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Objective: Resistance to anti-seizure medications (ASMs) presents a significant hurdle in the
treatment of peoplewith epilepsy.Geneticmarkers for resistance to individual ASMscould support
clinicians to make better-informed choices for their patients. In this study, we aimed to elucidate
whether the response to individual ASMs was associated with common genetic variation.

Methods: A cohort of 3,649 individuals of European descent with epilepsy was deeply
phenotyped and underwent single nucleotide polymorphism (SNP)-genotyping.We conducted
genome-wide association analyses (GWASs) on responders to specific ASMs or groups of
functionally related ASMs, using non-responders as controls. We performed a polygenic risk
score (PRS) analyses based on risk variants for epilepsy and neuropsychiatric disorders and
ASM resistance itself to delineate the polygenic burden of ASM-specific drug resistance.

Results:We identified several potential regions of interest but did not detect genome-wide
significant loci for ASM-specific response. We did not find polygenic risk for epilepsy,
neuropsychiatric disorders, and drug-resistance associated with drug response to specific
ASMs or mechanistically related groups of ASMs.

Significance: This study could not ascertain the predictive value of common genetic
variants for ASM responder status. The identified suggestive loci will need replication in
future studies of a larger scale.
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INTRODUCTION

About one-third of people with epilepsy have seizures that are
refractory to anti-seizure medications (ASMs). The International
League against Epilepsy (ILAE) defines drug resistance as
ongoing seizures despite treatment with at least two well-
tolerated and appropriate ASMs (Kwan et al., 2010). With
each additional drug trial, the odds to achieve seizure freedom
decrease (Brodie et al., 2012). The introduction of new ASMs with
alternate mechanisms of action has not significantly changed this
situation (Chen et al., 2018). For certain epilepsy syndromes,
some ASMs have proven to be more beneficial than others:
valproic acid (VPA) and ethosuximide are superior to
lamotrigine (LTG) in childhood absence epilepsy (Glauser
et al., 2013), VPA is superior to topiramate (TPM) and LTG
in genetic generalized epilepsy (GGE) (Marson et al., 2007a;
Silvennoinen et al., 2019), and carbamazepine (CBZ) and LTG
are superior to TPM and gabapentin (GBP) in focal epilepsy
(Marson et al., 2007b). Yet, studies with head-to-head
comparisons are sparse (Beyenburg et al., 2010; Androsova
et al., 2017). Thus, in clinical practice, ASMs are prescribed
based on age, gender, co-morbidities, electroclinical syndrome,
seizure type, potential drug interactions, or adverse drug
reactions.

Pharmacogenomics, i.e. the influence of genetic variants on
drug response or adverse effects, bear the potential to support the
choice of the most suitable ASM (Löscher et al., 2009). Other
medical fields have seen the integration of pharmacogenomics in
clinical routine (Daly, 2017). For epilepsies, reproducible
pharmacogenomic findings are limited to cutaneous adverse
reactions caused by aromatic ASMs (Chung et al., 2004;
McCormack et al., 2011; McCormack et al., 2018). The utility
of these findings in individuals’ care remains a matter of debate
(Chen et al., 2014). The endeavor to identify common genetic
variants associated with drug response is still elusive, also due to
small sample sizes (Heavin et al., 2019; Wolking et al., 2020a).
There is some evidence that enrichment of ultra-rare variants in
genes associated with pharmacodynamics and pharmacokinetics
can modify ASM response, but further replication of these results
is needed (Wolking et al., 2020a).

We assessed common variants’ role and common variant
burden for drug response to common ASMs using genome-
wide association studies (GWAS) and polygenic risk score
(PRS) analyses in a cohort of 3,649 individuals.

METHODS

Ethics Statement
All study participants provided written, informed consent for
genetic analyses. Local institutional review boards reviewed and
approved study protocols at each contributing site.

