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The diffuse mismatch model �DMM� is one of the most widely implemented models for predicting
thermal boundary conductance at interfaces where phonons dominate interfacial thermal transport.
In the original presentation of the DMM, the materials comprising the interface were described as
Debye solids. Such a treatment, while accurate in the low temperature regime for which the model
was originally intended, is less accurate at higher temperatures. Here, the DMM is reformulated
such that, in place of Debye dispersion, the materials on either side of the interface are described by
an isotropic dispersion obtained from exact phonon dispersion diagrams in the �100�
crystallographic direction. This reformulated model is applied to three interfaces of interest: Cr–Si,
Cu–Ge, and Ge–Si. It is found that Debye dispersion leads to substantially higher predictions of
thermal boundary conductance. Additionally, it is shown that optical phonons play a significant role
in interfacial thermal transport, a notion not previously explored. Lastly, the role of the assumed
dispersion is more broadly explored for Cu–Ge interfaces. The prediction of thermal boundary
conductance via the DMM with the assumed isotropic �100� dispersion relationships is compared to
predictions with isotropic �111� and exact three-dimensional phonon dispersion relationships. It is
found that regardless of the chosen crystallographic direction, the predictions of thermal boundary
conductance using isotropic phonon dispersion relationships are within a factor of two of those
predictions using an exact three-dimensional phonon dispersion. © 2010 American Institute of
Physics. �doi:10.1063/1.3483943�

I. INTRODUCTION

The continuing miniaturization of today’s nanoelectronic
devices has introduced more interfaces per unit length for
energy carriers to traverse. As a result, the primary thermal
resistance in modern devices is the Kapitza, or thermal
boundary resistance �RBD�, at the various interfaces within
these devices. Resistance to thermal transport in solids is due
to the scattering of energy carriers as they propagate. The
average distance between these scattering events in bulk ma-
terials, described by the carrier mean free path �MFP�, is on
the order of 100 nm at room temperature for phonons,1 but
can vary depending on material and frequency. Abrupt inter-
faces provide yet another site for carrier scattering. In mod-
ern nanostructured devices, with these interfaces spaced at
distances smaller than the carrier MFP, scattering is predomi-
nantly dictated by boundaries between the materials and not
within the materials themselves. In some cases, reduced RBD

is desired, while in others, it is not. For example, in transis-
tors, phonon scattering leads to increased self heating and an
increase in overall operating temperature, in turn reducing
speed and lifetime.2 On the contrary, in thermoelectric de-
vices, increased phonon scattering reduces effective thermal

conductivity, leading to a greater overall figure of merit.3

Regardless, accurate predictive models are, again, increas-
ingly valuable.

Two models have been most widely employed for pre-
dicting RBD at interfaces between different materials: the
acoustic mismatch model �AMM� and the diffuse mismatch
model �DMM�. The AMM treats phonons as waves propa-
gating in a continuous medium and assumes these waves do
not scatter at an interface between two different materials;
rather, phonon transmission and reflection is controlled by
the relative mismatch in acoustic impedance of the
materials.4 Due to this continuum analysis, the AMM works
best at low temperatures where dominant phonon wave-
lengths are long and frequencies are low. The DMM, on the
other hand, operates at the other extreme, assuming all
phonons scatter at the interface and do so diffusely. That is,
phonons lose memory of their incident polarization and di-
rection after scattering at the interface.5 As a result, the
DMM holds for elevated temperatures relative to the AMM,
but still in a regime where the temperature is much less than
the Debye temperature of the materials comprising the inter-
face. Still, the overall accuracy of the DMM has more re-
cently come into question as the model has been applied to a
larger regime than that for which it was originally
developed.5 Several studies6,7 have shown that the agreement
between the DMM and experimentally measured values of
RBD can vary by up to an order of magnitude.

The DMM is accurate in both form and function in the
temperature regime for which it was derived and first ap-
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plied. However, in many subsequent applications, specifi-
cally those at elevated temperatures, the DMM does not cap-
ture the entire physical picture associated with phonon
thermal transport across an interface. Consequently, it suffers
from several deficiencies. These deficiencies include �i� a
lack of consideration given to the quality and conditions of
the interface itself,8,9 �ii� an inaccurate account of the phonon
flux approaching and transmitting across the interface,10–12

and �iii� an over-simplified description of the materials com-
prising the interface.13–15 In many cases, these deficiencies
have been addressed at some level, thus increasing one’s
ability to match predictions to experimental data by eliminat-
ing much of the previously discussed error associated with
the model.6,7 A summary of this work is given in the sections
below.

A. Quality and condition of the interface

It has been shown that significant interatomic diffusion
and roughness at the boundary results in less thermally con-
ductive interfaces.16 This increase in RBD has been attributed
to increased phonon scattering events at a disordered inter-
face. In order to account for interfacial roughness, Beechem
et al.8 implemented a virtual-crystal approach �VCDMM�,
treating the interface between Cr and Si as not one, but two
interfaces. The first interface was that between Cr and a
Cr–Si alloy, and the second between a Cr–Si alloy and Si.
The properties of the Cr–Si virtual crystal were determined
through mixing rules based on the composition profiles seen
during Auger electron spectroscopy depth profiling.17 This
model was further refined by Beechem and Hopkins in the
�-DMM, treating the interfacial region not as a crystal as is
the case in the VCDMM, but instead as an amorphous re-
gion, thus more accurately reflecting the true characteristics
of the interface.9 Both the VCDMM and �-DMM showed
considerable improvement in the ability to match predictions
to experimental data as compared to the original formulation
of the DMM.

