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ABSTRACT The trace elements copper, zinc and selenium are linked together in cytosolic defense against reactive
oxygen and nitrogen species. Copper, zinc–superoxide dismutase catalyzes the dismutation of superoxide to oxygen
and hydrogen peroxide. The latter and other hydroperoxides are subsequently reduced by the selenoenzyme
glutathione peroxidase (GPx). Cytosolic GPx can also act as a peroxynitrite reductase. The antioxidative functions of
these trace elements are not confined to being constituents of enzymes: 1) copper and zinc ions may stimulate
protective cellular stress-signaling pathways such as the antiapoptotic phosphoinositide-3-kinase/Akt cascade and
may stabilize proteins, thereby rendering them less prone to oxidation; and 2) selenium does not only exist in the cell as
selenocysteine (as in GPx) but also as selenomethionine, which is regularly present in low amounts in proteins in place
of methionine. Selenomethionine catalyzes the reduction of peroxynitrite at the expense of glutathione. Also, low-
molecular-weight organoselenium and organotellurium compounds of pharmacologic interest catalyze the reduction of
hydroperoxides or peroxynitrite with various cellular reducing equivalents. J. Nutr. 133: 1448S–1451S, 2003.
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One important function of metal ions in biology is to
stabilize proteins. An impressive illustration of the stability of
a metalloenzyme is the isolation of an enzymatically active core
fragment of copper, zinc–superoxide dismutase (CuZn–SOD)4

from the brain of a . 3,000 y-old air-dried mummy (1).
Similarly, another metalloenzyme was isolated from mummies:
alkaline phosphatase, a Zn21- and Mg21-containing enzyme,

was recovered from rib samples of a 2,300-y-old ptolemeic
mummy. This enzyme was active, immunologically indiscern-
ible from freshly prepared enzyme and of similar molecular mass
(2,3). Copper and zinc are two of the most abundant trace
elements found in the human body and are intricately involved
in the metabolism of oxygen and the biochemistry of redox
reactions. CuZn–SOD catalyzes the dismutation of superoxide,
which is constantly formed during aerobic metabolism, to
oxygen and hydrogen peroxide (4). Copper and zinc are joined
in cellular defense against oxidants by the semimetal selenium
to form a triad of trace elements that are involved in cytosolic
antioxidant defense (Fig. 1): hydroperoxides, including H2O2,
are reduced to the respective alcohols or water in a reaction
that is catalyzed by the selenoenzyme glutathione peroxidase
(GPx) with glutathione (GSH) as the electron donor (5,6).
These three trace elements play roles in the cellular defense
against oxidative stress beyond those outlined: copper and zinc
are not only cofactors of CuZn–SOD, and being a constituent
of GPx is not the only way that selenium exerts an antioxidative
function.

Prooxidant and antioxidant properties of copper ions

Copper ions are involved in both the generation of and the
defense against reactive oxygen species (ROS) in cells. The
generation of superoxide and hydrogen peroxide is due to the
interaction of intracellular copper ions with thiols such as GSH
and oxygen, which is present intracellularly in high micromolar
concentrations (as indicated in reactions 1 and 2, the latter of
which is the sum of reactions 2a and 2b).
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Once generated intracellularly, Cu1 may further interact
with hydroperoxides to generate hydroxyl or alkoxyl radicals in
Fenton-type reactions (reaction 3). This, however, is likely to
occur only under conditions where cellular hydroperoxide
concentrations are well above basal levels; for H2O2, these are
estimated to be in the range of 1029 mol/L (7).

