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Role of demographic stochasticity in a speciation model with sexual reproduction
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Recent theoretical studies have shown that demographic stochasticity can greatly increase the tendency

of asexually reproducing phenotypically diverse organisms to spontaneously evolve into localized clusters,

suggesting a simple mechanism for sympatric speciation. Here we study the role of demographic stochasticity in

a model of competing organisms subject to assortative mating. We find that in models with sexual reproduction,

noise can also lead to the formation of phenotypic clusters in parameter ranges where deterministic models would

lead to a homogeneous distribution. In some cases, noise can have a sizable effect, rendering the deterministic

modeling insufficient to understand the phenotypic distribution.

DOI: 10.1103/PhysRevE.93.032121

I. INTRODUCTION

Establishing the determinants of biological diversity is a

fundamental question in biology. A particular aspect of this

question that has attracted a great deal of attention is the

distribution (in genotype or phenotype space) of a population

of interacting organisms, and to what extent and under what

conditions clusters of similar individuals tend to arise [1–3].

A better understanding of this question could shed some

light onto the process of sympatric speciation, whereby a

“mother” species splits into two or more other species without

geographic isolation [4,5].

There is a history of mathematical models proposed to

elucidate the mechanisms whereby species (as clusters of

phenotypically similar organisms) tend to form spontaneously

due to competition [6–10]. Models initially considered asexual

populations, to facilitate analytical tractability. It was shown

that spontaneous clustering can occur [7,9,11], but the phe-

nomenon is somewhat sensitive to particular assumptions

about the functional form of the interaction kernels used

[12,13], questioning the biological relevance of the findings.

Models in which reproduction is sexual tend to lead to spon-

taneous clustering with less restrictive assumptions [8,14], but

the biological realism of the conditions required has also been

questioned [5]. Recently, it was shown that stochastic effects

can greatly increase the range of parameters for which species

are formed in asexual models [15,16], presenting stochastic

pattern formation as a novel mechanism for speciation, which

has particular biological implications [17]. In this paper we

study the effects of stochasticity in a speciation model with

sexual reproduction. We show that demographic stochasticity

can increase the parameter range in which species clustering

is observed and that, in some cases, noise can have a sizable

effect, rendering the deterministic modeling insufficient to

explain the phenotype distribution.

The rest of the paper is organized as follows. We present

the model as well as its mathematical formulation in Sec. II.

In Sec. III we present the analysis in the deterministic (large-

population) limit, summarizing some previously known results

and presenting some new ones. We then perform the analysis

of the stochastic effects in Sec. IV, highlighting the cases in

*alan.mckane@manchester.ac.uk

which noise effects are largest. We conclude with a summary

and conclusions in Sec. VI. Some technical details are left for

the two appendixes.

II. DESCRIPTION OF THE MODEL

The model consists of a population of individuals which

reproduce sexually and die through competition with each

other. Each individual is described by its phenotype, which

determines the extent to which the organism competes with

other organisms, and the likelihood with which it can mate

with a given other organism. For simplicity, we assume that

the phenotype is well described by a single scalar variable

which can take on all possible real values. A simple example

in which a single scalar variable is the main determinant of the

strength of competition between organisms could be the beak

size in birds, or the jaw size in lizards [18] (which determines

the extent to which they feed on the same resources), or the

body size in general. The model is stochastic in that deaths

and births are random events (which, however, take place with

probabilities determined by the state of the system). There are

two basic processes:

(i) Death. The death rate (probability per unit time) of

individual i, di , is given by di = [Kf (xi)]
−1

∑

j g(xi − xj ),

where g(x) is the competition kernel that quantifies the strength

with which two individuals with phenotype distance x com-

pete, K is a constant that controls the overall carrying capacity

of the ecosystem and f (x) is a function that determines the

relative intrinsic advantage of phenotype x.

(ii) Reproduction. Each individual reproduces at a rate 1.

The probability that individual i mates with individual j is

proportional to m(xi − xj ), with m a function determining the

strength of assortment (preference for individuals which are

alike). If individuals i and j mate, an offspring is generated

with a phenotype given by x0 = (xi + xj )/2 + ζ , where ζ is

a random variable with probability density function r(x). This

models mutation about the average of the parents’ phenotype

(xi + xj )/2.

This simple reproduction rule is justified when the character

under consideration is determined by a large number of

additive genes (that is, without dominance or epistasis [19]);

in this limit, the “reproduction noise”, ζ , is a Gaussian

random variable with zero mean and variance given by σ 2
m,

that, for simplicity, is assumed to be phenotype independent
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(the influence of this quantity is one of the main aspects of

our investigation). The function f (x) modulates the relative

advantage of the phenotypes; it typically decays to 0 for

large |x|, constraining the phenotypes to a given region

of interest. We are also assuming that the organisms are

hermaphroditic, but this assumption is relaxed later. The model

is a generalization of the asexual model studied in [15].

