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Abstract The Molecular Tagging Velocimetry (MTV) is a well-suited technique for

velocity field measurement in gas flows. Typically, a line is tagged by a laser beam

within the gas flow seeded with light emitting acetone molecules. Positions of the

luminescent molecules are then observed at successive times and the velocity field is

deduced from the analysis of the tagged line displacement and deformation. However,

the displacement evolution is expected to be affected by molecular diffusion, when

the gas is rarefied. Therefore, there is no direct and simple relationship between the

velocity field and the measured displacement of the initial tagged line. This paper ad-

dresses the study of tracer molecules diffusion through a background gas flowing in

a channel delimited by planar walls. Tracer and background species are supposed to

be governed by a system of coupled Boltzmann equations, numerically solved by the

Direct Simulation Monte Carlo (DSMC) method. Simulations confirm that the diffu-

sion of tracer species becomes significant as the degree of rarefaction of the gas flow

increases. It is shown that a simple advection-diffusion equation provides an accurate

description of tracer molecules behavior, in spite of the non-equilibrium state of the

background gas. A simple reconstruction algorithm based on the advection-diffusion

equation has been developed to obtain the velocity profile from the displacement

field. This reconstruction algorithm has been numerically tested on DSMC generated

data. Results help estimating an upper bound on the flow rarefaction degree, above

which MTV measurements might become problematic.
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1 Introduction

Following the rapid development of microelectromechanical systems (MEMS) in the

last decades, a number of new microfluidic applications involving gas microflows

has emerged in various fields. For example, gas microflows are encountered in micro

heat exchangers (Yang et al. 2014) designed for cooling electronic components or for

chemical applications, in fluidic micro-actuators for active flow control (Cattafesta

and Sheplak 2011), in micronozzles used for the micropropulsion of nanosats or

picosats (Louisos and Hitt 2005), in micro gas chromatographs (µGCs) (Lu et al.

2005), in vacuum generators or Knudsen micropumps (Seungdo et al. 2014) as well

as in some microfluidic-based in vitro devices (µFIVDs) such as artificial lungs (Ko-

vach et al. 2015). Similar flows are also observed in porous media with applications

relative to the extraction of shale gas (Niu et al. 2014).

In most of these systems, the Knudsen number Kn, ratio of the molecules mean

free path over a characteristic length of the microsystem, is in the range [10−3,10−1]
and the resulting slightly rarefied regime is the so-called slip flow regime, which is

characterized by a velocity slip and a temperature jump at the wall (Colin 2005).

Various theoretical models of these boundary conditions have been proposed in the

literature and they involve accommodation coefficients which depend on the nature of

the gas and the wall (Sharipov 2011); these models lead to more or less complex solu-

tions for heat transfer (Colin 2012) and fluid flow (Zhang et al. 2012) in the slip-flow

regime. Experimental data are then necessary to improve the critical discussion about

the accuracy and limits of applicability of these slip boundary models. Experimen-

tal techniques described in the literature, however, mainly concern the measurement

of global data (Morini et al. 2011). Most of the publications provide flowrate data

through microchannels as a function of the pressure drop and the Knudsen number

(Perrier et al. 2011; Ewart et al. 2006; Pitakarnnop et al. 2010; Maurer et al. 2003;

Colin et al. 2004; Arkilic et al. 2001). This global information is not sufficient to

separately analyze the role of the velocity slip model and the role of the a priori un-

known accommodation coefficients. Unfortunately, there are few available data on

local fields and most of them are pressure field data obtained by pressure-sensitive

molecular films (PSMF) (Matsuda et al. 2011b,a). Up to now, there are no experi-

mental data in the literature on velocity fields in rarefied gas microflows. For these

reasons, it is crucial to develop accurate experimental velocimetry techniques adapted

to the features of gas microflows.

For this goal, micro Molecular Tagging Velocimetry (µMTV) could be a well-

suited technique able to avoid some difficulties associated to the more classic micro

Particle Image Velocimetry (µPIV) technique, widely used for liquid microflows. The

main limitation of µPIV for analyzing gas flows at microscale is linked to the Brow-

nian motion of the small tracer particles, which makes difficult the cross-correlation

process required to recognize particle patterns and extract velocity fields. For this

reason, µPIV experiments in gases have been up to now limited to a few studies

in millimetric channels and in non-rarefied regimes (Yoon et al. 2006; Sugii and
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Okamoto 2006). On the other hand, the MTV technique is not based on a particle

pattern identification. It relies on the properties of tracer molecules which can experi-

ence relatively long lifetime luminescence once excited with a light at an appropriate

wavelength.

Typically, a laser beam is used to tag these molecules along a line (Lempert

et al. 1995) or on a grid (Ismailov et al. 2006). Molecules luminescence is then de-

tected at two successive times. The analysis of the tagged line or grid displacement

and deformation allows the determination of the velocity field. As this little-intrusive

technique uses molecular tracers, instead of particles, it presents several advantages

compared with PIV. For example, in addition to the above-mentioned advantage, the

repartition of the tracer is homogeneous and the risk of adhesion at the walls is lim-

ited. Nevertheless, at microscale, µMTV also presents some technological obstacles.

First, its spatial resolution is constrained by the laser beam diameter, with a typical

minimum value of the order of 30 µm, which requires operating in channels with a

hydraulic diameter around 1 mm. For this reason, microflows in the slip flow regime

should be analyzed with Knudsen similitude, reducing the pressure in order to reach

Knudsen numbers in the range [10−3,10−1], corresponding to this regime. Second,

although the Brownian motion is not an issue in itself, because the technique is not

based on the recognition of a particle pattern, the diffusion of the molecular tracer

within the main fluid could bias the measurement, and this effect can be increased

with the reduction of pressure required to reach rarefied regimes. The efficiency of

MTV has been demonstrated for liquid flows (Koochesfahani and Nocera 2007) at

mini (Gendrich et al. 1997; Hu and Koochesfahani 2006) and micro (Thompson

et al. 2005; Elsnab et al. 2010) scales. Its application to gaseous flows has been ev-

idenced at millimetric scales in external flow configurations (Koochesfahani 1999;

Stier and Koochesfahani 1999; Lempert et al. 2003; Pitz et al. 2005; ElBaz and Pitz

2012).