B. Phonon flux approaching and transmitting across
an interface

In the original formulation of the DMM, it was assumed
that phonons scatter elastically at the interface. That is, a
phonon with energy �� in material A approaching the inter-
face from side 1 can only scatter with a phonon of the same
frequency �and hence, energy� in material B on side 2. How-
ever, Swartz and Pohl5 over-enforced this condition by main-
taining that the maximum phonon frequency that can partici-
pate in interfacial transport was the maximum phonon
frequency of the most vibrationally restrictive phonon branch
�i.e., the transverse acoustic branch�. Duda et al.10 demon-
strated that this formulation ignores phonon flux approaching
the interface from side 1 that could scatter elastically with
phonons on side 2 of the interface. It was shown that,
through consideration of this previously ignored flux, the
agreement between the DMM and experimental data was
drastically improved. In addition, the case for inelastic scat-
tering of phonons at the interface was made by Hopkins and
Norris11 and Hopkins.12 In both cases, new formulations of

the DMM were presented to account for inelastic phonon
scattering events at the interface. Each of these approaches
showed better agreement between the predicted and experi-
mental data for RBD at interfaces between vibrationally mis-
matched materials �e.g., the Pb-diamond interface�.

C. Describing the properties of the materials
comprising the interface

As mentioned above, most formulations of the DMM
rely on an isotropic Debye dispersion, and thus, the accuracy
of the DMM rests on the ability of an isotropic Debye dis-
persion to describe the materials comprising the interface of
interest. Duda et al.13 extended the applicability of the DMM
to interfaces where one material comprising the interface was
characterized by extreme elastic and vibrational anisotropy.
In doing so, they formulated an effective Debye density of
states for graphite, treating the graphite system as a linear
assembly of uncoupled two-dimensional systems. Phelan14

noted that the use of a Debye density of states to describe
YBa2Cu3O7−� �YBCO� thin films resulted in a severe over-
prediction of RBD at interfaces between YBCO and MgO,
where as the use of a measured phonon density of states
greatly increased the agreement between the DMM and ex-
perimental data. Reddy et al.15 calculated and implemented
exact three-dimensional dispersion relationships via the
Born-von Karman model �BKM� in the formulation of the
DMM when predicting RBD at metal-semiconductor inter-
faces, noting that the predicted values of RBD differ greatly
depending on the assumed dispersion.

D. Present work

The model presented here utilizes pre-existing exact
phonon dispersions readily available in the literature to de-
scribe the vibrational properties of the two materials com-
prising the interface. In this sense, no assumptions need to be
made regarding the type of dispersion or the form of the
phonon density of states, Debye or otherwise. This is particu-
larly beneficial, as Chung et al.18 have demonstrated the im-
pact of assumed dispersion when calculating thermal con-
ductivity. To increase the accessibility of the model while
alleviating the otherwise significant computational require-
ments needed to fully account for the entire three-
dimensional dispersion, an isotropic relationship with the
characteristics of the �100� crystallographic direction �i.e.,
the direction perpendicular to the interface� is assumed. The
validity of this assumption is evaluated by means of a direct
comparison between the present model with the model of
Reddy et al.15 for a Cu–Ge interface. All calculations are
carried out under both the assumptions of elastic and inelas-
tic scattering, thus establishing lower and upper limits of RBD

for three interfaces of interest: Cr–Si, Cu–Ge, and Ge–Si.
Unlike with previous formulations of the DMM, optical pho-
non branches are considered. It is shown that, even in the
limit of elastic scattering, these branches can contribute sig-
nificantly to interfacial transport.19
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II. PHONON THERMAL TRANSPORT ACROSS AN
INTERFACE

The DMM has been derived in full several times in the
literature.5,11,14,20 However, due to the varying assumptions
applied during these derivations, many subtleties of the
model are confused or even lost altogether.10 As a result, the

authors believe it is important to once again carry out this
derivation. Not only will this ensure that these subtleties are
not overlooked, but it will become possible to address the
relative importance of these subtleties under the present set
of assumptions. This being said, the phonon flux, q, across
an interface from side 1 to side 2 can be represented as

qz
1→2 =

1

�2��3�
j
�

0

�/2 �
0

2� �
kx,1

�
ky,1

�
kz,1�0

�� j,1�kj,1��1→2�v j,1�kj,1��f0 sin��1�cos��1�dkz,1dky,1dkx,1d�1d	1, �1�

where z is the direction of transport, j is the polarization, �1

and 	1 are the azimuthal and elevation angles of the flux on
side 1 approaching side 2 relative to the direction of trans-
port, � is the transmission coefficient, v1 is the carrier group
velocity on side 1, f0 is the equilibrium distribution of par-
ticles on side 1, and k is the wave vector. In order to consider
only flux approaching the interface, integration is performed
over half of the Brillouin zone �BZ� and the absolute value of

the group velocity, v1, is taken. In this present study, the
quantity of interest is phonon energy, and thus, the equilib-
rium distribution, f0, is given by the Bose–Einstein distribu-
tion, f0=1 / �exp��� /kBT�−1�. Assuming diffuse scattering,
the directional dependence of Eq. �1� collapses and the ex-
pression for phonon flux across the interface from side 1 to
side 2 becomes

qz
1→2 =

1

8�2�
j
�

kx,j,1

�
ky,j,1

�
kz,j,1�0

�� j,1�kj,1��1→2�v j,1�kj,1��f0dkz,j,1dky,j,1dkx,j,1. �2�

This expression can be further simplified by assuming the
materials in question can be described by an isotropic pho-
non dispersion. This yields

qz
1→2 =

1

8�2�
j
�

kj,1�0
�� j,1�kj,1�kj,1

2 �1→2�v j,1�kj,1��f0dkj,1.

