carbon (primary) metabolism
(Harmer et al., 2000). The photosynthate inflation notifies
the advancement of this biological system. The providence
of carbon plays an essential role in plants while scrutinizing
the different methods for improving crop productivity. Many
different enzymes are involved in isolation during carbon
metabolisms, such as chlorophyll a/b binding protein (CAB),
RuBisCO (RBCS), phosphoenopyruvate carboxykinase (PEPC-
K), phosphoenolpyruvate carboxylase (PEPC), ME, pyruvate
kinase (PPDK), sucrose phosphate synthase (SPS), pyruvate

kinase (PK), sucrose-non-fermentation1-related protein kinase1
(SnRK1), and the DNA-binding with one finger (Dof) co-
expression; these were the genes looked over during the diurnal
conditions (Kanwal et al., 2014).

Generally, in carbon metabolism, the efficacy of light is
considered a driving force, and an entraining signal of the
Calvin-Benson-Bassham (CBB) cycle or C3 cycle tries to isolate
their parts. These spotted genes have recognized an endogenous
rhythm present in the genotypes and the various patterns during
the high range of expression. At the time of dawn, the compulsion
of photosynthetic carbon dioxide directs the sucrose synthesis
and the accumulation of starch; thus, it assists for the pursued
production of starch during the time of dusk (Graf and Smith,
2011; Stitt and Zeeman, 2012; Pokhilko and Ebenhoh, 2015;
Kim et al., 2017). At dusk, the starch stockpiled throughout
the day before night will be deteriorated and devoured. Starch
yield disruption occurs due to an unpredicted rapid arrival
of dusk, which leads to the early consumption of starch and
malnourishment of carbon. This malnourishment of carbon can
end up in the swift alternate in gene expression; metabolism can
lead to the minute difference in the rate of growth, which could
further result in a higher difference in biomass production within
a few weeks. It is feasible to directly or indirectly manage these
mechanisms of endogenous clock genes (Lu et al., 2005; Graf
et al., 2010; Kotting et al., 2010). From previous (Sulpice et al.,
2014) studies, it is known that the clock incidentally regulates the
synthesis of starch by the modulation of starch degradation.

Mostly, in plants, the amount of carbon secured along
with starch is higher in level when compared to wild type
depending upon the decreasing range of circadian rhythm period
(K€olling et al., 2015; Jones, 2017). They reveal the transcriptional
alternation, which is an indication for the starvation of carbon
compounds before night. The plants were usually grown in a 12-
h light and 12-h dark period for 3 continual weeks. It is known
from Graf et al. (2010), when the plants are further relocated into
dark conditions only after the 8 h of light exhibited a high range
of starch degradation, and also there was no indication of carbon
starvation found throughout the next 16 h of dark condition. In
well-sustained plants, when the plant growth is strictly restricted
by the carbon supply then the growth is managed either by CCA1
or LHY (Yazdanbakhsh et al., 2011; Müller et al., 2014).

The oilseed and vegetable varieties have various morphologies
and different harvestable sections. This oilseed type of crop has a
minimal period of circadian rhythm and maximal range of net
carbon assimilation when compared to the vegetable varieties
(Yarkhunova et al., 2016). From Smith and Stitt (2007), it is
known that the rate of photosynthesis becomes limited under
the condition of a shorter duration of photoperiods (or low
irradiance). In such a case, it could lead to a limited source
phenotype, which is the condition of insufficient or lack of carbon
and minimal plant growth. Whereas, whenever more carbon is
obtained from the atmosphere for the better growth of plants,
having higher irradiance or long timing of photoperiod and the
plants are of limited sink phenotype.

The clock maintains a certain level of carbon supply rate with
the help of clock component CCA1/LHY, which could be further
stored and used until the next day. During the nighttime, the
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instability of starch can be managed by the clock component
CCA1/LHY in A. thaliana. This regulation plays a major role in
avoiding either the lack or breakdown of sucrose and decreased
growth level during nighttime (Müller et al., 2014). The rhythmic
clock component TOC1 provides a specific idea for the biological
system in the maintenance of cellular mechanisms (Cervela-
Cardona et al., 2021).

REGULATION OF SUGAR METABOLISM
BY THE CIRCADIAN CLOCK

Due to the fluctuation in the photoperiod, the rise in sugars
changes, that is, the increase or decrease of sugars depends upon
the presence of light and photosynthesis rate. Thus, it indicates
sugar does not increase in the early morning or in late evening;
also clock loses the sensitivity at the end of the light period, as
it is not phase advanced (Haydon et al., 2013). The early rise
of sugar takes place on sunny days, which helps the circadian
clock in showing the appropriate phase for driving processes that
are linked with sugar metabolism. Sugar accumulation in the
morning helps in the activation of the photosynthesis process on
all days of the cycle.