The first attempts to measure by MTV gas flows velocities inside devices with

millimetric dimensions are recent (Samouda et al. 2012a,b). These preliminary mea-

surements have been made in rectangular channels using one dimensional molecular

tagging velocimetry (1D MTV); in this case a single line or a series of parallel lines

are tagged perpendicularly to the flow direction. The component of the displacement

is then obtained in the direction of the flow. Although 1D MTV has some limitations

compared with 2D MTV and stereoscopic (3D) MTV, its advantages are a simpler

implementation and a higher spatial resolution in the vicinity of the wall (Hammer

et al. 2013). This makes 1D MTV a very promising technique for capturing velocity

slip at the wall observed in rarefied regimes.

However, even at atmospheric pressure, data processing of preliminary velocity

profiles has shown several issues (Samouda et al. 2015). The tagged molecules are

subject to significant molecular diffusion and the diffusion effects should be taken

into account during the data processing. A typical image of µMTV in gas flow is

shown in Figure 1. It concerns a flow of argon, seeded with acetone molecules, in

near-atmospheric pressure and temperature conditions. The flow is going from left to

right in a 1 mm depth and 5 mm width rectangular channel. The image is obtained in

the developed flow region, in the vertical plane of symmetry of the channel. The laser

beam has tagged a line which emits fluorescence a few ns after tagging. The diameter
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Fig. 1 Initial and deformed tagged lines in the developed flow or argon seeded by acetone molecules in the

symmetry plane of a 1 mm height rectangular microchannel. Pin = 105.7 kPa, Pout = 103.7 kPa, T0 = 294 K

and ∆ t = 100 µs. Vertical white straight line: linear fit of the initial tagged line at t = 0; Yellow dots:

tagged molecules displacements detected from maximum intensity of the signal at t = 100 µs, along each

horizontal streamline; Curved yellow line: polynomial fit of tagged molecules displacements.

of the laser beam is 35 µm, and the fluorescence signal is easily and precisely fitted by

the vertical green straight line. Phosphorescence is emitted 100 µs later and another

image is obtained (both images are represented here in the same figure), revealing the

gas displacement. The significant effect of diffusion is evidenced by the spreading of

the phosphorescence signal. The maximum value of its intensity along each stream-

line determines the position of a yellow dot; finally the distribution of the yellow dots

is fitted by a polynomial (the yellow curve in Figure 1). As explained in Section 4,

the best fitting is found with a 4th degree polynomial, although the expected velocity

profile is parabolic. In addition, some slip is observed at both walls (the observed

displacement is not zero), although in near-atmospheric conditions, the regime is still

the continuum regime and no slip is expected at the wall. These two points demon-

strate that the velocity profile cannot be directly deduced from the simple fit of the

deformed tagged line observed after some delay following tagging. The effects of

molecular diffusion have also been recently observed in liquid microflows by other

authors who used photobleached molecular tracers for velocimetry purpose (Schem-

bri et al. 2015). Although diffusion is much less significant in liquids, they showed

that the velocity close to the walls could be overestimated due to the combination of

molecular diffusion and shear.

In the present paper, a DSMC investigation of tagged molecules diffusion is per-

formed to assist data processing from µMTV experiments in gas flows. The influence

of the degree of rarefaction and of the gas composition is examined. A velocity re-

construction algorithm, based on the advection-diffusion equation, is then developed

to be used as a tool for the interpretation and correct treatment of experimental data.
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2 Problem formulation

In order to match the experimental setup (Samouda et al. 2012a,b, 2015), we con-

sider the steady slow flow of a binary gas mixture in a long channel with rectangular

section. The gas mixture is supposed to contain two components: the background gas

species and the tracer gas species. The channel length, height and width are Lx, Ly

and Lz, respectively. The length Lx is assumed to be much greater than Ly and Lz.

Moreover, the channel height Ly is set to be smaller than Lz, to obtain an almost one-

dimensional flow geometry where the prevailing gradients are aligned to y-direction

in the central channel region. The experimental mixture flow is produced by applying

different pressure values, Pin and Pout , at the channel inlet and outlet, respectively. The

normalized pressure difference ∆P = Pin−Pout

Pin
is set equal to a small value, in order

to obtain a low Mach number and almost isothermal flow, with negligible gradients

across the channel length.

The necessity of studying the effects of tracer molecules diffusion on the reconstruc-

tion of background gas velocity field as a function of the degree of gas rarefaction,

forces the adoption of a kinetic theory description for the considered flows. Accord-

ingly, it is assumed that the mixture behavior is governed by the following system of

two coupled Boltzmann equations (Ferziger and Kaper 1972):

∂ fi

∂ t
+ vvv◦ ∂ fi

∂ rrr
=

2

∑
j=1

Qi j( f j, fi), i = 1,2. (1)

In Eqs. (1), fi(rrr,vvv|t) denotes the distribution function of atomic velocities vvv of species

i, at spatial location rrr and time t. Species indexes 1 and 2 are attributed to the back-

ground and tracer species, respectively. It should be noted that, although the back-

ground gas could be either monatomic or polyatomic, the tracer gas has to be com-

posed by optically active molecules with internal rotational and vibrational degrees

of freedom. However, the detailed internal molecular structure is not believed to play

a role in the considered almost isothermal flows whose properties are determined

by overall collision cross sections. Moreover, the negligible temperature variations

allow modeling molecular interactions through simple hard sphere potentials. There-

fore, it is assumed that species i is composed by identical spherical atoms of mass

mi and diameter σi. The values of atomic diameters can be determined from the mix-

ture viscosity and diffusion coefficient (Ferziger and Kaper 1972). The collision in-

tegral (Ferziger and Kaper 1972) Qi j, which describes the mechanical interaction

between species i and j, has the following expression:

Qi j( f j, fi) =
σi j

2

2
∫

S 2
d2k̂kk

∫

R3
d www [ f j(rrr,www

∗|t) fi(rrr,vvv
∗|t)− f j(rrr,www|t) fi(rrr,vvv|t)] |vvvr ◦ k̂kk|,

(2)

where σi j =
σi+σ j

2
.