�3�

To validate the assumption of diffuse scattering, we have
plotted the specularity parameter, p, as a function of tem-
perature, T, for several different phonon group velocities in
Fig. 1. The specularity parameter is a measure of the prob-
ability a phonon will scatter specularly at an interface. It is
given as p=exp�−16�3�2 /L2�, where � is the roughness of
the interface and L is the phonon coherence length, given as
L=hv /kBT.1 Assuming an interface roughness of 1 nm, the
fastest traveling phonons in Si �vmax=8,192 m /s� have less
than a 1% chance of scattering specularly at 40 K. For lower
group velocities, rougher surfaces, or higher temperatures,
the probability of phonons scattering specularly is even
lower. The assumed roughness of 1 nm corresponds to a
deviation of 
2 atomic layers at a Cr–Si interface. While
near-perfect interfaces �roughness near one atomic layer� can
be achieved through epitaxial growth processes, other thin-

film deposition techniques create much “rougher”
interfaces.17 As such, we have limited the discussion here to
diffuse phonon scattering at the interface.
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FIG. 1. �Color online� The specularity parameter as a function of tempera-
ture plotted for several different group velocities for an assumed interface
roughness of 1 nm. The specularity parameter is a measure of the probability
a phonon will scatter specularly at an interface. The fastest traveling
phonons in Si �vmax=8,192 m /s� have less than a 1% chance of scattering
specularly at 40 K. For lower group velocities, rougher surfaces, or higher
temperatures, the probability of phonons scattering specularly is even lower.
As such, we have limited the discussion here to diffuse phonon scattering at
the interface.
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Under the diffuse assumption, the phonon transmissibil-
ity from side 1 to side 2 must relate to the phonon transmis-
sibility from side 2 to side 1 via the expression �2→1= �1
−�1→2�. Hence, through the application of detailed balance,
qz

1→2=qz
2→1, it is possible to solve for �1→2 explicitly. How-

ever, the formulation of the transmission coefficient is
largely dependent on the assumptions invoked when apply-
ing detailed balance.10 In the following derivation, it is as-
sumed the type of scattering can be either elastic or inelastic.
The purpose of considering both of these cases is twofold.
First, it will be shown that these treatments are self-
consistent and converge at low temperatures, indicating a
minimum temperature at which inelastic processes may start
to contribute to interfacial transport. Second, these indepen-
dent formulations will allow for the construction of upper
and lower bounds on the predicted value of thermal bound-
ary resistance. The formulations of the transmission coeffi-
cient under these assumptions are discussed in brief below.

A. Elastic scattering at the interface

In the limit of elastic scattering, a phonon in material A
on side 1 of the interface can scatter with a phonon in mate-
rial B on side 2 only if � j,1�kj,1�=� j,2�kj,2�. As a result, to
derive the elastic transmission coefficient, detailed balance
should be applied to the phonon flux approaching the inter-
face from both sides on a per frequency basis. Consequently,
if a particular phonon frequency does not exist in material A,
despite existing in material B, or vice versa, that phonon
frequency cannot participate in interfacial transport. Starting
in k-space under the assumption of detailed balance and dif-
fuse scattering, the transmission coefficient from side 1 to 2
is given by

�1→2�k1� =
� j�� j,2kj,2

2 v j,2f0dkj,2

� j�� j,2kj,2
2 v j,2f0dkj,2 + � j�� j,1kj,1

2 v j,1f0dkj,1

.

�4�

The summations over the different polarizations, j, enforce
the assumption of diffuse scattering, thus letting the flux of
phonons of one polarization scatter to any other polarization.
This presentation of the transmission coefficient, while a
function of wavevector, has the restriction that only wave
vectors corresponding to the phonon frequency of interest
are considered. To make this apparent, the well known rela-
tionship between wave vector, frequency, and group velocity,
v�k�	d��k� /dk, is invoked. As such, Eq. �4� can be rewrit-
ten and simplified as

�1→2��� =
� j�kj,2����2

� j�kj,2����2 + � j�kj,1����2 . �5�

If the Debye assumption were to be made, Eq. �5� reduces to
that derived in the original presentation of the DMM.5 How-
ever, in the original presentation of the DMM, this formula-
tion of the transmission coefficient is only valid up to the
highest phonon frequency common to all phonon branches
in both materials on sides 1 and 2 of the interface. Due to
the combination of both this imposed limit and the Debye

assumption, the transmission coefficient is constant for all
participating phonon frequencies. For all other phonon fre-
quencies, the transmission coefficient was effectively zero.
In this study, under the elastic scattering assumption, �1→2 is
defined for all frequencies that exist in both materials A and
B on each side of the interface, regardless of how many
branches contain that frequency. As described by Duda et
al.,10 this ensures that no incident phonon flux approaching
the interface is ignored. As a result, the transmission coeffi-
cient, even under the Debye assumption, is a function of
phonon frequency, as seen in the center column of Fig. 2.
These calculations are discussed in more detail within Sec.
II B.

B. Inelastic scattering at the interface

At the limit where all elastic and inelastic channels are
considered, a phonon in material A on side 1 of the interface
can scatter with a phonon in material B on side 2 even if
� j,1�kj,1��� j,2�kj,2�. As a result, all phonons on both sides of
the interface can participate in interfacial transport processes.
Starting again under the assumption of diffuse scattering, but
now applying detailed balance to the total flux at the inter-
face �not per frequency, as in the elastic case�, and thus in-
cluding contributions from all elastic and inelastic channels,
the transmission coefficient becomes

�1→2 =
� j
kj,2

�� j,2kj,2
2 v j,2f0dkj,2

� j
kj,2
�� j,2kj,2

2 v j,2f0dkj,2 + � j
kj,1
�� j,1kj,1

2 v j,1f0dkj,1

.