Study Design
This cohort was derived from the EpiPGX Consortium
established in 2012 to identify genetic biomarkers of epilepsy
treatment response and adverse drug reactions. EpiPGX is a

European-wide epilepsy research partnership under the
European Commission Seventh Framework Protocol (FP7).
This case-control study was based on the retrospective
evaluation of individual data. Relevant data were extracted
from case charts by trained personnel and collected in a
standard electronic case report form (eCRF) used at all
consortium sites. Our cohorts consisted exclusively of
individuals of non-Finnish European ancestry with an
established diagnosis of either focal or genetic generalized
epilepsy according to current ILAE diagnostic criteria (Scheffer
et al., 2017). We tested whether common genetic variants were
significantly associated with drug response to one ASM or groups
of mechanistically related ASMs (sodium channel-active and
calcium channel-active ASMs). We also tested whether the
response profile was associated with an increased burden of
polygenic variants for risk of epilepsy syndromes, other
neuropsychiatric disorders, or whether a burden of risk
variants for drug response itself could predict the outcome.

ASMs were selected based on their usage in the EpiPGX
cohort. ASM-specific analysis was performed for levetiracetam
(LEV), lamotrigine (LTG), valproic acid (VPA) for focal
epilepsies and all epilepsies. For focal epilepsies only, we
performed additional ASM-specific GWAS for phenytoin
(PHT), oxcarbazepine (OXC), and carbamazepine (CBZ). ASM
groups comprised T-type calcium channel-active ASMs (valproic
acid, ethosuximide, and zonisamide [ZNS]) for focal and all
epilepsies; and sodium channel-active ASMs (LTG, lacosamide
[LCM], ZNS, PHT, CBZ, OXC, and eslicarbazepine [ESL]) for
focal epilepsies only. The breakdown of the sample size per
analysis is depicted in Table 1.

Cohorts and Phenotype Definition
The individuals in this study were selected frommore than 12.000
individuals that were documented in the EpiPGX eCRF. Thereof,
3,649 individuals fulfilled the inclusion criteria, 2,762 with focal
epilepsy, and 887 with generalized genetic epilepsy. The latter
group has been part of a previous study (Wolking et al., 2020a). A
more detailed cohort description is provided in Table 1.

Individuals were classified as responders or non-
responders. The response was defined as seizure freedom
under ongoing treatment for at least one year and before
initiation of any other treatment; non-response as recurring
seizures at ≥ 50% of pretreatment seizure frequency given
adequate dosage of the trial drug. Individuals with recurrent
non-compliance for ASM intake were excluded. The response
or non-response groups’ assignment was based on the
evaluation of one or more epilepsy specialists at the source
center. To harmonize phenotyping procedures a phenotyping
manual was created at the start of the EpiPGX project. At the
beginning and on a yearly basis throughout the recruitment
phase phenotyping workshops were held. To assess cross-
center consistency of data interpretation, a cross-center
phenotyping validation test was performed at the outset of
the EpiPGX project, using anonymized medical records. An
overall inter-rater agreement of 74.2% was reached. Stark
disagreement, e.g ASM response vs. non-response, occurred
in 5.1% of recorded ASM trials.
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Imputation and Genotyping Quality Controls
GWASs were conducted separately for each ASM-response
cohort using imputed genotypes. Genotyping of a subset of
samples was performed at deCODE Genetics on Illumina
OmniExpress-12 v1.1 and -24 v1.1 single nucleotide
polymorphism (SNP) arrays. The remainder of samples
were genotyped locally on various Illumina beadchip SNP
arrays. Detailed genotyping, imputation and quality control
methods have been described previously (McCormack et al.,
2018). Population structure was controlled via principal
component analysis as reported previously (Wolking
et al., 2020a) (Supplementary Figure S1). European
ancestry was established by a principal component
analysis comparison to 1,000 genomes data
(Supplementary Figure S2).

Genome-wide Association Analysis
GWAS power was calculated using PGA (Menashe et al.,
2008). Association analysis was performed using SNPTEST
in a frequentist model with the top 10 main components, sex,
and epilepsy subtype (where appropriate) included as
covariates. The statistical threshold for genome-wide
significance was set at p < 5 × 10–8. Post-association QC
removed SNPs with INFO scores lower than 0.95, missingness
rates >0.10, Hardy-Weinberg deviations p < 5 × 10–6, and
minor allele frequencies <5%.

Study Power
We estimated that our most extensive analysis for sodium
channel-active ASMs had 80% power to detect a genetic
predictor of the relative risk of 1.37 with an allele frequency of
≥20%, based on an α level of 5 × 10–8 and given a prevalence of

drug-resistance of 30%. The study power for the other analyses is
shown in Table 1.