In Eq. (2), the vector k̂kk, belonging to the unit sphere S 2, specifies the relative posi-

tion of two atoms at the time of their impact with relative velocity vvvr = www− vvv. The

velocities vvv∗ and www∗, which are turned into vvv and www in a restituting collision, are
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defined as (Ferziger and Kaper 1972):

vvv∗ = vvv+2
m j

mi +m j

(vvvr ◦ k̂kk)k̂kk, (3)

www∗ = www−2
mi

mi +m j

(vvvr ◦ k̂kk)k̂kk. (4)

Macroscopic quantities associated with the mixture flow are obtained as moments of

the distribution functions. Partial and total number and mass densities are respectively

defined as:

ni(rrr, t) =
∫

fi(rrr,vvv|t)d vvv, n(rrr, t) =
2

∑
i=1

ni(rrr, t) (5)

ρi(rrr, t) = mini(rrr, t), ρ(rrr, t) =
2

∑
i=1

ρi(rrr, t). (6)

The molar fraction, χi(rrr, t), of the i− th component and its mass fraction or concen-

tration, χ̃i(rrr, t), are defined as:

χi(rrr, t) =
ni(rrr, t)

n(rrr, t)
, χ̃i(rrr, t) =

ρi(rrr, t)

ρ(rrr, t)
. (7)

The mean velocity of each component is obtained as:

uuui(rrr, t) =
1

ni(rrr, t)

∫

vvv fi(rrr,vvv|t)d vvv. (8)

The hydrodynamic velocity, associated with the overall local mixture momentum, is

defined as:

uuuhyd(rrr, t) =
∑

2
i=1 ρi(rrr, t)uuui(rrr, t)

ρ(rrr, t)
. (9)

The diffusion velocities VVV i = uuui − uuuhyd characterize the different velocities of the

mixture components with respect to the common hydrodynamic velocity uuuhyd . Single

component temperature Ti and overall mixture temperature T can be associated with

velocity dispersions with respect to the hydrodynamic velocity, as follows:

3

2
ni(rrr, t)kBTi(rrr, t) =

1

2
mi

∫

(vvv−uuuhyd)2 fi(rrr,vvv|t)d vvv, (10)

3

2
n(rrr, t)kBT (rrr, t) =

2

∑
i=1

1

2
mi

∫

(vvv−uuuhyd)2 fi(rrr,vvv|t)d vvv. (11)

The boundary condition, at a generic position rrrw on channel walls, is assigned fol-

lowing Maxwell’s gas-surface interaction model (Cercignani 1988), which allows

specifying the surface temperature Tw and species accommodation coefficients αi in

the range [0,1]. Atoms of species i impinging on one of the channel walls with veloc-

ity vvv are scattered back into the gas with velocity vvv′ which is the result of a specular
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reflection with probability 1−αi or diffuse reemission with probability αi. In the lat-

ter case, the distribution functions of re-emitted atoms is the Maxwellian fwi, defined

as:

fwi(rrrw,vvv|t) =
nwi(rrrw|t)

(2πRiTw)3/2
exp

(

− vvv2

2RiTw

)

, vvv◦nnn > 0. (12)

The gas constants are defined as Ri = kB/mi, being kB the Boltzmann constant. The

unit vector nnn is the normal to wall surface, pointing toward the gas region. Each

amplitude nwi is determined by requiring that the reemitted flux equals the impinging

flux −J−i .

nwi

√

RiTw

2π
=−J−i , J−i =

∫

vvv◦nnn<0
(vvv◦nnn) fi(rrrw,vvv|t)dvvv. (13)

In view of the applications described below, it is convenient to define the overall

mean free path λ0 and mean free time τ0 in an equilibrium state of the mixture,

characterized by temperature T0 and component species number densities n0 j:

λ0 =
2

∑
i=1

χ0i





1

∑
2
j=1 n0 jπσ2

i j

√

mi+m j

m j



 (14)

τ0 =
λ0

√

kBT0
m0

(15)

where m0 = ∑
2
i=1 χ0imi is the average molecular mass.

3 DSMC simulations of tagged molecules diffusion

The system defined by Eqs. (1) is solved by Direct Simulation Monte Carlo (DSMC)

method (Bird 1994). The method numerically solves the unsteady form of the un-

derlying kinetic equation. Steady solutions are found as the long time limit of un-

steady ones. In DSMC distribution functions are represented by thousands of sim-

ulated molecules, each of them representing a large number of real molecules. The

microscopic variables of simulated molecules (positions, velocities, internal states)

evolve in time through a sequence of time steps, each consisting of two sub-steps:

free flight and local binary collisions. The first one corresponds to the streaming

operator at the l.h.s of Eqs. (1). Accordingly, only particles positions are updated,

unless a collision with walls occurs and the particle velocity is also changed, as dic-

tated by the assumed gas-surface interaction model (Cercignani 1988). During the

second sub-step, particles are sorted into the cells of a conveniently defined spatial

grid, their positions are kept fixed whereas velocities are changed by collisions, fol-

lowing stochastic rules consistent with the structure of the collision terms given by

Eq. (2). Local macroscopic flow properties are obtained by sampling and time aver-

aging molecules microscopic variables in each cell. The role of DSMC simulations in

the research activity described here is twofold. The first one is to provide numerical

solutions of the system of Boltzmann equations, governing the motion of background
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Fig. 2 Force driven Poiseuille flow of an Argon-Acetone mixture. Kn = λ0
Ly

= 0.01, m2/m1 = 1.452,

σ2/σ1 = 1.885, χ2 = 0.05. Tagged molecules spatial distributions at times: ttag + 5.0τ0 (green markers),

ttag +1000τ0 (blue markers), ttag +3000τ0 (red markers).

and tracer gases, to study the influence of the gas rarefaction degree and gas-wall in-

teraction, without assumptions beyond those intrinsic in the kinetic model itself. The

second one is to provide well controlled simulations of tagged molecules diffusion in

order to assess the accuracy of the velocity reconstruction method described below. It

is worth observing that, in the present context, the inevitable statistical noise associ-

ated with DSMC simulations is a quite useful feature of the method because it allows

investigating the robustness of the reconstruction against numerical data presenting

noise levels made comparable to experimental ones.