Following [15], we describe the state of the system by the

density in phenotype space, Kφ(x), where

φ(x) =
1

K

N(t)
∑

i=1

δ(x − xi). (1)

Here N (t) is the number of organisms at time t and δ(x) is the

Dirac delta function. We have introduced the carrying capacity,

K , to obtain a function φ(x) that has a well-defined K → ∞
limit.

When an organism with phenotype y dies, φ(x) is modified

by the subtraction of the delta function centered at y. Similarly,

if a new organism with phenotype y is born, φ(x) is modified

by the addition of a delta function at y. With this in mind, we

define the operators �±
y by their action on a generic functional

F [φ(x)] as

�±
y F [φ(x)] = F

[

φ(x) ±
1

K
δ(x − y)

]

. (2)

Now suppose that γ (x,φ) is the density rate at which an

individual with phenotype x dies, so that γ (x,φ)dxdt is the

probability that an individual with phenotype in the interval

(x,x + dx) dies in the time interval (t,t + dt), given that the

state of the system is given by φ at time t . The definition of

the process implies that γ (φ,t) is given by

γ (x,φ) = Kφ(x)
1

Kf (x)

N(t)
∑

i=1

g(x − xi)

= K
φ(x)

f (x)

∫

φ(y)g(x − y)dy

≡ K
φ(x)

f (x)
φ ∗ g(x). (3)

The probability that individual i, if it mates, does so

with individual j is m(xi − xj )/
∑

k m(xi − xk) = m(xi −
xj )/K

∫

φ(y)m(xi − y)dy = m(xi − xj )/Kφ ∗ m(xi). The

probability density that their offspring has phenotype x is

given by r(x − (xi + xj )/2), where r(x) is the Gaussian

probability density with variance σ 2
m. With this in mind, we

see that the rate density at which a new individual is created

with phenotype x, β(x,φ), is

β(x,φ) =
N(t)
∑

i,j=1

r(x − (xi + xj )/2)
m(xi − xj )

Kφ ∗ m(xi)

= K

∫

φ(y)

∫

φ(z)m(y − z)

φ ∗ m(y)
r(x − (y + z)/2)dydz.

(4)

Combining the two contributions to the change in φ, the

probability density of finding the system at state φ at time t ,

P (φ,t), changes in time according to the following functional

master equation [15]:

∂

∂t
P (φ,t) =

∫

[(�−
x − 1)β(φ,x)P (φ,t)

+ (�+
x − 1)γ (φ,x)P (φ,t)]dx. (5)

Due to the nonlinearity of the system (that arises due to

the interactions) we are unable to obtain an exact solution and

some approximation scheme is needed to proceed. Expanding

the �±
x operators in Eq. (5) to second order in K−1, we

can derive a functional Fokker-Planck equation, given in

Appendix A. For our purposes, it is clearer to work with

the equivalent stochastic differential equation, which takes the

form [see Eqs. (A4) and (A5)]

∂φ(x,t)

∂t
= −

∫

φ(x,t)φ(y,t)
g(x − y)

f (x)
dy

+
∫

φ(y,t)φ(z,t)

φ ∗ m(y)
m(y−z)r(x−(y+z)/2) dy dz

+
η(x,t)
√

K
, (6)

where η(x,t) is a Gaussian white noise with zero mean and

with a correlator which is given by Eq. (A5) in Appendix A.

It is interesting to compare this equation with the analogous

equation in the asexual case. There m(x − y) = δ(x − y) and

so φ ∗ m(x) = φ(x,t). Then Eq. (6) becomes

∂φ(x,t)

∂t
= −

∫

φ(x,t)φ(y,t)
g(x − y)

f (x)
dy

+
∫

φ(y,t)r(x − y) dy +
η(x,t)
√

K
, (7)

which is the equation found in Ref. [15], apart from the

function f (x), which was not included in the form of the

model previously analyzed [note that we are allowing self-

fertilization since, for simplicity, in Eq. (4) we do not exclude

i = j ; forbidding the i = j case would add O(1/K) terms].

We now analyze Eq. (6), first in the deterministic limit and

then in the general stochastic setting.