Polygenic Risk Score Analysis for Epilepsy
and Neuropsychiatric Disorders
GWAS summary statistics for epilepsy (focal, GGE, and all
epilepsies) were downloaded from the ILAE study (Cross-
Disorder Group of the Psychiatric Genomics Consortium,
2013) using the EpiGAD server. These statistics were
remade with the overlapping samples between the larger
ILAE cohort and our EpiPGX samples removed. GWAS
results for a broad psychiatric disorder study (covering
autism, attention deficit hyperactivity disorder, bipolar
disorder, major depression and schizophrenia) were
downloaded from the psychiatric genomics consortium
(International League Against Epilepsy Consortium on
Complex Epilepsies, 2018). PRS for each phenotype were
calculated for all samples our study cohorts using PRSice
(Euesden et al., 2015), using all SNPs from the base GWAS
with p-values ≤0.5. The threshold of ≤0.5 was selected because
for most complex traits the most predictive p-thresholds will
typically be between 0.3 and 0.5, including epilepsy (Leu et al.,
2019). The PRS were then regressed onto responder status
using R 3.6, with the top six principle components, sex, and
epilepsy subtype (where appropriate) included as covariates.

Polygenic Risk Score Analysis for Drug
Response
To test whether responsiveness to individuals ASMs or groups of
ASMs had a distinct polygenic component, we split our cohorts

TABLE 1 | Sample numbers, estimated power, and clinical details for GWAS cohorts.

ASM Status n Study power Female (%) GGE (%) AOO (mean, SD) Ethnicity %

South Europe Central Europe British Isles

LEV R 343 1.55 58.9 24.8 24.7 (±19.0) 10.2 32.7 57.1
N 895 56.6 24.2 18.2 (±14.8) 9.1 43.4 47.6

Na-C-ASMs R 910 1.37 50.7 0 30.9 (±19.7) 14.6 17.5 67.9
N 1,286 54.2 0 21.5 (±16.5) 6.5 31.5 62.0

LTG R 471 1.49 58.0 29.1 26.3 (±19.0) 7.5 36.5 56.0
N 929 61.9 26.8 19.1 (±15.2) 6.8 40.5 52.7

CBZ R 424 1.57 47.6 0 30.4 (±19.6) 21.7 12.0 66.3
N 591 55.8 0 20.7 (±16.6) 13.7 27.2 59.1

OXC R 98 2.08 55.1 0 29.6 (±19.6) 21.4 15.3 63.3
N 296 50.7 0 18.1 (±14.1) 10.1 48.6 41.2

PHT R 71 2.30 47.9 0 28.2 (±20.3) 14.1 18.3 67.6
N 218 54.1 0 18.0 (±14.6) 15.6 20.2 64.2

Ca-C-ASMs R 690 1.45 59.3 69.0 16.6 (±14.2) 14.6 54.1 31.3
N 848 51.7 20.6 18.9 (±15.3) 9.4 39.6 50.9

VPA R 612 1.49 56.9 67.0 17.6 (±14.5) 15.4 53.9 30.7
N 690 51.3 23.5 20.0 (±16.0) 8.4 44.5 47.1

All samples — 3,649 55.0 24.3 22.8 (±17.7) 8.9 34.8 56.4

Depiction of sample size per ASM and responder status, study power, gender distribution, mean age at seizure onset, and distribution of ethnicity. Study power shows relative risk for 80%
study power, given an allele frequency of ≥20%, an α level of 5 × 10–8 and a prevalence of drug-resistance of 30%. AOO � age of onset of first seizure, ASM � anti-seizure medication, Ca-
C-ASMs � T-type calcium channel-active anti-seizure medications, CBZ � carbamazepine, GGE � genetic generalized epilepsy, LEV � levetiracetam, LTG � lamotrigine, n � number, N �
non-responders, Na-C-ASMs � sodium channel-active anti-seizure medications, OXC � oxcarbazepine, PHT � phenytoin, R � responders, SD � standard deviation, VPA � valproic acid.
Ca-C-ASMs comprised VPA, zonisamide, and ethosuximide; Na-C-ASMs comprised LTG, lacosamide, zonisdamide, PHT, CBZ, OXC, and eslicarbazepine.
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into a discovery and replication cohort, depending on
recruitment site (Test: 636 cases, 890 controls; discovery: 229
cases, 323 controls). A GWAS was run in the test cohort
(following the protocol from above) and used a PRS analysis
base in the discovery cohort (same methods as above).