A first example of the application of DSMC to the simulation of tracer species dif-

fusion is given in Figures 2 and 3. The presented results have been obtained from

spatially one-dimensional simulations of a binary hard spheres mixture Poiseuille

flow between two infinite parallel plates. The geometry corresponds to the limit case

in which both the channel width Lz and length Lx tend to infinity. The pressure gradi-

ent along the channel axis is replaced by a constant and uniform force field FFF = Fxx̂xx

acting on both species. The balance of the volume force FFF and viscous stresses pro-

duces a steady flow of the mixture exhibiting the typical velocity profile, close to

a parabolic shape. The intensity of the velocity maximum is controlled by Fx and

it is set to a small fraction of the sound speed in order to obtain a slow isothermal

flow. Full accommodation (α1 = α2 = 1.0) is assumed to occur at both walls having

the same temperature Tw, set equal to the reference temperature T0. The molar frac-

tion of the tracer species χ2 is set equal to 0.05, the mass ratio m2/m1 and the hard

sphere diameter ratio σ2/σ1 are set respectively equal to 1.452 and 1.885 to mimic

the argon-acetone mixture used in the experiments. In particular, hard sphere diam-

eters have been obtained from the mixture components viscosities values at room

temperature. Finally, the flow reference Knudsen number, Kn = λ0/Ly, based on the

channel height Ly and the reference mixture mean free path λ0 is equal to 0.01. Tracer

molecules diffusion is studied by the analysis of the relative positions

δδδ i(t) = [xi(t)− xi(ttag)]x̂xx+ yi(t)ŷyy+[zi(t)− zi(ttag)]ẑzz i = 1, . . . ,NT (16)

of NT simulated tracer species particles, with respect to the reference initial position

they have at a specified simulation time ttag.
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Fig. 3 DSMC computed tagged molecules average displacement sx(y, t) (circles) is compared with the

nominal displacement ux(y)(t − ttag) (solid line) at time t = ttag +3000τ0. Flow setup as in Figure 2

Fixing reference molecular positions at t = ttag is the numerical analogue of the ex-

perimental laser shot used for molecular tagging. The time ttag can be freely specified

within the total simulation time, provided it is large enough to allow for the onset of

steady flow conditions.

As Eq. (16) shows, at time ttag particles relative positions occupy a straight line

across the channel height, corresponding to the initial laser tagged region. Green

markers in Figure 2 represent the spatial distribution of tracer species at a time very

close to ttag, when the ideal initial line has evolved into a thin cylinder, not yet sig-

nificantly deformed by advection. The evolution of the initial line under the action

of the stationary velocity field uuuhyd = ux(y)ŷyy and molecular diffusion is shown by

the blue and red markers which represents the tagged molecules relative positions

at times t = ttag + 1000τ0 and t = ttag + 3000τ0, respectively. The reference time,

τ0 = λ0/
√

R1Tw, is the mean free time in the reference equilibrium conditions men-

tioned above. It is evident that, although the flow Knudsen number is rather small,

tagged particles displacements are considerably affected by diffusion which masks

the pure particles advection caused by uuuhyd . A clearer assessment of the effects of

diffusion on tagged particles displacements is provided by the analysis of the func-

tion sx(y, t) defined as:

sx(y, t) =

∫

xn2(x,y,z|t)dxdz
∫

n2(x,y,z|t)dxdz
. (17)

In Eq. 17, n2(x,y,z|t) is the number density of tracer molecules, hence sx(y, t) is

the average displacement from the initial tagging positions of molecules having co-

ordinate y along channel height, at time t. As shown in Figure 3, sx(y, t) is quite
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Fig. 4 Comparison of DSMC and diffusion equation predictions of tagged molecules average displace-

ment sx(y, t) at (t − ttag)/τ0 = 100,1500,3000; solid lines: diffusion equation approximation (Eq. (49));

symbols: DSMC numerical solution of Eqs. (1). Left - Argon-Acetone mixture: m2/m1 = 1.452, σ2/σ1 =
1.885, χ2 = 0.05, Kn = λ0/Ly = 0.1. Right - Helium-Acetone mixture: m2/m1 = 14.49, σ2/σ1 = 3.136,

χ2 = 0.05, Kn = λ0/Ly = 0.02

.

different from the nominal displacement ux(y)(t − ttag) that would occur if tracer

molecules were simply transported along the channel with the background species

velocity ux(y). Therefore, the reconstruction of the unknown velocity profile from

the observed deformation of the initial tagged line requires that diffusion effects are

subtracted from sx(y, t).

4 Diffusion equation approximation and velocity reconstruction

As described in Appendix A, the following evolution equation:

∂ sx

∂ t
= ux(y)+D12

∂ 2sx

∂y2
. (18)

can be derived for the average displacement sx(y, t), under the assumption that the

simpler advection-diffusion Eq. (38) takes the place of the Boltzmann equations (1) to

describe the motion of tracer species molecules. In Eq. (18), ux(y) is the steady, fully

developed velocity field in the central region of the rectangular channel described

above, whereas D12 is the diffusion coefficient of tracer molecules in the background

gas. Eq. (18) can be solved in closed form, as described in Appendix A. An im-

mediate consequence of Eq. (18) is that the area averaged displacement 〈sx〉(t) =
1
Ly

∫

+Ly
2

− Ly
2

sx(y, t)dy evolves in time as 〈sx〉(t) = 〈ux〉t, being 〈ux〉= 1
Ly

∫

+Ly
2

− Ly
2

ux(y)dy the

time independent average flow rate per unit mass. Then, any solution sx(y, t) can be

conveniently expressed in the form:

sx(y, t) = 〈ux〉t + s∞(y)+ s̃x(y, t). (19)

The time independent contribution, s∞(y), satisfies the equation

d2s∞

dy2
=

1

D12
[〈ux〉−ux(y)] (20)
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being fully characterized by the conditions:

(

d s∞

d y

)

y=± Ly
2

= 0,
1

Ly

∫

+Ly
2

− Ly
2

s∞(y)dy = 0. (21)

The unsteady term, s̃x(y, t), obeys the one-dimensional homogeneous diffusion equa-

tion
∂ s̃x

∂ t
= D12

∂ 2s̃x

∂y2
(22)

with initial and boundary conditions:

s̃x(y,0) =−s∞(y),

(

∂ s̃x

∂y

)

y=± Ly
2

= 0. (23)