III. DETERMINISTIC ANALYSIS

The deterministic limit corresponds to taking K → ∞,

and so the governing equation is simply Eq. (6), but with

the last (noise) term absent. Some progress may be made

analytically if we assume that the ecological functions, namely,

the competition kernel [g(x)], the mating function [m(x)], the

function modulating the carrying capacity [f (x)], and the

offspring distribution [r(x)], are all Gaussian functions. We

denote their variances σ 2
c , σ 2

a , σ 2
f , and σ 2

m, respectively. In

this case, the deterministic equation has a Gaussian stationary

solution, φ(x)st = Ce−x2/(2σ 2
st), with σ 2

st and C both satisfying

complicated algebraic equations; the equation for σ 2
st was first

derived by Doebeli et al. [14]. These authors also found that

numerical integration of the deterministic equation showed

that when σ 2
c and σ 2

m are small compared with σ 2
f , there is an

intermediate range of σ 2
a , σ 2

m � σ 2
a � σ 2

f /3 − σ 2
m, for which

the Gaussian solution becomes unstable and a multimodal

stationary solution is obtained.

032121-2
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The random mating case (σ 2
a → ∞) is particularly inter-

esting to analyze. In this limit, the equation for σ 2
st reduces to

a cubic equation, σ 6
st + α4σ

4
st + α2σ

2
st + α0 = 0, where

α4 = 2σ 2
m + σ 2

c , α2 = σ 2
f σ 2

c − 2σ 2
m

(

2σ 2
f − σ 2

c

)

,

α0 = −2σ 2
mσ 2

c σ 2
f . (8)

Since α4 > 0 and α0 < 0, the cubic equation always has a

single positive solution. This then is the required solution. In

this limit, the constant C is found to be

C =

√

2
σ 2

st + σ 2
c

σ 2
st + 2σ 2

m

(9)

[we have not taken f (x) to be normalized; f (x) =
exp(−x2/(2σ 2

f )), so that σ 2
f controls the size of the phenotype

space available]. If we now, in addition, investigate the σ 2
f →

∞ limit (the most relevant when the phenotype distribution is

not too constrained by the external fitness landscape), we find

two very different regimes, depending on the relative width of

the competition kernel and the reproduction noise distribution.

When the reproduction noise, σ 2
m, is smaller than a critical

value given by σ 2
c /4, the variance of the phenotype distribution

is small and independent of σ 2
f , σ 2

st = 2σ 2
mσ 2

c /(σ 2
c − 4σ 2

m). If

σ 2
st depends on σ 2

f in a way which means that it diverges as

σ 2
f → ∞, then the term σ 6

st dominates over the term quartic in

σst and the term quadratic in σst dominates over α0. Therefore,

σ 2
st ≃

√
σ 2

f (4σ 2
m − σ 2

c ), and this implies that if the reproduction

noise exceeds the critical value, σ 2
m > σ 2

c /4, then the variance

of the phenotype distribution grows linearly with σf . In both

cases, numerical integration of the deterministic equation

shows that the Gaussian distribution is always stable and the

phenotype distribution is always unimodal, a consequence of

the random mating.

The factors determining the transition into a multimodal

distribution can be understood in a simpler way if we assume

that the range of phenotype space is finite, for instance, −π <

x � π , and assume that the deterministic equation [Eq. (6)

without the noise term] satisfies periodic boundary conditions.

The competition function, g, the assortment function, m, and

the offspring distribution are assumed to be periodic functions

of period 2π . Since there is now no need for the function

f (x) to regulate the competition process at large |x|, we set

f (x) = 1. While the periodic boundary condition assumption

is biologically unrealistic, we expect it to have a small impact

when the scales of the competition, mating, and offspring

distributions are all much smaller than the available region

of phenotype space (as determined by f ).

Under these conditions, the deterministic equation has a

uniform solution φ(x,t) = constant. Using the normalization
∫ π

−π
g(x) dx = 1, one finds that φst = 1. A linear stability

analysis of the deterministic equation around the solution

φ = 1 is performed in Appendix A. This shows that the

uniform solution is unstable if

2rkm−k/2 − rkmkm−k/2 − 1 − gk > 0 (10)

for some k, with rk, mk , and gk the Fourier modes of the

reproduction noise, the mating, and the competition kernel,
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FIG. 1. Region of stability of the homogeneous solution of

the deterministic equation in σ 2
a -σ 2

m space (mating range-mutation

range) for several values of σ 2
c (competition range), for uniform

(top) and Gaussian (bottom) forms of the ecological functions. The

homogeneous solution is unstable below the lines, leading to the

appearance of patterns. The kinks are produced when the maximum

value of the left-hand side of inequality (10) changes from one value

of k to another. The black circle marks parameter values used in

Fig. 2.

respectively. An equivalent expression to (10) in a slightly

different model was derived in [8].