SNP-Heritability Testing
Linkage disequilibrium score-regression (Bulik-Sullivan et al.,
2015) was used to calculate SNP-based heritability in the
cohort of sodium-channel actives ASM treated study
participants. We also used GCTA-GREML to estimate the
heritability (Yang et al., 2011).

RESULTS

Cohort Description
After per individual quality check, 3,649 individuals were
included in the GWAS analyses. The breakdown of the GWAS
cohorts is shown in Table 1. The proportion of individuals with
GGE was 25%. For the GWAS for VPA response and in
consequence for T-type calcium channel-active ASMs
(including VPA, ESX, and ZNS), GGE was overrepresented in
the responder group. The mean age of onset tended to be higher
for responders than non-responders except for VPA and T-type
calcium channel-active ASMs.

Genome-wide Association Studies for Drug
Response
We performed GWAS for drug response for specific ASMs and
groups of ASMs (as shown in Table 1) for focal epilepsy and all
epilepsies. Results for GGE alone have been published previously
(Wolking et al., 2020b). We found no evidence for a relevant
GWAS p-value inflation (lambda-range between 0.99 and 1.06).
We did not find any genome-wide markers that exceeded the
significance threshold (5 × 10–8). We identified 30 loci suggestive
for an association with ASM response (<5 × 10–6) as shown in
Table 2. To exemplify the findings, QQ- and Manhattan plots for
the largest GWAS of sodium channel-active ASMs are shown in
Figures 1A,B; the results of the other GWAS are depicted in
Supplementary Figures S3 to S12.

SNP-Heritability Testing
We calculated SNP-based heritability [SNP-h2] as a measure of
the proportion of variance in ASM response status, which could
be attributed to common genetic variants for the largest cohort of
samples treated with sodium-blocking ASMs. The result was not
significant, SNP-h2 was estimated to be 0.3108, with a standard
error of 0.2868 (Lower CI: −0.252, Upper CI: 0.873). Using
GCTA-GREML to calculate h2, the result was not significant
[h2 � 0.000002, standard error � 0.178,925, p � 0.5].

Assessing the Polygenic Risk of Epilepsy
and Neuropsychiatric Disorders for Drug
Response
First, we tested whether the responder status to individual
ASMs and the groups of sodium channel active-, and T-type
calcium channel-active ASMs correlated with the genetic load
for epilepsy (focal, generalized, and combined), Figure 1C.
Second, we tested whether the responder status correlated
with the genetic load for five neuropsychiatric disorders was
associated with responder status. In both cases, we found no
significant association of polygenic risk scores with any ASM
drug-responder status.

Third, we assumed that the responder status itself harbored a
polygenic component, which is largely distinct from the polygenic
component for epilepsy risk. We split the ASM cohorts in half to
calculate a GWAS for the first half. This discovery cohort was
used to calculate PRS for individual ASM responder status in the

TABLE 2 | Top genome-wide association study results (p < 5 × 10–6) for ASM
responder status

SNP Location (hg19) p-value Gene

Focal Epilepsies
Levetiracetam
rs10191428 2:62,725,407 2.37 × 10–6 TMEM17
rs6455984 6:1,65,419,809 2.98 × 10–6 —

rs10786411 10:100091761 4.01 × 10–6 —

Sodium channel-Active ASMs
rs2600151 3:4148058 2.83 × 10–6 SUMF1
rs60350499 17:71111631 6.89 × 10–8 —