Since s̃x decays exponentially in a time of the order of L2
y/D12, the asymptotic behav-

ior of sx(y, t) is a translation of the steady profile s∞(y) with uniform velocity 〈ux〉.
The information about the velocity profile ux(y) carried by sx(y, t) is fully contained

into the asymptotic part of the solution, whose structure can be illustrated by the fol-

lowing simple example. If it is assumed that the velocity profile has the parabolic

shape

ux(y) = a0 +a2
4

L2
y

(

L2
y

4
− y2

)

(24)

which approximates the one-dimensional Poiseuille flow velocity profile when wall

velocity slip is present, then it is immediately found that

〈ux〉 = a0 +
2

3
a2

s∞(y) = a2

L2
y

D12

[

7

720
− y2

3L2
y

(

1

2
− y2

L2
y

)]

. (25)

The ”universal” factor between square brackets in Eq. (25) is a fourth degree poly-

nomial whose variation across the channel height amounts to 1/48. Therefore, the

variation of s∞(y) across the channel width, normalized to reference mean path λ0,

can be written as:

∆s′∞ =
[s∞(0)− s∞(+Ly/2)]

λ0
=

a′2
48D ′

12Kn2
(26)

where a′2 = a2

√

m0
kBT0

and D ′
12 = D12

τ0

λ 2
0

are the normalized values of the velocity a2

and diffusion coefficient, respectively. According to Eq. (26), the shape of s∞(y) will

be more evident at small rather than at high Knudsen numbers. Figure 4 presents two

computational examples in which diffusion plays different roles. In the first one (see

left panel), the Knudsen number is 0.1. In this case, the decay of s̃(y, t) is extremely

rapid and the depicted sx(y, t) profiles represent the asymptotic solution, consisting

of the translation of a quite flat profile whose total variation is of the order of λ0. In

the second case, the Knudsen number is five times smaller and the normalized value
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of D12 is also smaller because of the different mixture composition. Now the con-

tribution of the transient term s̃(y, t) is more evident, since the shape of profiles is

changing, but it is no longer present in the two profiles at times 1500τ0 and 3000τ0,

which exhibit a more pronounced curvature. In agreement with the above estimate,

the variation of s∞(y) is now close to 60λ0.

The results displayed in Figure 4 also show that it is possible to reproduce DSMC

average displacement profiles by the advection-diffusion approximation with good

accuracy, thus justifying the development of a simple method to reconstruct the un-

known ux(y) from the observed sx(y, t), as described in the next section.

5 Velocity reconstruction

Although the unknown velocity profile could be reconstructed only on the basis of

the asymptotic contribution to sx(y, t), it should be observed that the transient contri-

bution s̃x(y, t) is also present at finite times, particularly when Kn is small. A simple

method to obtain the velocity ux(y) from sx(y, t), which does not use the decomposi-

tion given by Eq. (19), can be formulated by writing sx(y, t) in the form:

sx(y, t) =
∫ Ly/2

−Ly/2
G(y,y′, t)ux(y

′)dy′. (27)

as shown in Appendix A.

Let {Uk(y), k = 0,1, . . . ,Nu} be a sequence of Nu assigned basis functions (typi-

cally polynomials), such that the gas velocity profile ux(y) can be approximated as:

ux(y) =
Nu

∑
k=0

akUk(y). (28)

The linearity of the direct relationship between sx(y, t) and ux(y), expressed by Eq. (27),

immediately shows that

sx(y, t) =
Nu

∑
k=0

akSk(y, t), Sk(y, t) =
∫ Ly/2

−Ly/2
G(y,y′, t)Uk(y

′)dy′. (29)

In words, the displacement can be written as a superposition of Nu assigned basis

displacements Sk(y, t). Each of them is obtained by solving Eq. (18) with the corre-

sponding velocity Uk(y), through Eq. (50).

The coefficients ak of the superposition in Eq. (29) are the same appearing in the ve-

locity expansion, defined by Eq. (28). Hence, the unknown velocity field can be de-

termined by a least square approximation of sx(y, t), i.e. by minimizing the quadratic

error Es =
[

sx(y, t)−∑
Nu

k=0 akSk(y, t)
]2

, where sx(y, t) is obtained from actual physical

experiments or numerical simulations.
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Fig. 5 Effective self-diffusion coefficient vs. Knudsen number in a pure hard sphere gas at rest between

two parallel plates. �: α = 1 (fully accommodating walls); ◦: α = 0 (specularly reflecting walls); solid

line: normalized Chapman-Enskog value of D12 from Eq. (30)

.

6 Validation of the velocity reconstruction method

The capabilities of the velocity reconstruction method described in the previous sec-

tion have been assessed by using DSMC simulations of tagged molecules diffusion in

Poiseuille flows. As noted above, Eq. (49) provides a good approximation of DSMC

average displacements sx(y, t), even when the reference Knudsen number is as high

as 0.1 (see Figure 4). However, it should be observed that the accurate reproduction

of DSMC simulations requires replacing the Chapman-Enskog value of diffusion co-

efficient D12 with an effective diffusion coefficient De f f which takes into account the

presence of walls when Kn grows (Dongari et al. 2009). For each mixture composi-

tion and reference Knudsen number, De f f has been obtained from Einstein’s formula

〈x2〉(t)= 2De f f t (Res 1977). The variance of molecular positions with respect to their

initial values, 〈x2〉(t), has been computed by equilibrium DSMC simulations. Figure

5 shows how gas-surface interaction affects self-diffusion in a pure hard sphere gas

confined between two infinite parallel plates, whose separation is Ly. When walls are

fully accommodating (α = 1), De f f is a decreasing function of Kn = λ0/Ly which,

for Kn → 0, tends to the Chapman-Enskog value:

D12 =

(

3
√

π

2
5
2

λ 2
0

τ0

)

fD. (30)

In Eq. (30), the term in brackets is the first approximation to D12 which needs to be

multiplied by fD to obtain the fully converged value. Following the methods devel-

oped in (Bruno et al. 2006), the correcting factor fD can be given the value 1.018954.
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As expected, Kn independent estimates of De f f are obtained for specularly reflecting

walls. This case is equivalent to setting periodic boundary conditions at walls and to

simulating diffusion in a virtually infinite and uniform background. Hence, the ob-

tained De f f coincides with the Chapman-Enskog value.