�6�

As before, summations over polarizations, j, enforce the as-
sumption of diffuse scattering. The integrals over the entire
Brillouin half-space in both materials A and B indicate that
the flux of a phonon of any wave vector or frequency on side
1 can interact with a phonon of any wave vector or frequency
on side 2. However, due to this integration, with the integra-
tion limits being a function of properties of material A on
side 1 and material B on side 2, the inelastic transmission
coefficient is different from the elastic transmission coeffi-
cient in two ways. First, the transmission coefficient is no
longer a function of frequency, as in the limit of elastic scat-
tering, but is rather a single value. Second, the equilibrium
distributions do not cancel as they do in the elastic case. As
a result, � becomes a function of temperature, ��T�. It is
important to note, for reasons still yet to be discussed, that
the T-dependence is related to the assumed equilibrium dis-
tribution of the incident phonon flux, and not related to any
possible temperature drop at the interface. Again, as with the
elastic case, this formulation is discussed in length in other
work.10

We digress at this point to discuss the implication of
Eq. �6�, and the DMM formulation in general, on modeling
inelastic scattering. Above the Debye temperature, the pho-
non population is no longer driven quantum mechanically,
but classically,21 which takes a linear dependence on tem-
perature. Therefore, assuming elastic scattering, RBD will be
constant at temperatures above the limiting Debye tempera-
ture of the two materials since RBD is proportional to the
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temperature derivative of the phonon population. Following
this, RBD will be constant when temperatures are elevated
above the Debye temperature of both materials comprising
the interface when considering inelastic scattering via Eq.
�6�. Previous works have shown that inelastic scattering can
contribute to RBD both in the regime where neither or only
one material is in the classical limit �we will refer to this as
the quantum regime�11,12,22–26 and in the regime where both
materials are in the classical limit �referred to as the classical
regime�.27–29 Therefore, there are two different regimes
where inelastic phonon scattering has shown to play a role in
RBD: the classical regime and the quantum regime. As any
formulation of RBD based on the DMM, or other models that
treat RBD as a derivative of a phonon population, will predict
a constant hBD in the classical limit, we focus this work on
developing the present formulation to elucidate the role of
interfacial phonon scattering in the quantum regime.

C. Application to thermal boundary conductance

The relationship between the phonon flux traversing an
interface from side 1 to side 2 and thermal boundary conduc-
tance, hBD= �RBD�−1, can be established through a modified
form of Fourier’s law and noting that

qz
1→2 = hBD

1→2T1→2, �7�

where T1→2 is the temperature drop across the interface. The
main thermophysical processes on which this work is fo-
cused are the phonon interfacial scattering processes which
are described by the transmission coefficients. We therefore
focus our control volume around the fluxes approaching the
interface within a MFP. As we are considering only the ef-
fects of interfacial processes, and not their relations to the
temperature gradient developed in the materials comprising
the interface, and since we are only considering completely
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FIG. 2. �Color online� The frequency-dependent elastic transmission coefficients �center column� for the Cr–Si �top�, Cu–Ge �middle�, and Ge–Si �bottom�
interfaces, as well as the dispersion diagrams of the constituent materials. The solid black lines represent the values using the isotropic �100� dispersion, while
the dashed red lines represent the values when using the Debye dispersion. In all cases the transverse branches �TA and TO� are doubly degenerate due to the
crystallographic symmetry. Regardless of the dispersion relationship, the elastic transmission coefficient �center column� increases when the number of phonon
states per wave vector �� jd� j /dkj� increases on side 2 or decreases on side 1, and decreases in the opposite cases.
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diffusive scattering events �i.e., a fully thermalizing black
boundary�, we will retain our hBD analysis using Eq. �7�
based on the so-called equilibrium flux in Eq. �1�. To account
for phonon scattering in the materials on either side of the
interface and therefore the existence of a temperature gradi-
ent �i.e., to account for a large control volume which in-
cludes anharmonic processes in the materials adjacent to the
interface�, Eq. �1� should be reformulated using a diffusion-
transmission boundary condition.30,31 This formulation has
been derived in detail by Landry and McGaughey.29 How-
ever, regardless of formulation, the transmission coefficients
at the interface must be determined, and in the diffusive re-
gime these are described by the detailed balance formulation
described previously10 With this in mind, hBD is given by

hBD
1→2 =

1

8�2�
j
�

kj,1

�� j,1�kj,1�kj,1
2 �1→2�v j,1�kj,1��

� f0

�T
dkj,1.

�8�

It is important to remember that, for all intents and purposes,
the transmission coefficient has already been formulated at
this point in the derivation of the DMM. As a result, it is
critical that any restrictions or allowances regarding the
range of participating phonons established during the appli-
cation of detailed balance and the formulation of the trans-
mission coefficient must be upheld here as well.