Due to sugars, the activation of the CCA1 promoter increases;
also simultaneously, it also suppresses the PRR7 (Haydon et al.,
2013; Dodd et al., 2015). The regulation of sugar with the
circadian clock has the capability to develop the action of the
oscillator for dealing with the clock timing; this may also form
a mechanism where biological processes, which are considered
as the outputs of biological oscillators, are getting affected by
sugars. These all are because sugars can manage the outputs of
the circadian clock directly, even without performing any role in
the core region of the clock. The circadian clock may get affected
by sugars in long-term response pathway, which strengthens the
rhythmicity in leaves of A. thaliana during the nighttime, after
which there will be a need for GI (Dalchau et al., 2010).

With the help of PHY and CRY photoreceptors, the
entrainment cues, including signals of light, are obtained. It
also comprises the regulation of FLOWERING LOCUS T (FT)
through the sugar signaling of Trehalose-6-Phosphate (T6P);
even though the photoperiod synchronization of FT is not totally
dependent upon this T6P (Dodd et al., 2015). In the late daytime,
during the process of photosynthesis, sugars are synthesized and
these sugars are then conserved and further exploited in the
process of respiration during the nighttime. On the basis of
different carbohydrate transports along with the various stages
of cycle rhythmicity, it develops the diel oscillation of sugars
(Haydon et al., 2011).

REGULATION OF FLOWERING AND
SENESCENCE IN PLANTS BY
CIRCADIAN RHYTHM

The development of flowers is an important stage in plant
development. The formation of flower organs occurs when the
gene expressions are accurately controlled during the flower

development stage (Schaffer et al., 1998). This process is activated
by the circadian rhythm (Schaffer et al., 1998). The flowering
genotype depends upon the merged reactions of external and
internal features, such as photoperiod and temperature (Min,
2005). The clock recognizes the length of photoperiod and
regulates the phloem companion cells FT and CONSTANS (CO);
where CO is a cue regulator for flowering when there is a conflict
between the length of photoperiod and the circadian rhythm
based on external coincidence theory (Sawa et al., 2007). The
leaf senescence regulators ORESARA 1 (ORE 1) are controlled by
endogenous rhythm and activated by various other components,
such as CCA1, PRR9, ELF3, ELF4, and LUX.

The ORE 1 gene is present downstream of ETHYLENE
INSENSITIVE 2 (EIN 2), which activates the ethylene signaling
pathway. This ORE 1 gene encodes with protein-specific
transcriptional factor (TF) NAM, ATAF, and CUC (NAC),
which then positively activates the senescence in leaves and
moderates various pathways of leaf senescence by activating
SENESCENCE ASSOCIATED GENES (SAGs) expression, such as
SAG 29 and BIFUNCTIONAL NUCLEASE 1 (BFN 1) (Matallana-
Ramirez et al., 2013). The ORE 1 expression increases during cell
aging, leading to age-induced cell apoptosis. The microRNA164
(miR164) negatively activates the expression of ORE 1. The
trifurcate feed-forward loop is formed with the combination
of EIN 2, miR164, and ORE 1, which changes the senescence
of the leaf (Kim et al., 2009). During leaf aging, the circadian
rhythm gets shortened, which is found in the model organism
Arabidopsis (Kim et al., 2016). From the previous study, it
is known that the duration of flowering in Arabidopsis takes
long days (LDs) and also its mechanism is well explained
(Corbesier and Coupland, 2005).

In A. thaliana, the GI, which is the component of the clock,
activates the photoperiodic flowering. This GI binds along with
the CO promoter to activate the expression of CO (Figure 2).
GI controls leaf senescence as the time of flowering, where
it depends on the location. GI often acts as the mediator to
make the interaction between leaf senescence and flowering and
develops the productivity and fitness of plants. The ELF 4 links
directly with the GI and suppresses its interaction with the ORE
1 promoter (Kim et al., 2020). The result of the regulatory
network controls the transcription of CO, and CO mRNA gets
collected after the night in a short-time duration. Then CO stops
to assemble in the dusk due to degradation of protein by the
combination of CONSTITUTIVE PHOTOMORPHOGENESIS 1
(COP 1) and SUPPRESSOR OF PHYA-105 1 (SPA 1) (Laubinger
et al., 2006; Jang et al., 2008). The CRYPTOCHROME 2 (CRY
2), which is photoactivated, combines with COP 1 and SPA 1
to make a complex compound to inhibit the degradation of CO
(Zuo et al., 2011).