ROOH1Cu1!RO�1OH2
1Cu21 (3)

Copper-induced generation of ROS may be the reason that
cellular defense mechanisms have evolved that both depend on
copper and scavenge ROS. The best-known antioxidative role
of copper is that of being the major cofactor in CuZn–SOD,
which catalyzes the dismutation of superoxide (reaction 2b).
However, defense against stressful stimuli such as ROS does
not only consist of the direct scavenging of the species but also
of the initiation of long-term precaution: it is known that ROS
such as hydrogen peroxide and peroxynitrite activate signaling
pathways that regulate cellular proliferation and cell death and
in part are regarded antiapoptotic including mitogen-activated
protein kinases (MAPK) and the phosphoinositide-3-kinase
(PI3K)/Akt pathway (8–11). Activation induced by H2O2

indeed renders cells more resistant against the oxidant (8,10).
Similarly, metal ions activate signaling cascades that are

known to protect cells against oxidative stress-induced apopto-
sis. Copper ions strongly activate the antiapoptotic PI3K/Akt
pathway (12) which, albeit to a minor extent, also holds for zinc.
Interestingly, activation of PI3K/Akt by Cu21 is independent of
the intermediate generation of ROS, and thus is a feed-forward
activation of a cascade: the pathway is already activated when
cellular ROS levels start to significantly increase (12).

Also, metal ions such as copper, zinc and cadmium are
known to induce the expression of metallothioneins (13),
which are cysteine-rich metal-binding and -detoxicating
proteins. In the case of copper, this would imply that meta-

llothionein scavenges Cu1 and prevents ROS formation. In
mammalian cells, the induction of thionein by metal ions
occurs in part via activation of metal transcription factor
(MTF)-1, which then binds to metal-responsive elements
(MRE) in the regulatory regions of associated genes [for
reviews, see (14,15)]. Although Zn21 may directly bind to and
activate MTF-1, the mechanism of activation is not precisely
known for copper ions. It has been hypothesized that
intracellular Cu1 may displace Zn21 from metallothionein
and result in MTF-1 activation (16). Zn21 displacement is also
proposed to be the mechanism by which copper ions lead to the
alteration of the activities of two other well-known zinc-
dependent proteins, the xeroderma pigmentosum A zinc-finger
protein, which is involved in nucleotide-excision repair
(17,18), and p53 (19,20).

Zinc ions as antioxidants

Similar to Cu21, Zn21 is a cofactor of CuZn–SOD.
However, Zn21 is redox inert in biological systems. Thus, the
role of zinc in CuZn–SOD is generally thought to be that of
a stabilizing component (21). Yet, like Cu21, Zn21 is capable of
inducing a stress response in terms of 1) the stimulation of
MTF-1–dependent transcription (14,16), and 2) the activation
of stress-responsive signaling cascades such as MAPK and
PI3K/Akt (12,22,23). One additional mechanism that is being
discussed to explain the antioxidative action of Zn21 is the
binding to and stabilization of protein thiols. This was
thoroughly investigated with d-aminolevulinate dehydratase,
which is an enzyme involved in porphyrin biosynthesis that is
dependent on intact sulfhydryl groups for its activity. These
thiols are stabilized by Zn21, and the enzyme is rendered less
prone to inactivation by oxygen [for review, see (24)]. Zn21

may also stabilize thiols in other zinc proteins including
metallothioneins and zinc-finger transcription factors.

Exposure of these proteins to oxidants in concentrations
that are sufficient to significantly oxidize the thiols leads
to Zn21 release; this was demonstrated for metallothionein
exposed to glutathione disulfide (25) or nitrogen oxides (26).

Exposure of the vitamin D receptor/retinoid X receptor
heterodimer (a Zn21-finger transcription factor of the nuclear
receptor superfamily) to ROS impedes its biological activity in
terms of impairing DNA binding and transcriptional regulation.
Various ROS including nitric oxide, hydrogen peroxide, singlet
oxygen, peroxyl radicals or peroxynitrite have this effect (27,28).
Although zinc-finger oxidation is reversible in the case of nitric
oxide, it appears to be irreversible after exposure to the other
reactive species mentioned above. This indicates that nitric
oxide potentially serves as a regulatory molecule for zinc-finger–
dependent gene transcription (28). In a similar fashion, exposure
of copper thiolate cluster-containing proteins to nitrogen
monoxide and oxygen is proposed to result in structural changes
and inactivation with copper ions being released. Examples are
yeast Cu1-metallothionein (29) and the yeast transcription
factor ACE1 with its ‘‘copper fist’’ configuration (30).
Interestingly, the low-molecular-weight organoselenium com-
pound ebselen is capable of inducing Zn21 release from Zn21-
metallothionein possibly via formation of a selenodisulfide (31).