From inequality (10) one can obtain the bifurcation diagram

of the system that shows the regions of parameter space in

which the deterministic equation [Eq. (A6)] leads to patterns.

Figure 1 portrays several bifurcation diagrams for the case

in which the ecological functions are uniform and Gaussian

functions [projected onto the (σ 2
a ,σ 2

m) plane]. The figure shows

that phenotypic clusters are observed for low values of the

reproduction noise σm and for intermediate values of the

assortativity scale σa , in accordance with what was found

in [14]. Intuitively, clusters tend to form with a distance, d,

between them so that they barely compete (so d � σc), but
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these clusters will only be durable if individuals from different

clusters do not mate (so d > σa), suggesting that clusters will

not form if σa ≫ σc. Sexual reproduction tends to concentrate

the phenotype distribution, so a moderate value of σa can

promote the formation of clusters. Moreover, the clusters can

be well defined only if the reproduction noise is not too large

(σm < d).

In the asexual case [15,16] it was found that the range of

parameters for which patterns occur was much greater than

that predicted by a stability analysis of the kind carried out

above. So motivated by the expectation that the same may be

true in the case of sexual reproduction, we go on to analyze

our model for finite values of K , when stochastic fluctuations

will be present.

IV. STOCHASTIC EFFECTS

A. Weak noise effects

Numerical simulations of the individual-based model show

that, for moderate values of the carrying capacity, K , the

observed phenotype distribution does not always agree with

the results obtained from the deterministic equation, (A6). For

example, at points in parameter space corresponding to a stable

uniform solution, but not too far from the instability boundary,

one can observe clusters in phenotype space forming for small

values of K (see Fig. 2).

The origin of these stochastic patterns can be understood by

analyzing the stochastic differential equation, (6). Specifically,

we apply the van Kampen system-size expansion [20] by

expanding φ about the homogeneous solution found in Sec. III

and writing φ(x,t) = 1 + K−1/2ξ (x,t). The factor K−1/2

reflects the nature of the fluctuations at large K , and ξ (x,t)

is a new stochastic field. The bulk of the calculation is exactly

the same as that carried out when performing the linear stability

analysis in the deterministic case, except in this case the

existence of the K−1/2 factor ensures that the noise term in

Eq. (6) is retained. Thus, going over to Fourier variables and

using Eq. (A8), one finds that

d

dt
ξk(t) = [2rkm−k/2 − 1 − gk − rkmkm−k/2]ξk(t) + ηk(t),

(11)

where ηk(t) is the Fourier transform of η(x,t). The correlation

function of this noise is only calculated to leading order within

the linear noise approximation, that is, setting φ(x,t) = 1. This

gives, using Eqs. (A2), (A3), and (A5),
∫

B(φ,x,y) dy = 2,

and therefore

〈ηk(t)η−k(t ′)〉 = 2(2π )δ(t − t ′), (12)

showing that, as usual, the noise is additive within the linear

noise approximation.

The size of the stochastic patterns can be quantified by

looking at the spatial covariance of the phenotype distribution

in the stationary state:

Cov(φ(x),φ(x + �))

≡ 〈(φ(x) − 〈φ(x)〉)(φ(x + �) − 〈φ(x + �)〉)〉. (13)

If the distribution in phenotype space shows high-density

regions separated by low-density ones with a well-defined
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FIG. 2. Time evolution of the phenotype distribution for σ 2
c =

0.3, σ 2
a = 0.35, σ 2

m = 0.043, and uniform ecological functions, in the

region of deterministic stability of the homogeneous solution (marked

by the black circle in Fig. 1). The carrying capacity is K = 20 (top)

and K = 200 (bottom). Note that for the smaller carrying capacity

clear phenotypic clusters form.

average distance, the spatial covariance will display a sizable

spatial modulation in �. In the linear noise regime, the

covariance becomes
∫

Cov(φ(x),φ(x + �))dx =
1

K

∫

〈ξ (x)ξ (x + �)〉dx

=
1

2πK

∑

n

〈ξnξ−n〉ein�. (14)

Using Eq. (A13), and assuming that gn ,mn, and rn are all even

functions of n (which follows if the ecological functions are

symmetric), we may find 〈ξnξ−n〉 and then, finally, obtain
∫

Cov(φ(x),φ(x + �))dx

=
1

K

∞
∑

n=−∞

ein�

[1 + gn + rnmnmn/2 − 2rnmn/2]
. (15)

Expression (15) is compared against numerical simulations

in Fig. 3 for the case in which the ecological functions are

uniform distributions. For low values of the carrying capacity,

K , the covariance shows a clear spatial modulation, revealing

the presence of stochastic patterns. The theoretical expression

agrees qualitatively, and the quantitative agreement becomes

better as K increases, where the linear noise assumption
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FIG. 3. Spatial covariance of the phenotype density distribution.