The possibility of reproducing DSMC results by the corresponding diffusion equa-

tion approximation justifies the attempt to reconstruct the unknown uuuhyd from the

observed sx(y, t) through the method described above. In order to evaluate the capa-

bilities and the limitations of the velocity reconstruction method described in section

5, different sets of displacement data have been generated by DSMC simulations.

Attention has been focused on the effects of rarefaction, by varying the reference

Knudsen number in the range [0.01,0.1], and on the influence of the mixture mass

ratio m2/m1. The latter parameter has been assigned the values 1.0,1.452,14.49 to

study respectively the limit case of equal mass for the tracer and background species,

the argon-acetone and the helium-acetone mixtures. The influence of the statistical

noise of the displacement data on the accuracy of the velocity reconstruction has

been also analyzed by varying the number of DSMC particles used to simulate the

tracer species. In all cases described below, the simplest velocity basis, consisting of

the two elements

U0(y) = 1, U2(y) =
4

L2
y

(

y2 −
L2

y

4

)

has been used for velocity reconstruction numerical experiments. Although repre-

senting the Poiseuille velocity profiles by a shifted parabola introduces a small sys-

tematic error at higher Kn values, the adopted choice is adequate for evaluating the

reconstruction method and can be easily improved by adding additional basis func-

tions.

For each DSMC simulation, Ns snapshots sx(y, tk) of tracer species displacements

have been taken at equally spaced times {tk, k = 1, . . . ,Ns}, during a long period (typ-

ically 3000− 4000τ0) following the onset of steady flow conditions in the channel.

The velocity reconstruction method has then been used on each sx(y, tk) to obtain Ns

estimates u
(k)
x (y) of the reference velocity field ux(y), computed by the same DSMC

simulation. A sequence of Ns reconstruction errors, normalized to the value of ux(y)
at the channel center, has been computed as:

εv(tk) =
1

ux(0)

1

Ly

∫

Ly
2

− Ly
2

|u(k)x (y)−ux(y)|dy. (31)

Table 1 reports εv(min), 〈εv〉 and εv(max), respectively the computed minimum, av-

erage and maximum values of the sequence εv(tk), as functions of Kn, m2/m1 and

displacement data noise level. The latter has been characterized by the quantities:

ε2
d (tk) =

1

Ly

∫

Ly
2

− Ly
2

[sx(y, tk)−a0S0(y, tk)−a2S2(y, tk)]
2

dy (32)

measuring the dispersion of the noisy DSMC sx(y, tk) profiles with respect to their

corresponding best fit, in terms of basis displacement functions. Since sx(y, t) is ob-

tained as a mean value of a particle position population whose variance is a linearly
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m2/m1 = 1.0

Kn De f f NT /Cell a (εd = a
√

t − ttag) εv(min), 〈εv〉, εv(max)
0.10 0.894 50 0.194 0.07, 1.7, 5.7
0.10 0.894 500 0.06 0.01, 0.52, 1.6
0.10 0.894 5000 0.019 0.01, 0.15, 0.47

0.05 0.928 50 0.198 0.02, 0.30, 1.40

0.05 0.928 500 0.06 0.006, 0.07, 0.2
0.04 0.933 50 0.198 0.06, 0.16, 0.46

0.04 0.933 500 0.06 0.007, 0.05, 0.14

0.02 0.947 50 0.20 0.006, 0.03, 0.10

0.02 0.947 500 0.06 0.006, 0.01, 0.03

0.01 0.953 50 0.21 0.004, 0.01, 0.02

0.01 0.953 500 0.07 0.006, 0.01, 0.02

m2/m1 = 1.452, Ar−C3H6O

Kn De f f NT /Cell a (εd = a
√

t − ttag) εv(min), 〈εv〉, εv(max)
0.10 0.420 500 0.04 0.01, 0.19, 0.65

0.05 0.422 250 0.06 0.007, 0.04, 0.13

0.04 0.425 200 0.07 0.005, 0.03, 0.10

0.02 0.430 100 0.10 0.004, 0.01, 0.02

0.01 0.440 50 0.17 0.006, 0.008, 0.014

m2/m1 = 14.49, He−C3H6O

Kn De f f NT /Cell a (εd = a
√

t − ttag) εv(min), 〈εv〉, εv(max)
0.10 0.142 500 0.025 0.01, 0.03, 0.10

0.05 0.144 250 0.04 0.006, 0.01, 0.03

0.04 0.145 200 0.05 0.004, 0.008, 0.014

0.02 0.146 100 0.09 0.003, 0.005, 0.008

0.01 0.147 50 0.13 0.005, 0.007, 0.01

Table 1 Velocity profile reconstruction error as a function of reference Knudsen number, for different

noise levels of DSMC average displacement profile and mass ratios m2/m1. In all cases, tracer species

molar fraction χ2 is equal to 0.05.

increasing function of time, εd(t) is well fitted by the function εd(t) = a
√

t − ttag, as

shown in the upper right panel of Figure 6. The amplitude a is roughly inversely pro-

portional to the square root of number of samples used to estimate sx(y, tk), as shown

by the case Kn = 0.1, m2/m1 = 1 where increasing the number of tracer particles

per grid cell from 50 to 5000 allows reducing the noise level by a factor 10. The

importance of εd(t) in determining εv strongly depends on the value of the Knudsen

number. As discussed above, when Kn is of the order of 0.1, the transient contribution

s̃x(y, t) decays rapidly and the displacement reduces to its asymptotic part, which ex-

hibits an almost flat profile whose structure is easily hidden by the statistical noise. In

this case, the reconstruction error is very high, unless sx(y, t) is determined with very

high accuracy, as shown by the values reported in Table 1. In the light of the above

considerations, it seems reasonable to assume that an accurate velocity field recon-

struction from tagged molecules displacements requires that the normalized statistical

error εd(t)/λ0 associated with sx(y, t) is smaller than a quantity of the order of ∆s′∞,

the estimated size of the normalized variation of sx(y, t) across the channel, defined

by Eq. (26).