Furthermore, by forming a blue light-dependent complex
with FKF1 (FLAVIN-BINDING, KELCH REPEAT, F-BOX 1), GI
regulates the expression of floral activators CO and FT (Imaizumi
et al., 2003, 2005; Sawa et al., 2007; Sawa and Kay, 2011).
CYCLING DOF FACTOR 1 (CDF1), a protein that represses
CO and FT transcription, is degraded by the GI-FKF1 complex
(Imaizumi et al., 2005; Fornara et al., 2009; Song et al., 2012).
CO protein levels, which are stabilized by FKF1 at the end of
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FIGURE 2 | It is a diagrammatic representation of the circadian rhythm for providing a clear idea on the same. It has three different stages, such as (i) input pathway
that contains light and temperature, which is then followed by (ii) central oscillator, in the presence of photoreceptors, such as PHY and CRY; further leading to the (iii)
output pathway, which consists of many different physiological and developmental processes, such as (A) protein phosphorylation, (B) gene expression, (C)
flowering, (D) petal opening, (E) cotyledon and leaf movement, (F) stomatal opening, (G) chloroplast, (H) calcium levels, and (I) biotic and abiotic stress. All these
processes indicate the step-by-step variations that take place in every plant during the changes in photoperiodic rhythm.

the long photoperiod, control the activation of FT expression in
LDs (Suárez-López et al., 2001; Song et al., 2012). Furthermore,
light regulates CO protein, so CO levels are low in red light and
high in blue light. While blue and far-red light help to keep CO
stable (Valverde et al., 2004). This control increases the floral
signal by reinforcing the accumulation of CO protein levels in
the evening of LDs. These molecular interactions theoretically
result in a double external coincidence mechanism that involves
multiple clock outputs, but the combined effects of this rhythmic
mechanism have not been quantitatively tested or incorporated
into previous mathematical models (Song et al., 2012).

Similarly, the senescence in plants requires a functional
endogenous system; also, many different senescence-related
genes encode the TFs in which NAC and WRKY show a clear
circadian rhythm pattern (Kim and Hong, 2019). The clock
rhythm has combined the function of both flowering and leaf
senescence, due to which the early leaf senescence takes place
because of the ELF period as per the causes of embryonal
carcinoma (EC) mutants (Kim et al., 2018). The analysis of
transcriptional profiling exhibits the senescence regulatory genes;
not only the ORE 1, NAP, WRKY 53, and WRKY 70 but also

the phytohormone jasmonate (JA) responsive and signaling genes
are getting activated at the stage of EC-mediated senescence of
leaf (Zhang et al., 2018). The salicylic acid (SA) pathway has a
connection with the PHY-associated leaf senescence mechanism.
The regulation of senescence on the basis of circadian oscillator
and light has been explained in a detailed manner in a recent
study (Lee et al., 2021).

DEFENSE RESPONSE IN PLANTS BY
CIRCADIAN RHYTHMS

The circadian rhythm can also be expressed with the help of the
plant defense system, also in the absence of the pathogen. The
glycine-rich RNA binding protein is a pathogen responsive gene,
and it was already seen in several crops that exhibit the regulation
of the clock (Lu et al., 2017). Defense response plays a significant
role in plants for the normal functioning of cells against the
infection caused by the pathogen (Spoel and Dong, 2008). In the
case of a pathogen attack, the cuticle supply, which is a physical
plant barrier, is considered the first line of plant defense. This
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form of defense system blocks the pest and pathogen invasion.
Whenever a swap takes place in the cuticle, it is immediately
realized by the plant and instantly, it begins the defense response
during the time of pathogen attack (Malik et al., 2020). The
instigated interaction, which occurs between pattern recognition
receptors and pathogen-associated molecular patterns (PAMPs),
activates a considerable amount of plant defense systems, such as
stomatal closure, to keep away from the invasion of the pathogen
(Jones and Dangl, 2006; Miller et al., 2017; Butt et al., 2020).

Phytohormones, such as JA and SA, play an essential
role in defense responses (Roden and Ingle, 2009; Tamaoki
et al., 2013). Depending upon the mode of pathogen attack,
the phytohormones are synthesized by the plants (Loake and
Grant, 2007). If the pathogen moves inside the plant cells,
the polymorphic Nucleotide Binding and Leucine-Rich Repeat
(NB-LRR) proteins available within the host cell interconnect
with specifically effecting molecules of the pathogen (Jones and
Dangl, 2006; Miller et al., 2017). The growth by the addition
of SA influences the strengthening of the cell wall, phenolic
accumulation, and production. It also triggers resistance (R) and
other different defense response genes (activated of clock gene
LUX). The PRRs recognize the PAMPs that stop the formation
of pathogen colonies, which end up in the PAMP triggered
immunity (PTI). This PTI restricts the released action of the
pathogen inside the host cell, and also it switches on the defense
system, which functions in the way of non-host-specific R. The
four stages of plant immunity have become a well-known process
from a recent study (Butt et al., 2020).