The ecological functions are uniform distributions with variances

given by σ 2
c = 0.3, σ 2

a = 0.35, and σ 2
m = 0.043 (marked by the black

circle in Fig. 1). Numerical results (symbols) were averaged over

at least 100 measurements, after a transient of t = 2000. Lines

correspond to the theoretical expression, Eq. (15).

is expected to be a better approximation to the stochastic

dynamics. The results are very similar when the ecological

functions have other forms, for instance, if they are Gaussians

or belong to the family exp(−|x|l/(2σ l)) with varying l.

In summary, the linear noise approximation shows that

stochastic pattern formation can lead to the formation of

clusters in phenotype space in situations where the determin-

istic description predicts a uniform distribution. Interestingly,

the stochastic patterns (as opposed to the deterministic ones)

decrease with the carrying capacity (which controls the

abundance of individuals), which leads to particular biological

implications [17] when this mechanism is dominant.

Compared with the asexual case [15], the stochastic

patterns now appear in a relatively narrow zone close to the

deterministic transition line. We now show that stochastic

effects can also play a more prominent role in the sexual case.

B. Strong noise effects

A stronger noise-induced effect occurs when the mating is

random. As discussed in Sec. III, in the random mating case

there are two regimes: one leading to a narrow phenotype

distribution, for low reproduction noise (4σ 2
m < σ 2

c ), and

the other leading to a broad phenotype distribution, in the

large-reproduction-noise case. In the broad phenotype regime

(4σ 2
m > σ 2

c ), simulations show that the phenotype distribution

observed is much narrower that the one predicted by the

deterministic analysis (see Fig. 4). This effect happens rather

generically in this regime.

In the random mating case, since the mating range is

the largest scale of the system, assuming periodic boundary

conditions gives results that are quite different from those of

the system with open boundaries. In the latter case there is a
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FIG. 4. (Top) Observed instantaneous phenotype distribution at

steady state for different values of the carrying capacity, together with

the deterministic prediction. (Bottom) Evolution of the phenotype

distribution for K = 400, starting with the stationary distribution

predicted by the deterministic analysis. Parameter values are σ 2
c =

0.02, σ 2
m = 0.04, σ 2

f = 6400.

strong bias towards the center of the phenotypic space. For

this reason we focus on the open-boundary-conditions case,

which is the more biologically relevant. This, however, greatly

complicates the mathematical analysis of the noise effects.

Simulations show (Fig. 4) that stochastic effects lead to the

formation of a phenotypic cluster with a width that approaches

the deterministic prediction only for very large values of the

carrying capacity, K . We, therefore, find that in this regime

demographic stochasticity has quite a large effect, again

leading to the formation of tight phenotypic clusters when the

deterministic analysis predicts a broad distribution. Similar

results are obtained when the ecological functions do not have

a Gaussian form, showing the robustness of this phenomenon.

V. THE CASE WHEN INDIVIDUALS BELONG TO

ONE OF TWO SEXES

So far we have assumed, for simplicity, that any two

organisms can mate, i.e., the organisms are hermaphroditic. We

now go on to model the situation with two explicitly different

sexes.

We denote the phenotype of female organism xi and that

of the male organism yα . We use different indices, since the
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number of male and female organisms at a given time will

typically be different, and so the range of these indices will

be different. The model is as in Sec. II, but with the following

modifications:

(a) Only females reproduce, and at rate 1.

(b) The probability that female organism i mates with male

organism α is proportional to m(xi − yα).

(c) The probability that the offspring is male or female is

1/2.

(d) The competition is independent of sex, so that the death

rate of organism i is di =
∑

j g(xi − xj ) +
∑

α g(xi − yα).

With these assumptions, one can follow through the analysis

given in Sec. III and find the analogs of Eq. (6):

∂φf

∂t
= −

∫

φf (x,t)[φf (y,t) + φm(y,t)]
g(x − y)

f (x)
dy

+
1

2

∫

φf (y,t)φm(z,t)

φm ∗ m(y)
m(y−z)r(x−(y+z)/2) dy dz

+
ηf (x,t)
√

K
(16)

and

∂φm

∂t
= −

∫

φm(x,t)[φf (y,t) + φm(y,t)]
g(x − y)

f (x)
dy

+
1

2

∫

φf (y,t)φm(z,t)