An example of the unfavorable combination of relatively high values of Knudsen
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Fig. 6 m2/m1 = 1.0, Kn = 0.04. Upper left- sx(y, t) DSMC profiles at: t = ttag + 100τ0 (◦), t = ttag +
1500τ0 (�),t = ttag + 3000τ0 (⋄); solid lines represent best fits in terms of S0(y, t) and S2(y, t). Upper

right- Time evolution of εd . ◦: DSMC data; solid line: best fit as εd = a
√

t − ttag. Lower left - Velocity

profiles reconstructed from displacements at t = ttag+100τ0 (◦), t = ttag+1500τ0 (�),t = ttag+3000τ0 (⋄);

red solid line: reference DSMC velocity profile in the channel. Lower right - Time evolution of velocity

reconstruction error, εv.

number and diffusion coefficient is presented in Figure 6, showing the difficulty of

extracting accurate estimates of ux(y) from quite flat displacement profiles, biased by

statistical noise. For the same noise level, considerably lower values of εv are obtained

at smaller Knudsen numbers, still in the slip flow regime. The sx(y, tk) profiles are

more pronounced, therefore reconstruction is less sensitive to noise, as shown in Fig-

ure 7, showing the time evolution of sx(y, tk) and the comparison of reconstructed ve-

locity profiles with the computed DSMC velocity in the case m2/m1 = 1.452 (Argon-

Acetone mixture), Kn = 0.02. The comparison of εv data for the three mixtures also

shows that, as is obvious, smaller values of the diffusion coefficient lead to better

velocity profile reconstruction.

It is worth observing that, although the effective value, De f f , of the diffusion co-

efficient has been used in velocity reconstruction numerical experiments, using its

nominal value D12, resulting from Chapman-Enskog expansions, does not apprecia-

bly increase εv, since walls effect on diffusion are small, particularly for the mixtures

considered here.

7 Conclusions

Tagged molecules diffusion in a background rarefied gas flowing through a channel

has been studied by DSMC simulations, in order to support MTV measurements in

microchannels. It has been shown that a simple diffusion equation describing the evo-
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t = ttag +1500τ0 (�),t = ttag +3000τ0 (⋄); red solid line: reference DSMC velocity profile in the channel.

lution of the average displacement of tagged molecules provides a good description

of DSMC numerical solutions of a system of coupled Boltzmann equation, if Knud-

sen number dependent diffusion coefficients are adopted to take into account wall

effects. The diffusion equation approximation has also been used to formulate a sim-

ple method to reconstruct the velocity profile in the channel from the observed tagged

molecules displacements. Using DSMC simulations as a source of data naturally af-

fected by controllable statistical noise, it has been shown that velocity reconstruction

becomes difficult at Knudsen numbers of the order of 0.1 but it becomes rapidly more

accurate at lower values of Kn which still belong to the slip regime.

Although the kinetic theory formulation of the problem and the following advection-

diffusion approximation have been based on a physical picture in which a negligible

amount of tracers diffuse through a pure gas, the adopted methods do have wider

validity. Actually, the more realistic case in which the tracer species is just one of

the mixture components, present in any arbitrary amount, can be dealt with by an ex-

tended form of Eqs. (34,35), in which Eqs. (34) is replaced by two steady Boltzmann

equations describing the stationary background flow. The unsteady equation (35) is

replaced by the following linear equation:

∂ fT

∂ t
+ vvv◦ ∂ fT

∂ rrr
= Q21( fT , f1)+Q22( fT , f2) (33)

in which fT is the distribution of tracers. However, it is not necessary to think of trac-

ers as a separate species, although mechanically identical to species 2, since Eq. (33)

can be considered as a Lagrangian description of the motion of the same species 2, of
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which the steady Boltzmann equations give the Eulerian view. The distinction is not

even necessary in DSMC simulations in which any mixture component can also play

the role of tracer species. As done above, it is then possible to assume that Eq. (33)

can be replaced by the advection-diffusion equation (40) in which D12 is now the

diffusion coefficient of a test tracer through the backgound mixture. The research

work described here is intended as a first step which needs the application to real

experimental data to take its final shape.
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A Diffusion approximation

Assuming that the tracer species is instantaneously added in negligible amount to the undisturbed steady

flow of the background gas allows rewriting Eqs. (1) as follows:

vvv◦ ∂ f1

∂ rrr
= Q11( f1, f1) (34)

∂ f2

∂ t
+ vvv◦ ∂ f2

∂ rrr
= Q21( f2, f1). (35)

The linear Eq. (35) describes the unsteady diffusion of tracer molecules through a non-equilibrium back-

ground by neglecting tracer molecules interaction (Q22( f2, f2) = 0) and their effects on the background

gas flow described by the non-linear Boltzmann equation (34).

As shown below, the kinetic equations, either in the general form expressed by Eqs. (1) or in the limit case

described by Eqs. (34,35), can be effectively used to simulate tagged molecules diffusion. However, their

mathematical form is too complicated to formulate a method for the reconstruction of the velocity field in

the background gas from the observed displacement of tagged molecules.

A simpler description of tagged molecules transport is provided by the diffusion equation (Ferziger and

Kaper 1972; Crank 1975):

∂ρ2

∂ t
+

∂

∂ rrr
◦ (ρ2uuuhyd) =

∂

∂ rrr
◦
[

ρ
m1m2

(ρ/n)2
D12

∂

∂ rrr

(

ρ2

ρ

)]

(36)

where the binary diffusion coefficient D12 takes the following form:

D12 =
3

16nm12

√
2πm12kBT

πσ2
12

, m12 =
m1m2

m1 +m2
(37)

in the first approximation of the diffusion coefficient of a binary mixture of hard sphere molecules. Eq. (36)

can be derived from Eqs. (1) assuming that the scale of spatial gradients is much larger than the mean

free path (Ferziger and Kaper 1972) and the contributions of pressure and temperature gradients to the

diffusion driving force can been neglected. The contribution of the external force field FFF to the diffusion

driving force is automatically cancelled, since both species are subject to the same force (Ferziger and

Kaper 1972). In the considered geometry, uuuhyd reduces to its axial component ux which can be assumed to



Role of diffusion on molecular tagging velocimetry technique for rarefied gas flow analysis 19

depend only on y and z in the region accessible to tagged molecules during their luminescence life time.