III. RESULTS

In this section three interfaces of interest are examined:
Cr–Si, Cu–Ge, and Ge–Si. The DMM will be applied to each
of these interfaces in order �i� to compare the Debye and
isotropic �100� phonon dispersion relationships, �ii� to estab-
lish the upper and lower limits of hBD under the assumptions
of inelastic and elastic scattering, and �iii� to evaluate the
contribution of optical phonons to interfacial thermal trans-
port processes. Lastly, the accuracy of an assumed isotropic
dispersion based on the exact phonon dispersion in either the
�100� or �111� crystallographic directions will be evaluated
by comparing predicted values of hBD at the Cu–Ge interface
for these scenarios to those values predicted through the use
of an exact three-dimensional dispersion.15

A. Comparison of the Debye and isotropic †100‡
dispersion relationships

In order to compare the Debye and isotropic dispersion
relationships, exact phonon dispersion relationships of Cr,32

Cu,33 Ge, and Si �Ref. 34� were taken from the literature. The
dispersion relationships describing each phonon branch in
the �100� direction were fit with fourth-order polynomials,
establishing both phonon frequency and group velocity
�given by d� /dk� for each branch as fourth and third order
polynomial functions of k, respectively.35 The Debye disper-
sion relationships were formulated by taking the linear coef-
ficients of the fourth order polynomials describing the acous-
tic phonon branches of each material and extrapolating lines
tangential to the dispersion curves at the zone center to the
Debye BZ �DBZ� edge. That is, if a phonon branch in the

isotropic �100� dispersion is given by ��k�=Ak4+Bk3+Ck2

+Dk, where A, B, C, and D, are the polynomial coefficients,
the corresponding Debye dispersion is given by ��k�=Dk
and vD=D. Using these values, D was within 5% of the
sound velocities of the materials of interest, suggesting this
method of determining Debye dispersion should agree with
the traditional method �using experimentally determined
sound velocities and densities�.

Figure 2 shows the frequency-dependent elastic trans-
mission coefficients �center column� for the Cr–Si �top�,
Cu–Ge �middle�, and Ge–Si �bottom� interfaces, as well as
the dispersion diagrams of the constituent materials. The
solid black lines represent the values using the isotropic
�100� dispersion, while the dashed red lines represent the
values when using the Debye dispersion. In all cases the
transverse branches �transverse acoustic, TA, and transverse
optical, TO� are doubly degenerate due to the crystallo-
graphic symmetry of cubic crystals in the �100� direction.
The maximum Debye wave vector, or DBZ edge, for each
material is given by kD=�D /vD, where �D=vD�6�N�1/3 and
N is the lattice point density. In the cases of Cu, Ge, and Si,
the respective DBZ edges are within 2% of the real BZ edges
in the �100� direction. However, in Cr, the DBZ edge is at
kD=1.70�1010 m−1, while the BZ edge in the �100� direc-
tion is at k=2.18�1010 m−1. Due to the significant differ-
ence between the Debye and real zone edges in Cr, the DBZ
edge has been illustrated in the dispersion diagram of Cr in
Fig. 2 �top left�. For the other materials considered, the mi-
nor differences between the DBZ and the BZ edges are omit-
ted for the sake of clarity.

In all cases, the Debye dispersion greatly over-predicts
the maximum phonon frequency of each branch in the �100�
direction. This over-prediction is particularly noticeable in
Cr and Cu, where there are no high-frequency optical
phonons. The discontinuities in the elastic transmission co-
efficient, (�, middle column� can be mapped back to an ap-
pearance or extinction of a phonon branch on either side of
the interface. A “positive” discontinuity �where � increases�
occurs when a branch on side 1 disappears or a branch on
side 2 appears, while a “negative” discontinuity occurs in the
opposite cases. This is true for both the Debye and isotropic
dispersion relationships. Similarly, with the isotropic �100�
dispersion relationships, if a particular branch is leveling off
with increasing phonon frequency on side 2 �right column�
while the slopes of the branches on side 1 �left column�
remain constant, the transmission coefficient increases; this
is the behavior described by Eq. �4�. On the other hand, if a
particular branch is leveling off on side 1 while the slopes of
the branches on side 1 remain constant, the transmission co-
efficient decreases. In other words, the elastic transmission
coefficient increases when the number of phonon states per
wave vector �� jd� j /dkj� increases on side 2 or decreases on
side 1, and decreases in the opposite cases.

Figure 3 shows the ratio of the DMM predicted values of
hBD using the Debye and isotropic �100� dispersion relation-
ships �hBD

Debye /hBD
�100�� as a function of temperature for Cr–Si,

Cu–Ge, and Ge–Si interfaces. Regardless of the assumed
type of scattering, this ratio is greater or equal to one for all
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interfaces over the entire temperature range. Ultimately, the
transmission coefficient alone cannot be responsible for this
over-prediction as, by form, it is confined to a value between
0 and 1. Thus, the over-prediction of the Debye model rela-
tive to the isotropic �100� model is due to the Debye model’s
tendency to over-predict the phonon flux approaching the
interface �the Debye model incorrectly predicts the existence
of high-velocity, high energy-phonons near the zone edge�.
This over-prediction is particularly substantial in the case of
the Cr–Si interface, where the maximum phonon frequency
is not at the BZ edge. However, this over-prediction is not as
great for Cu–Ge and Ge–Si interfaces, where the Debye
model’s over-predictions of the acoustic phonon frequencies
and velocities are coincidentally compensated for �to an ex-
tent� by its lack of consideration of the optical phonons. That
is, since the Debye model ignores optical phonons and the
isotropic �100� model includes them, the additional interfa-
cial flux considered by the isotropic model offsets the Debye
models over-prediction of the acoustic phonons.