φm ∗ m(y)
m(y−z)r(x−(y+z)/2) dy dz

+
ηm(x,t)
√

K
, (17)

where the subscripts f and m denote female and male,

respectively. It is convenient to work with the sum and

differences of φf and φm: S(x,t) = φf (x,t) + φm(x,t) and

D(x,t) = φf (x,t) − φm(x,t). If we additionally take K → ∞
to obtain the deterministic equations, we find that

∂S(x,t)

∂t
= −

∫

S(x,t)S(y,t)
g(x − y)

f (x)
dy

+
1

2

∫

[S(y,t) + D(y,t)][S(z,t) − D(z,t)]

[S − D] ∗ m(y)

× [m(y − z)r(x − (y + z)/2) dy dz] (18)

and

∂D(x,t)

∂t
= −

∫

D(x,t)S(y,t)
g(x − y)

f (x)
dy. (19)

From Eq. (19) we see that a steady-state solution is D(x) =
0, that is, φf (x) = φm(x). Then the deterministic equations

for φf and φm collapse into each other and agree with the

deterministic equation in the hermaphroditic case, apart from

the factor of 1/2 seen in Eqs. (16) and (17). If, as in Sec. III,

we take the ecological functions to be all Gaussians, we again

find a Gaussian stationary solution, φ(x)st = Ce−x2/(2σ 2
st), with

σ 2
st and C satisfying the same complicated algebraic equations,

except that C takes on a value one-quarter the value found in

Sec. III. Note that the total population is now half that obtained

in the hermaphroditic case because now we assume that only

females can initiate reproduction events.

To examine the instability leading to the appearance of

patterns, we can again assume a finite interval −π < x �

π for phenotypic space, with periodic boundary conditions.

We can now look for homogeneous stationary solutions and

study the stability of these solutions. It is clear that once again

D = 0 is a stationary solution, with φf = φm = 1/4 under

the same conditions discussed in Sec. III. Linearizing about

these homogeneous solutions, we write S(x,t) = 1
2

+ S̃(x,t)

and D(x,t) = D̃(x,t). Keeping only linear terms in S̃ and D̃,

we have from Eq. (19) that

∂D̃(x,t)

∂t
= −

1

2
D̃(x,t) ⇒ D̃(x,t) = D̃(x,0) e−t/2, (20)

which shows that the solution D(x,t) = 0 is always stable.

For S̃(x,t), it is more convenient to work in Fourier space (see

Appendix A). We find that

dS̃k(t)

dt
=

1

2
[2rkm−k/2 − rkmkm−k/2 − 1 − gk]S̃k(t)

+FkD̃k(t), (21)

where Fk is a function of k only. Equation (20) shows that

D̃k(t) decays exponentially with t , so Eq. (21) implies that

one obtains the same stability condition as found for φ in the

hermaphroditic case, Eq. (10). We can therefore conclude that

the stability boundaries in the case of two sexes are identical to

those found in the hermaphroditic case. This is confirmed by

numerical simulations of the stochastic version of the model.

We also find that stochastic pattern formation takes place as

in the hermaphroditic case, with results from the case of two

sexes being equivalent to those of the hermaphroditic case, but

with a factor of 1/4 in the carrying capacity.

VI. CONCLUSION

The precise definition of exactly what constitutes a species

is still open to debate [21,22]. One of several alternatives

is the “phenotypic clustering species concept”, in which

species correspond to distinct phenotypic clusters, analogous

to Mallet’s “genotypic clustering species concept” [21]. In

this view, the clustering of individuals in trait or gene space

that we recognize as species is a pattern that emerges from

underlying ecological and evolutionary mechanisms. Just as

mixtures of chemical constituents which react and diffuse may

create patterns (for instance, spots and stripes), so individuals

which react (for example, compete) and diffuse (for example,

mutate in trait or gene space) may create patterns (clusters).

The traditional approach of the theoretical physicist would

then be to construct a simple model to see if the effect appears

and, if so, then see if a deeper understanding of the effect can

be gained from an analysis of the model.

This is the approach that we have adopted here. We have

started from a simple model that contained only birth, death

(through competition), and mutation and asked under what

conditions clusters of individuals in phenotype space were

formed. As discussed in Sec. I, this is a question which has been

investigated by several authors, however, our study focuses on

individuals who gave birth only after mating with another

individual, whereas most previous investigations assumed

asexual reproduction.

We have also investigated stochastic pattern formation

[23,24]. Most previous work was carried out in the case of an
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infinite carrying capacity (in our notation, K → ∞), where

the governing equations are deterministic. The standard way of

proceeding in this case is to determine under what conditions

the constant-density (homogeneous) solution of this equation

is unstable. This is carried out by performing a linear stability

analysis about this homogeneous solution. However, it has

been found that frequently patterns are still found in regions

of parameter space where the homogeneous solution of the

deterministic equation is stable. These patterns typically

are stochastic and can be found by analyzing the governing

equations at finite carrying capacity, K . Interestingly, the

scaling of these patterns with K has particular biological

implications [17].