Lamotrigine
rs7811069 7:32,003,223 1.75 × 10–6 PDE1C
rs1859577 7:68254624 4.80 × 10–7 —

rs2028234 8:4747736 6.90 × 10–7 CSMD1
Carbamazepine
rs4078065 2:238110123 3.88 × 10–6 —

rs13150739 4:128045535 8.95 × 10–7 —

rs4243569 14:51536146 4.49 × 10–6 TRIM9
Oxcarbazepine
rs6552076 4:68014557 4.71 × 10–6 —

rs1816237 5:33040812 1.00 × 10–6 —

rs2944715 8:69346689 3.10 × 10–6 C8orf34
rs34744859 18:65165115 4.44 × 10–6 —

Phenytoin
rs12038219 1:167503917 6.07 × 10–8 —

rs28740860 3:3277529 8.72 × 10–7 —

rs188002 6:140473067 4.60 × 10–7 —

rs16945236 15:91664327 8.36 × 10–7 —

Calcium channel-Active ASMs
rs11125398 2:52227824 2.77 × 10–6 —

rs73104283 2:231,130,300 3.64 × 10–6 SP140
rs7092992 10:20,922,643 3.56 × 10–6 —

Valproic acid
rs2700204 3:112,841,569 4.52 × 10–6 —

rs1952670 9:128,654,392 9.11 × 10–7 PBX3
rs7092992 10:20,922,643 4.07 × 10–6 —

All Epilepsies
Levetiracetam
rs10191428 2:62,725,407 2.30 × 10–6 TMEM17
rs9390556 6:148,643,960 4.80 × 10–6 —

Lamotrigine
rs12468936 2:106,116,654 2.60 × 10–6 —

rs7811069 7:32,003,223 8.44 × 10–7 PDE1C
rs7859863 9:104,337,744 4.52 × 10–6 GRIN3A
rs28776624 14:41,898,817 3.90 × 10–6 —

Calcium channel Active ASMs
rs73104283 2:231,130,300 1.14 × 10–6 SP140

Valproic acid
rs3936663 4:7,185,699 3.83 × 10–6 --
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second half. We also did not find a significant association for drug
response PRS with responder status (Figure 1D).

DISCUSSION

We tested whether common genetic variation could predict drug
response to various commonly used ASMs. We identified several
loci of potential interest for ASM response but found no
significant genome-wide association. Our analysis was
underpowered to detect small effect size variants, but the
results suggest that there are no large-effect size variants
associated with drug response. We further tested whether the
polygenic burden for epilepsy risk, risk for various
neuropsychiatric disorders, or drug-resistance itself had a
predictive value for the drug response phenotype. We could

not show that polygenic risk scores were significantly
associated with ASM response within the limits of study size.
Other methods of PRS calculation also exist, such as LDpred
(Vilhjálmsson et al., 2015), which may prove more successful at
finding polygenic signals associated with drug response to ASMs
and could be further explored in future studies.

This study was limited to the sample size of the sub-analyses.
This study does not prove that drug response is without genetic
influence. The results could imply that drug response is a far more
complex trait with multiple influencing parameters beyond
genomic factors alone. While PRS for epilepsy is a reliable
predictor for the risk of epilepsy and epilepsy sub-phenotypes
itself (Leu et al., 2019; Moreau et al., 2020), this approach was not
beneficial to predict drug response within this study’s limitations.

The results align with our previous studies that found no
common genetic variants in association to VPA, LTG, and LEV

FIGURE 1 | Results for sodium channel-active ASMs. A and B show results for GWAS, C and D for PRS analysis. A: QQ plot shows no relevant p-value inflation;
lambda-value � 1.005. B: Manhattan plot of GWAS; locations of SNPs with p-value ≤ 5 × 10–6 are marked. C: Results for PRS-analysis PRS for epilepsy risk based on
the ILAE 2018 metadata. D: Results for PRS-analysis for PRS for risk of ASM-specific drug response.
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response in genetic generalized epilepsy (Wolking et al., 2020b) or
for the response to lacosamide in focal epilepsy (Heavin et al.,
2019). One previous study suggests that rare genetic variants in
genes related to drug targets and pharmacokinetics might be
involved (Wolking et al., 2020b). Given that many individuals
with epilepsy exhibit a broad pharmacoresistance, regardless of
the drugs’mechanism of action, other factors are probably at play
(Löscher et al., 2020). Epigenetic mechanisms such as altered
DNA methylation (Kobow et al., 2013), seizure-induced
alterations of neural networks (Fang et al., 2011), or intrinsic
factors mediating disease severity (Rogawski, 2013) should be
further explored.

CONCLUSION

No genome-wide significant variants could be identified in
association with drug response to various widely used ASMs.
We identified several suggestive risk loci. Future hypothesis-
driven association studies should attempt to reproduce our findings.
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