The prompt in reactive oxygen species (ROS) production
is considered the initial defense response state in plants. The
interaction between the clock system and redox state in the
cellular system confirms the stability between the immunity of
plants and their proper growth (Brody, 2019; Zhang J. et al.,
2019). The LUX gets bonded with EDS 1 and JASMONATE ZIM
DOMAIN (JAZ) 5 promoters, which could affect the signaling of
JA and SA (Zhang C. et al., 2019). The formation of co-receptor
complex takes place with the association of transcriptional
repressor proteins, such as JASMONOYL-ISOLEUCINE (JA-Ile),
JAZ, and CORONATINE-INSENSITIVE1 (COI1), which is an
F-Box protein in the existence of vital appearance of JA (Nitschke
et al., 2016). This leads to the JAZ repressor degradation due to
the ubiquitin-proteasome system (Thines et al., 2007), and then
it rescues the TFs, such as MYC 2. Thus, the transcription for
response genes of JA is enabled, such as JAZ genes, also MYC 2,
and all the biosynthesis genes of JA, i.e., LIPOXYGENASE (LOX)
and OXO PHYTODIENOATE REDUCTASE 3 (OPR3) (Chung
et al., 2008; Wasternack and Hause, 2013).

The clock entrainment with the light is conciliated by CRY
and PHY; they are translocated to the nucleus concerning the
light where the gene expression is activated. Several defense genes
are moderated by the function of PHY and the circadian clock
(Roden and Ingle, 2009). Plants having the deficiency of PHY
A/B show the complete reduction in the expression of PRR; thus,
this stipulates the importance of the defense signaling pathway
(Genoud et al., 2002; Butt et al., 2020). From Griebel and Zeier
(2008), it is known that the plant defense has an increased
function during the time of dawn rather than dusk; also, they

have used the pressure inoculum in the leaves of the organism
Pseudomonas syringae (P. syringae) along with the diversion of
defense response in stomata. The rhythmicity of the clock blocks
the susceptibility of the plants toward many different pathogens
and insects, where the plant susceptibility will have the most
little part at the time of interaction of endogenous clock with the
defense hormones, such as JA and SA (Goodspeed et al., 2012;
Korneli et al., 2014; Ingle et al., 2015).

CONCLUSION

The plant circadian rhythm is cell-independent and self-
assisting under the seasonal and diurnal input sources from
the environmental cue for encountering the stimulant-
navigated response. The endogenous clock components will
be synchronized at either transcriptional or post-transcriptional
extent. The role and the function of CCA1 and LHY (the
two main clock components in light signaling) in circadian
timing and control of the flowering plant could be explained
with the separation and depiction of clock genes. It has been
found that after dawn, the genes help much in controlling the
chlorophyll; it was also known that these clock components help
maintain the fitness of plants with improved immunity for the
best performance.

In the present review, we have tried to explain the different
biological or developmental processes of plants through the
circadian clock, which will also help the researchers understand
how the genes present in the circadian system, are expressed,
and how they are functioning. The circadian rhythm has
been analyzed with the model organism A. thaliana and in
other plants, such as Nicotiana benthamiana (N. benthamiana),
Chrysanthemum, and Petunia plant. Yet, there are many
vegetable crops or flowering plants, which could be readily
available. In addition, it can be used to analyze circadian biology
to provide a clear vision about the same in a very detailed
manner. Both in vitro and in vivo studies for the analysis of
this photoperiodic rhythmicity along with the abiotic stress
conditions using molecular work can be performed as a brief
future study. The study can be accomplished to increase the
growth and yield of edible crops that are highly tolerant toward
the abiotic stresses, for example, salinity, heat, and cold stress
conditions, based on the functioning of their circadian rhythm.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work, and approved it for publication.

FUNDING

Horticultural and Molecular Physiology Lab was funded by DST-
SERB (project no. SRG/2020/000170), Govt. of India, and Timac
Agro International (Roulliers group, France), India. HMP Lab
also acknowledges VIT seed grant for financial support.

Frontiers in Plant Science | www.frontiersin.org 8 April 2022 | Volume 13 | Article 836244

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-836244 March 31, 2022 Time: 14:34 # 9

Venkat and Muneer Circadian Biology and Abiotic Stress

REFERENCES
Aguilar-Arnal, L., and Sassone-Corsi, P. (2015). Chromatin landscape and

circadian dynamics: Spatial and temporal organization of clock transcription.
Proc. Nat. Acad. Sci. U S A. 112, 6863–6870. doi: 10.1073/pnas.1411264111

Belbin, F. E., Hall, G. J., Jackson, A. B., Schanschieff, F. E., Archibald, G.,
Formstone, C., et al. (2019). Plant circadian rhythms regulate the effectiveness
of a glyphosate-based herbicide. Nature Commun. 10, 1–1. doi: 10.1038/s41467-
019-11709-5
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