The search for stochastic patterns in models of asexual

reproduction has been carried out previously [15,16]. It was

found that noise originating in the discrete nature of individuals

can lead to the spontaneous formation of species in situations

where this would not happen deterministically. The main

purpose of this paper was to extend this to the case of sexual

reproduction. We first supposed that individuals played both

the male and the female roles (i.e., were hermaphrodite). We

found that when mating is assortative (i.e., organisms show a

preference for like individuals) stochastic patterns can appear

in the region of stability of the deterministic homogeneous

solution. These patterns were, however, somewhat restricted to

parameter values not too far from the deterministic instability

boundary. When mating is random the stochastic effects are

stronger, and the phenotype distribution for moderate K is

always relatively narrow, in contrast with the deterministic

predictions. The case where the individuals were either male

or female led to very similar results, which in some cases could

be mapped directly onto the hermaphroditic case.

There are several extensions of the current work which

could be carried out. One could distinguish between “genetic

noise” (arising from recombination and mutations), which

affects the inheritable traits, and “environmental” or “devel-

opmental” noise, which leads to two individuals with the

same genotype having different phenotypes and which is

not inherited. These two types of noise are likely to have

rather different effects on the phenotype distribution. Also, if

a dominant part of the genetic noise is due to recombination,

that is, the trait considered is determined by the effect of many

genes in a diploid organism, and the effect of the different

genes is additive (no epistasis or dominance), then the noise

should depend on the position in genotype space (i.e., it would

be multiplicative noise). Multiplicative noise would break

the spatial symmetry and could lead to interesting effects

but would be more difficult to study analytically. Another

possible extension is to include the Allee effect, which we

have ignored here for simplicity. We believe, however, that

the work discussed here shows that the inclusion of stochastic

effects is vital if we wish to predict the range of parameters

for which patterns, and therefore possibly species, occur.
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APPENDIX A: THE MESOSCOPIC

EVOLUTION EQUATION

In the limit of a large carrying capacity, the master equation,

(5), can be expanded in powers of K−1 to give the func-

tional Fokker-Planck equation (analogous to the derivation

in Ref. [15] for the asexual case)

∂

∂t
P (φ,t) = −

∫∫

δ

δφ(x)
[A(φ,x,y)P (φ)]dxdy

+
1

2K

∫∫

δ2

δφ(x)2
[B(φ,x,y)P (φ)]dxdy, (A1)

where terms of K−2 and higher in the expansion have been

neglected. Here

A(φ,x,y) = �(φ,x,y) − �(φ,x,y),

B(φ,x,y) = �(φ,x,y) + �(φ,x,y), (A2)

where

�(x,y) =
∫

φ(y)φ(z)

φ ∗ m(y)
m(y − z)r(x − (y + z)/2) dz,

�(x,y) = φ(x)φ(y)
g(x − y)

f (x)
. (A3)

A completely equivalent way of expressing the stochastic

dynamics of the system is to write down the equivalent

stochastic differential equation. This takes the form [25,26]

∂φ(x,t)

∂t
=

∫

A(φ,x,y) dy +
η(x,t)
√

K
, (A4)

where η(x,t) is a Gaussian white noise with zero mean and

with correlator

〈η(x,t)η(x ′,t ′)〉 =
∫

B(φ,x,y) dyδ(x − x ′) δ(t − t ′), (A5)

understood in the sense of Itō.

As described in Sec. III, we can obtain some insight into

the transition to a multimodal distribution by going over to

a finite phenotypic space; specifically we assume that −π <

x � π . We begin by analyzing the deterministic dynamics of

the model, which is found by letting K → ∞ in Eq. (6). That

is,

∂φ(x,t)

∂t
= −

∫

φ(x,t)φ(y,t)
g(x − y)

f (x)
dy

+
∫

φ(y,t)φ(z,t)

φ ∗ m(y)
m(y−z)r(x−(y+z)/2) dy dz.

(A6)

We substitute

φ(x,t) = 1 + φ̃(x,t) (A7)

into Eq. (A6) and only keep linear terms in φ̃(x,t). Assuming

that g, m, and r are periodic with period 2π and normalized

to unity in the interval (−π,π ), and f (x) = 1, one finds that

d

dt
φ̃k(t) = [−1 − gk + 2rkm−k/2 − rkmkm−k/2]φ̃k(t). (A8)

Here we have gone over to Fourier space, since the linear

nature of the problem and the translational invariance make
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this a natural choice. The Fourier modes are defined by

hk =
∫ π

−π

h(x)e−ikx dx, h(x) =
1

2π

∑

k

hke
ikx . (A9)

From Eq. (A8) we see that if the condition given in Eq. (10)

holds, then the homogeneous solution φ = 1 is unstable.