Hence, the velocity field divergence can be neglected and, for small χ2 values Eq. (36) takes the form:

∂n2

∂ t
+ux(y,z)

∂n2

∂x
= D12∇2n2 −

1

τp
n2. (38)

The diffusion coefficient D12 is assumed to be constant because of the small variation of temperature and

density in the flowfield. The additional source term − 1
τp

n2 has been added at r. h. s. of the above equation to

take into account the decay of tagged molecules number as a result of phosphorescence intensity decrease,

being τp the phosphorescence lifetime of acetone molecules (Kaskan and Duncan 1950).

However, the source term can be eliminated by the following rescaling:

n2(x,y,z, t) = N0 exp(− t

τp
)p(x,y,z, t) (39)

where N0 is the total number of tagged molecules initially created and the new unknown probability density

p(x,y,z, t) obeys the equation:
∂ p

∂ t
+ux(y,z)

∂ p

∂x
= D12∇2 p. (40)

Since the tagged molecules displacements are small when compared with the channel length Lx, the x-

coordinate domain is considered unbounded. Accordingly, p is defined in the domain Ω = {(x,y,z) ∈R3 :

−∞ < x <+∞,−Ly/2 < y < Ly/2,−Lz/2 < z < Lz/2}. Under the assumption that collisions with channel

walls do not cause tagged molecules absorption by promoting a non-radiative deexcitation, the following

boundary conditions can be assigned at walls:

∂ p

∂ z
= 0,z =±Lz/2

∂ p

∂y
= 0,y =±Ly/2. (41)

The initial probability distribution is assigned as p(x,y,z,0) = p0(x,y,z). The shape of p0(x,y,z) is related

to the way the gas is illuminated by the laser beam. In the following developments, it is assumed that a

thin cylindrical beam produces a y-independent initial state of the form:

p0(x,z) =

{

1
V0

(x,y,z) ∈ C0

0 (x,y,z) /∈ C0

(42)

where C0 is the set C0 = {(x,y,z) ∈ R3 : x2 + z2 < r2
0 ,−Ly/2 < y < Ly/2} and V0 = πr2

0Ly its volume.

The relationship between the velocity field ux and the displacement sx(y, t) can be easily obtained from

Eq. (40). Since the displacement is obtained as a function of y, it is useful to introduce the probability

Pxz(x,y,z, t) that a molecule has a position (x,z) on a plane at fixed y:

Pxz(x,y,z, t) =
p(x,y,z, t)

Py(y, t)
, Py(y, t) =

∫

p(x,y,z, t)dxdz. (43)

The displacement is now obtained as:

sx(y, t) =
∫

xPxz(x,y,z, t)dxdz =
1

Py(y, t)

∫

xp(x,y,z, t)dxdz. (44)

It is shown that Py(y, t) is a constant because of the symmetry of the initial state. Integrating Eq. (40) over

x and z while taking into account the boundary conditions (41) leads to the following for Py(y, t)

∂Py

∂ t
= D12

∂ 2Py

∂y2
(45)

where − Ly

2
< y <

Ly

2
and

∂Py

∂y
= 0 at y =± Ly

2
. Since the illumination can be assumed to be uniform along

the beam, as confirmed by experiments, the initial state does not depend on y. Hence Py(y,0) = P0, being

P0 a constant. As a matter of fact, it can be immediately seen that the function Py(y, t) = P0 is a solution of

Eq. (45) and, because of the uniqueness theorem, it is the only solution with the prescribed initial state.
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The evolution equation for sx(y, t) is readily obtained by multiplying Eq. (40) by x and integrating over x

and z:
∂ sx

∂ t
= ux(y, t)+D12

∂ 2sx

∂y2
, (46)

with initial state sx(y,0) = 0 and boundary conditions ∂ sx
∂y

= 0 at y =± Ly

2
. The velocity ux(y, t) is defined

as:

ux(y, t) =

∫

ux(y,z)p(x,y,z, t)dxdz

P0
. (47)

As is clear, tagged molecules displacement evolve under the action of the average velocity ux(y, t), which is

determined by the gas velocity field ux(y,z) and the spatial molecules distribution described by p(x,y,z, t).
If ux(y,z) ≈ ux(y), as it happens in the central part of the channel when Lz ≫ Ly, then ux(y, t) ≈ ux(y) as

long as tagged particles positions remain confined in the region where ∂ux/∂ z ≈ 0. The above considera-

tions impose a limit to the measurement duration which should not exceed a limit time tl , after which the

tagged molecules z coordinates variance would be larger than channel width. A rough estimation of tl is

given by the following expression:

tl =
L2

z

2D12
. (48)

For t < tl , the approximation ux(y, t)≈ ux(y) holds and Eq. (46) takes the form:

∂ sx

∂ t
= ux(y)+D12

∂ 2sx

∂y2
. (49)

The solution of Eq. (49), with initial state and boundary conditions stated above, can be given in closed

form as (Crank 1975):

sx(y, t) = (W0,ux)t W0 +
∞

∑
k=1

τk(Wk,ux)(1− e−t/τk )Wk(y). (50)

In Eq. (50), the symbol ( , ) denotes the scalar product of any two functions in (− Ly

2
,+

Ly

2
), defined as

( f ,g) =
∫ +

Ly
2

− Ly
2

f (y)g(y)dy. (51)

The functions

Wk(y) =







1√
Ly
, k = 0

√

2
Ly

cos
(

2πk
Ly

y
)

, k = 1, . . . ,∞
(52)

obey the conditions (Wk,Wl) = δkl , being δkl the Kronecker’s delta. The time constants τk =
1

D12

(

Ly

2πk

)2

characterize the exponential time evolution of the amplitudes associated to the spatial modes Wk .

The direct linear relationship between the velocity field ux and the average displacement sx can be seen

more clearly by recasting Eq. (50) in the form:

sx(y, t) =
∫ +

Ly
2

− Ly
2

G(y,y′|t)ux(y
′)dy′, (53)

where the Green function G(y,y′|t) takes the form:

G(y,y′|t) =W0(y)W0(y
′)t +

∞

∑
k=1

τk(1− e−t/τk )Wk(y)Wk(y
′) (54)
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