B. Assumptions of elastic and inelastic scattering at
the interface

When comparing Figs. 3�a� and 3�b� it is apparent that
the ratio between predicted values of hBD using the Debye
and isotropic �100� dispersion relationships �hBD

Debye /hBD
�100�� is

greater in the elastic case than in the inelastic case. This can

be explained in the following way. In the elastic case, par-
ticipation in interfacial transport processes is restricted to
primarily acoustic phonons. This is especially true in the case
of the Cr–Si interface, where the optical phonons in Si are
not accessible to the acoustic phonons in Cr �under the as-
sumption of elastic scattering�. In the inelastic case, all
acoustic and optical phonons can participate. As mentioned
above, the ratio between the Debye model and the isotropic
�100� model is smaller for those interfaces where optical
phonons are present. Likewise, by enabling the optical
branches to participate in full, once again the Debye model’s
over-predictions of the acoustic phonon frequencies and ve-
locities are compensated for by its lack of consideration of
the optical phonons. Again, the Debye model was not in-
tended to capture the effects of the optical phonons, and this
compensation is merely coincidental.

Figure 4 shows a comparison of the elastic and inelastic
transmission coefficients for Cr–Si, Cu–Ge, and Ge–Si inter-
faces. The elastic transmission coefficients �dashed lines�
were calculated by averaging the frequency dependent values
shown in the center column of Fig. 2, and, as discussed, are
temperature independent. Inelastic transmission coefficients
�solid lines� generally increase with increasing temperature.
Ultimately, the slope of the inelastic curves, �� /�T, is posi-
tive when the occupied density of states on side 2 increases
relative to the occupied density of states on side 1 with in-
creasing temperature. This can be expressed mathematically
by recognizing the temperature derivative of Eq. �6� goes as

��

�T
�

�

�T
� 
k2

f0


k2
f0 + 
k1

f0
� . �9�

At the Cu–Ge interface, the inelastic transmission coefficient
decreases as temperature increases from 50 to 80 K. Thus, it
can be said that, within this temperature range, the occupied
density of states in Cu is increasing faster with temperature
than it is in Ge.

The ratios of the inelastic and elastic predictions of hBD

using isotropic �100� dispersion �hBD
inel /hBD

el � for Cr–Si, Cu–
Ge, and Ge–Si interfaces are presented in Fig. 5. In prior
inelastic treatments of the DMM, Debye dispersion relation-
ships were used to describe the materials comprising the in-
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FIG. 3. �Color online� The ratio of the predicted value of hBD using the
Debye and isotropic �100� dispersion relationships as a function of tempera-
ture for the Cr–Si, Cu–Ge, and Ge–Si interfaces assuming �a� elastic and �b�
inelastic scattering at the interface. The over-prediction is not as great for
Cu–Ge and Ge–Si interfaces, where the Debye model’s over-predictions of
the acoustic phonon frequencies and velocities are coincidentally compen-
sated for �to an extent� by its lack of consideration of the optical phonons.
That is, since the Debye model ignores optical phonons and the isotropic
model includes them, the additional interfacial flux due to the optical
phonons in the isotropic model offsets the Debye models over-prediction of
the acoustic phonons.
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FIG. 4. �Color online� A comparison of the elastic and inelastic transmission
coefficients for the three interfaces of Cr–Si, Cu–Ge, and Ge–Si interfaces.
The elastic transmission coefficients �dashed lines� were calculated by av-
eraging the frequency dependent values shown in Fig. 2, and as discussed,
are temperature independent. Inelastic coefficients �solid lines� generally
increase with increasing temperature.
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terface. As a result, the shapes of these curves were the same
regardless of the interface and only the magnitude of the
presented ratio differed.36 Here, however, the shapes vary
significantly from interface to interface due to the nonlinear
behavior of the phonon dispersion. Still, as previously shown
with the Debye model, the higher the temperature, the
greater the inelastic to elastic ratio. Additionally, for inter-
faces characterized by large vibrational mismatch �where the
overlap between each material’s phonon density of states is
small�, inelastic scattering can play a larger role at elevated
temperatures.36

C. Contribution of optical phonons to interfacial
transport

Through the use of isotropic �100� dispersion relation-
ships, the relative contribution of optical phonons can be
determined explicitly. Figure 6 illustrates the contribution of
optical phonons to the DMM predicted values of hBD under
the �a� elastic and �b� inelastic scattering assumptions. Again,
at the Cr–Si interface, under the assumption of elastic pho-
non scattering, the optical phonons in Si are inaccessible to
the acoustic phonons in Cr. As a result, optical phonons un-
der this scattering assumption do not contribute to interfacial
transport at the Cr–Si interface. However, optical phonons do
participate in elastic phonon processes at both Cu–Ge and
Ge–Si interfaces. At the Ge–Si interface in particular, these
contributions can be significant, exceeding 40% of the total
predicted value of hBD. That is, hBD

optical / �hBD
acoustic+hBD

optical�
�40%. Under the assumption of inelastic scattering at the
interface, optical phonons play a role at all three interfaces
studied. Surprisingly, the contribution of optical phonons to
interfacial transport at these interfaces is significant even at
relatively low temperatures, i.e., T100 K. The contribu-
tion of optical phonons in interfacial transport processes is
explored further elsewhere.19

D. Comparison of isotropic one-dimensional „1D… and
exact three-dimensional „3D… dispersion
relationships

Throughout this study we’ve assumed that it is fair to
describe the phonon dispersion of a cubic crystal with an

isotropic dispersion relationship taken from the exact phonon
dispersion in the �100� crystallographic direction. In an at-
tempt to evaluate the accuracy of the assumption, the pre-
dicted value of hBD for a Cu–Ge interface using this isotropic
�100� dispersion relationship is compared to predictions us-
ing an isotropic �111� dispersion relationship and the data
from Reddy et al., �where exact 3D phonon dispersions are
first calculated via a BKM�.15 We use this 3D exact-phonon
model as a means of comparison rather than experimental
data for two reasons. First, this exact-dispersion model rep-
resents the most thorough and computationally expensive
means of predicting hBD as a function of the vibrational prop-
erties of the materials comprising the interface alone. Sec-
ond, as discussed at length in the introduction, many addi-
tional aspects of the interface can influence hBD. Without
intimate knowledge of the interfacial conditions correspond-
ing to experimentally measured values, assessing the accu-
racy of this model would be difficult.