Selenium and tellurium: reduction of hydroperoxides
and peroxynitrite

Ebselen is a GPx mimic not only with respect to peroxidase
activity (32). Similar to GPx (vide infra), it reacts efficiently
with peroxynitrite and exhibits the highest second-order rate
constant known thus far for a low-molecular-weight compound

FIGURE 1 Copper, zinc and selenium in the cytosolic defense
against reactive oxygen and nitrogen species. Superoxide is generated
by reduction of molecular oxygen. The electrons required may leak out of
the mitochondrial respiratory chain or may be derived from reactions such
as the oxidation of (hypo-) xanthine as catalyzed by xanthine oxidase.
Copper, zinc–superoxide dismutase (CuZn–SOD) catalyzes the dismu-
tation of superoxide; this reaction is competed for by nitrogenmonoxide, if
generated in sufficient amounts, to form peroxynitrite. Both the hydrogen
peroxide from superoxide disproportionation and the peroxynitrite may be
reduced at the expense of glutathione (GSH) in reactions that are
catalyzed by glutathione peroxidase (GPx).
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with peroxynitrite (33,34). Also, it was shown that other low-
molecular-weight selenocompounds such as selenomethionine
are effective as well (and more effective than the corresponding
sulfur compounds) in protecting plasmid DNA from peroxy-
nitrite-induced single-strand breaks (35) and in preventing
model compounds from being oxidized or nitrated by peroxy-
nitrite (36). The selenoprotein GPx is capable of efficiently
reducing peroxynitrite and preventing oxidation and nitration
of model compounds as well as nitration of proteins (37). The
system of GPx plus GSH works catalytically in a manner that
resembles the detoxication of hydroperoxides by GPx at the
expense of GSH (Fig. 2A): the selenocysteine residue at the
active site of the enzyme is oxidized by peroxynitrite (or peroxy-
nitrous acid) to the selenenic acid and reduced back to the
selenol at the expense of two reducing equivalents provided by
GSH. The second-order rate constant for the reaction of
reduced GPx with peroxynitrite is reported to be 8 3 106

M21 � s21 per tetramer (38), which on a selenium basis is
similar to the rate constant of 2 3 106 M21 � s21 reported for
ebselen (34).

A similar mechanism applies for selenomethionine (39,40),
which is present in proteins in place of methionine and
organotellurium compounds with peroxidase activity (41,42).
Interestingly, although the enzyme methionine sulfoxide
reductase (43) is required for the reduction of methionine
oxide, methionine selenoxide is reduced nonenzymatically by
GSH (39). To some extent, other thiols may act as reductants
in a peroxidase reaction as well: Zn21-metallothionein was
employed to reduce several organoselenium and organo-
tellurium compounds that were oxidized by tert-butyl hydro-
peroxide (42). Oxidation of metallothionein coincides with
Zn21 release from the protein (Fig. 2B).

Selenoprotein P in human plasma also protects against
peroxynitrite (44), which suggests that it may serve as
a protectant in human blood. The heparin-binding domains
of selenoprotein P enable surface coating of cellular mem-
branes, which may serve as a protective barrier against peroxy-
nitrite [(45); for review, see (46)].

Mammalian thioredoxin reductase is a third selenoprotein
that is capable of reducing peroxynitrite (47). The enzyme uses
NADPH to reduce the oxidized forms of selenocysteine or
ebselen (Fig. 2C).

Most of the selenocompounds mentioned here have been
shown to protect cells or cell lysates from protein nitration

(9,37). This would also prevent cells from impairments in
phosphotyrosine signaling, which is necessary for growth and
survival [for review, see (48)]. Peroxynitrite is capable of
activating p38 MAPK in liver epithelial cells. This activation is
prevented by preincubation of the cells with selenite, which is
shown to increase specific GPx activity (9). However, recent
observations of hepatocytes from GPx-1 knockout mice that
show a paradoxical protection against peroxynitrite (49)
illustrate that the intricate network of cellular antioxidant
defense is far from being fully resolved.
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