If we wish to carry out a system-size expansion, as discussed

in Sec. IV A, then we write φ(x,t) = 1 + K−1/2ξ (x,t) and

expand in terms of K−1/2. As discussed in the text, this leads

to Eq. (11)

d

dt
ξk(t) = −ρkξk(t) + ηk(t), (A10)

where ρk ≡ 1 + gk − 2rkm−k/2 + rkmkm−k/2. Multiplying by

eρk t , this can be integrated to yield

ξk(t) = ξk(0)e−ρk t + e−ρk t

∫ t

0

dt ′ eρk t
′
ηk(t ′). (A11)

Assuming that we begin with zero noise, ξk(0) = 0, Eq. (A11)

implies that

〈ξk(t)ξ−k(t)〉 = exp −(ρk + ρ−k)t

×
∫ t

0

∫ t

0

dt ′dt ′′ exp (ρkt
′ + ρ−kt

′′)

×〈ηk(t ′)η−k(t ′′)〉. (A12)

Using Eq. (12) and letting t → ∞, to obtain the result in the

stationary state, one finds that if (ρk + ρ−k) > 0,

lim
t→∞

〈ξk(t)ξ−k(t)〉 =
2(2π )

(ρk + ρ−k)
. (A13)

APPENDIX B: NUMERICAL SIMULATION OF

THE INDIVIDUAL-BASED MODEL

The numerical simulations of the individual-based model

are performed using the Gillespie algorithm [27]. Before

providing the details of our algorithm, we recall some basic

elements of the process. The state of the system at time t

is described by N (t) real numbers, xi,i = 1, . . . ,N(t), corre-

sponding to the phenotypes of the N (t) individuals present.

The probability that individual i initiates a reproduction event,

given that a birth takes place, is 1/N (t) (since we consider

no Allee effect, the reproduction probability is independent of

the density of suitable mates); the probability that individual

i chooses individual j to mate, given that individual i is

reproducing, is proportional to m(xi − xj ) (see Sec. II);

finally, the probability density that the newborn individual has

phenotype x, given that individuals i and j are reproducing, is

given by r(x − (xi + xj )/2) (again, see Sec. II).

There are two possible events (assuming N (t) � 1):

(i) Death of an individual, with a rate (probability per

unit of time) equal to r1 =
∫

γ (x,φ)dx =
∑N(t)

i,j=1 g(xi −
xj )/Kf (xi) [see Eqs. (1) and (3)].

(ii) Birth of a new individual, with a rate r2 =
∫

β(x,φ)dx =
∑N(t)

i,j=1 m(xi − xj )/
∑

l m(xi − xl)(= N (t))

[see Eq. (4)].

Therefore the probability that individual with phenotype xi

(which we denote individual i) dies, given that a death event

takes place, is proportional to
∑N(t)

j=1 g(xi − xj )/Kf (xi).

The numerical simulations are, then, based on the following

algorithm:

1. Set the initial state of the system, that is, the initial

number of individuals, N (t0), their corresponding phenotypes,

xi,i = 1, . . . ,N(t), and the initial time, t = t0.

2. Compute r1 and r2, as described earlier. Compute the

time increment after which the next event takes place (�t),

which is an exponential random variable with average (r1 +
r2)−1, so it can be computed as �t = − ln(u)/(r1 + r2), with

u a pseudorandom number with a uniform distribution in the

interval (0,1). Update the time t = t + �t .

3. Establish what type of event takes place. With proba-

bility r1/(r1 + r2) a death event takes place; go to step 4a.

Otherwise a birth event takes place; go to step 4b.

4a. Establish which individual dies. Choose individual

i at random, with probability proportional to
∑N

j=1 g(xi −
xj )/Kf (xi). Eliminate individual i. Update N,N = N − 1.

If N = 0 the population becomes extinct and the simulation

ends.

4b. Set the phenotype of the new individual. Choose

individual i uniformly at random to initiate reproduction.

Choose individual j to mate at random with probability

proportional to m(xi − xj ). Set the phenotype of the new

individual as x = (xi + xj )/2 + ζ , where ζ is a random

variable with probability density function given by r(x).

Update N,N = N + 1.

5. Go to step 2 or finish.

When considering periodic boundary conditions, this has

to be taken into account when computing the competition

and mating functions as well as the phenotype of the new

individual.
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