The aforementioned exact-phonon model15 study did not
take into consideration the role of optical phonons. Conse-
quently, the optical phonons have been intentionally left out
of the calculations in this section. Predictions of hBD using
Debye dispersions, isotropic �100� and �111� dispersions, and
exact 3D phonon dispersions are compared in Fig. 7. As seen
in the figure, for a majority of the temperature range the
isotropic �100� and �111� dispersions bound the values pre-
dicted using the exact three-dimensional phonon dispersion.
The reason for the slight difference in the initial rise of the
data cannot be known without further details regarding the
formulation of Reddy et al., especially with regard to the
manner in which detailed balance was applied. The chosen
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FIG. 5. �Color online� Ratio of the inelastic and elastic predictions of hBD

using isotropic �100� dispersion. As expected, the temperature dependence
of the Bose-Einstein distribution function ensures that the ratio hBD

inel /hBD
el

generally increases with increasing temperature. Additionally, this ratio is
larger for interfaces between materials with a limited range of phonon fre-
quency overlap �i.e., Cr–Si�.
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FIG. 6. �Color online� The contribution of optical phonons to the predicted
value of hBD using the isotropic �100� phonon dispersion under the assump-
tions of �a� elastic and �b� inelastic scattering. There is no optical phonon
contribution at Cr–Si interfaces under the elastic scattering assumption,
whereas the optical phonons contribute in excess of 40% at 300 K for the
Ge–Si interface.
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crystallographic direction does, in fact, introduce some vari-
ability with regards to the predicted value, although the 1D
and 3D exact-dispersion values are grouped within a factor
of 2, whereas the Debye model is off by a factor of 7 at
elevated temperatures. Implementing the isotropic approach
then, while no doubt reducing the final accuracy of the
model, allows for significant improvements over the tradi-
tional DMM without the need for the computational expense
and expertise needed in a full 3D model.

IV. CONCLUSION

The role of phonon dispersion in the prediction of ther-
mal boundary conductance via the diffuse mismatch model
has been examined. All calculations were carried out under
both the assumptions of elastic and inelastic phonon scatter-
ing at the interface. It was shown that the Debye dispersions
most frequently used in the DMM lead to an over-prediction
of the phonon flux approaching the interface, and hence, an
over-prediction of hBD at Cr–Si, Cu–Ge, and Ge–Si inter-
faces. The role of optical phonons in interfacial transport
processes was briefly discussed, and it was shown that their
contribution to thermal transport across an interface between
Ge and Si can be in excess of 40% of total transport. It is
reasonable to assume this value could be much greater for
interfaces comprised of materials with more optical phonon
branches. Additionally, if the contribution of optical phonons
was large enough, the over-prediction associated with the
Debye dispersion could be mitigated entirely. Lastly, the ac-
curacy of the assumed isotropic �100� dispersions was evalu-
ated by comparing the predicted value of hBD using these
dispersion relationships with predictions using isotropic
�111� dispersion relationships and exact 3D phonon disper-
sion relationships for an interface between Cu and Ge. It was
seen that, using �100�, �111�, and exact three-dimension pho-

non dispersion, the predicted values were in general agree-
ment with each other and displayed the same temperature
dependence.

ACKNOWLEDGMENTS

The authors at U.Va. would like to acknowledge the fi-
nancial support of the Air Force Office of Scientific Research
�Grant No. FA9550-09-1-0245�. J.C.D. is greatly apprecia-
tive for financial support from the National Science Founda-
tion through the Graduate Research Fellowship Program.
P.E.H. is grateful for funding from the LDRD program office
through the Sandia National Laboratories Harry S. Truman
Fellowship. Sandia National Laboratories is a multiprogram
laboratory operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed-Martin Co., for the United States
Department of Energy’s National Nuclear Security Adminis-
tration under Contract No. DE-AC04-94AL85000.

1G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treat-
ment of Electrons, Molecules, Phonons, and Photons �Oxford University
Press, New York, 2005�.

2S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed.
�Wiley, New York, 2007�.

3L. W. da Silva and M. Kaviany, Int. J. Heat Mass Transfer 47, 2417
�2004�.

4W. A. Little, Can. J. Phys. 37, 334 �1959�.
5E. T. Swartz and R. O. Pohl, Rev. Mod. Phys. 61, 605 �1989�.
6R. J. Stoner and H. J. Maris, Phys. Rev. B 48, 16373 �1993�.
7R. J. Stevens, A. N. Smith, and P. M. Norris, J. Heat Transfer 127, 315
�2005�.

8T. Beechem, S. Graham, P. Hopkins, and P. Norris, Appl. Phys. Lett. 90,
054104 �2007�.

9T. Beechem and P. E. Hopkins, J. Appl. Phys. 106, 124301 �2009�.
10J. C. Duda, P. E. Hopkins, J. L. Smoyer, M. L. Bauer, T. E. English, C. B.

Saltonstall, and P. M. Norris, Nanoscale Microscale Thermophys. Eng. 14,
21 �2010�.

11P. E. Hopkins and P. M. Norris, Nanoscale Microscale Thermophys. Eng.
11, 247 �2007�.

12P. E. Hopkins, J. Appl. Phys. 106, 013528 �2009�.
13J. C. Duda, J. L. Smoyer, P. M. Norris, and P. E. Hopkins, Appl. Phys.

Lett. 95, 031912 �2009�.
14P. E. Phelan, J. Heat Transfer 120, 38 �1998�.
15P. Reddy, K. Castelino, and A. Majumdar, Appl. Phys. Lett. 87, 211908

�2005�.
16P. E. Hopkins and P. M. Norris, Appl. Phys. Lett. 89, 131909 �2006�.
17P. E. Hopkins, P. M. Norris, R. J. Stevens, T. E. Beechem, and S. Graham,

J. Heat Transfer 130, 062402 �2008�.
18J. D. Chung, A. J. H. McGaughey, and M. Kaviany, J. Heat Transfer 126,

376 �2004�.
19T. E. Beechem, J. C. Duda, P. E. Hopkins, and P. M. Norris �unpublished�.
20P. M. Norris and P. E. Hopkins, J. Heat Transfer 131, 043207 �2009�.
21C. Kittel, Introduction to Solid State Physics, 8th ed. �Wiley, Hoboken,

New Jersey, 2005�.
22P. E. Hopkins, R. N. Salaway, R. J. Stevens, and P. M. Norris, Int. J.

Thermophys. 28, 947 �2007�.
23P. E. Hopkins, P. M. Norris, and R. J. Stevens, J. Heat Transfer 130,

022401 �2008�.
24H.-K. Lyeo and D. G. Cahill, Phys. Rev. B 73, 144301 �2006�.
25C. Dames and G. Chen, J. Appl. Phys. 95, 682 �2004�.
26G. Chen, Phys. Rev. B 57, 14958 �1998�.
27Y. Chen, D. Li, J. Yang, Y. Wu, J. R. Lukes, and A. Majumdar, Physica B

349, 270 �2004�.
28R. J. Stevens, L. V. Zhigilei, and P. M. Norris, Int. J. Heat Mass Transfer

50, 3977 �2007�.
29E. S. Landry and A. J. H. McGaughey, Phys. Rev. B 80, 165304 �2009�.

��� ��� ���
�

�

�

�

�
	 ���


��������� ���

� �
�
��

�
��
�
��
�

�����

�����

�����

����� �� ��� ����

FIG. 7. �Color online� Comparison of the elastic-isotropic formulation of
the DMM presented here to the exact phonon dispersion presentation of
Reddy et al. �Ref. 15�. To examine the influence of chosen crystallographic
direction on the accuracy of the present model, phonon dispersions in two
directions of high symmetry ��100� and �111�� were implemented for the
Cu–Ge interface. In order to compare these cases directly, optical phonons
were intentionally ignored. As seen, for a majority of the temperature range,
the two crystallographic directions bound the values predicted using the 3D
phonon dispersion. The source of the slight difference in the initial rise of
the data points cannot be known without further details regarding the for-
mulation of Reddy et al. However, it is reasonable that this difference could
be the result of a different formulation of detailed balance �Ref. 10�.

073515-9 Duda et al. J. Appl. Phys. 108, 073515 �2010�

Downloaded 28 Dec 2012 to 137.54.10.198. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.11.024
http://dx.doi.org/10.1103/RevModPhys.61.605
http://dx.doi.org/10.1103/PhysRevB.48.16373
http://dx.doi.org/10.1115/1.1857944
http://dx.doi.org/10.1063/1.2437685
http://dx.doi.org/10.1063/1.3267496
http://dx.doi.org/10.1080/15567260903530379
http://dx.doi.org/10.1080/15567260701715297
http://dx.doi.org/10.1063/1.3169515
http://dx.doi.org/10.1063/1.3189087
http://dx.doi.org/10.1063/1.3189087
http://dx.doi.org/10.1063/1.2133890
http://dx.doi.org/10.1063/1.2357585
http://dx.doi.org/10.1115/1.2897344
http://dx.doi.org/10.1115/1.1723469
http://dx.doi.org/10.1115/1.3072928
http://dx.doi.org/10.1007/s10765-007-0236-5
http://dx.doi.org/10.1007/s10765-007-0236-5
http://dx.doi.org/10.1115/1.2787025
http://dx.doi.org/10.1103/PhysRevB.73.144301
http://dx.doi.org/10.1063/1.1631734
http://dx.doi.org/10.1103/PhysRevB.57.14958
http://dx.doi.org/10.1016/j.physb.2004.03.247
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.01.040
http://dx.doi.org/10.1103/PhysRevB.80.165304


30G. Chen, Appl. Phys. Lett. 82, 991 �2003�.
31W. G. Vincenti and C. H. Kruger, Introduction to Physical Gas Dynamics

�Krieger, Malabar, FL, 2002�.
32R. C. Rai and M. P. Hemkar, J. Phys. F: Met. Phys. 8, 45 �1978�.

33S. K. Sinha, Phys. Rev. 143, 422 �1966�.
34W. Weber, Phys. Rev. B 15, 4789 �1977�.
35E. Pop, S. Sinha, and K. E. Goodson, Proc. IEEE 94, 1587 �2006�.
36P. E. Hopkins and P. M. Norris, J. Heat Transfer 131, 022402 �2009�.

073515-10 Duda et al. J. Appl. Phys. 108, 073515 �2010�

Downloaded 28 Dec 2012 to 137.54.10.198. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.1543239
http://dx.doi.org/10.1088/0305-4608/8/1/009
http://dx.doi.org/10.1103/PhysRev.143.422
http://dx.doi.org/10.1103/PhysRevB.15.4789
http://dx.doi.org/10.1109/JPROC.2006.879794
http://dx.doi.org/10.1115/1.2995623

