
Role of DLC-1, a Tumor Suppressor Protein with RhoGAP activity,

in Regulation of the Cytoskeleton and Cell Motility

T.Y. Kim, D. Vigil, C.J. Der, and R.L. Juliano
Dept. of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina,

School of Medicine, Chapel Hill NC 27599

I. Overview

DLC-1 was originally identified as a potential tumor suppressor. One of the key biochemical

functions of DLC-1 is to serve as a GTPase activating protein (GAP) for members of the Rho

family of GTPases, particularly Rho A-C and CDC 42. Since these GTPases are critically

involved in regulation of the cytoskeleton and cell migration, it seems clear that DLC-1 will

also influence these processes. In this review we examine basic aspects of the actin cyoskeleton

and how it relates to cell motility. We then delineate the characteristics of DLC-1 and other

members of its family, and describe how they may have multiple effects on the regulation of

cell polarity, actin organization, and cell migration.

II. Basic Aspects of Cytoskeletal Function in Cell Migration and Tumor Cell

Invasion

Cell Migration and Tumor Invasion

The invasive and metastatic characteristics of cancer cells are dependent on their ability to

migrate effectively through the tumor microenvironment. Thus alteration in migratory ability

is one of the hallmarks of the epithelial-mesenchymal transition that is so pivotal to tumor

progression [1]. Cell migration is an extraordinarily complex process involving many different

structural proteins and signaling pathways [2], and it is manifested differently in various cell

types and under differing environmental conditions. The classic model of cell migration

pertains to fibroblast-type cells migrating on a two-dimensional surface and is typified by cell

polarization with an extensive leading lamellipodium and a narrow retracting tail. However,

many other morphologies of cell locomotion can occur such as the pseudopodial-type migration

associated with hematopoietic cells and the movements of epithelial sheets without loss of cell-

cell contact [3]. Further, it is becoming increasing clear that cells migrate very differently in a

three-dimensional tissue or culture environment than they do in two-dimensional situations.

Cell motility is intimately linked to the functions of the actinomyosin cytoskeleton and involves

iterative and cyclical regulation of key aspects of cytoskeletal function [4,5] Rho family small

GTPases are key regulators of signaling pathways that regulate actin organization and cell

migration [6,7]. In the sections below we will describe some of the major pathways that control

cell polarity and the functions of the actin-myosin contractile apparatus. In particular, we focus

on the function of DLC-1, a negative regulator of Rho GTPase function [8]. We discuss how

the loss of DLC-1 may lead to aberrant Rho GTPase function and contribute to the aberrant

migration, invasion and metastatic properties of cancer cells.

Cell Matrix Interaction and Cell Motility

In order for cells to move they must grip and pull against the extracellular matrix (ECM).

Although other proteins and glycosaminoglycans also play a part, it is the integrin family of

heterodimeric transmembrane proteins that plays the primary role in mechanically linking
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between the multiple proteins of the ECM and the actin cytoskeleton [9]. Various integrins

have extracellular domains with affinities for different ECM proteins such as fibronectin,

laminin or collagen, while the intracellular tails of integrins can link directly to specialized

cytoskeletal proteins including talin, filamin and paxillin that then directly or indirectly bind

actin, thus providing a bridge between the exterior and interior of the cell. The specialized

organelles of integrin-mediated cell-matrix adhesions are called focal contacts or focal

adhesions and are complex, dynamic multiprotein structures [10,11]. Although integrins are

key structural molecules it is important to realize that they also are vitally important in a number

of signal transduction processes. Thus our laboratory and others have extensively explored the

impact of integrins on the ERK mitogen-activated protein kinase pathway, as well as on other

key signaling processes that impact on cell proliferation or differentiation [12,13]. It is also

clear that integrin signaling plays a major role in the regulation of directional cell migration

[14].

Role of Rho Family Proteins in Cytoskeletal Regulation

Starting with the seminal observations of Hall and colleagues in the early 1990s [15], it has

become manifest that Rho family GTPases are critically involved in extracellular signal-

stimulated regulation of the cytoskeleton and cell motility. The family is comprised of 20

mammalian members, with RhoA, Rac1 and Cdc42 the most studied and best characterized

[16]. Rho GTPases function as GDP/GTP-regulated binary switches (Fig. 1). Activated cell

surface receptors and integrins stimulate guanine nucleotide exchange factors (RhoGEFs) to

promote formation of the active GTP-bound protein, which then engages downstream effectors.

GTPase activating proteins (RhoGAPs) stimulate GTP hydrolysis, returning the GTPase to the

inactive GDP-bound state. Less is known regarding how RhoGAPs may be regulated by

extracellular signals.

Rho GTPases regulate distinct actin reorganization processes. A very simplistic summary

would indicate that active RhoA promotes actin filament bundling (stress fibers) and focal

adhesion formation, active Rac1 promotes actin accumulation at the leading edge of migrating

cells and the extension of the lamellipodium, and active Cdc42 controls cell polarity and

extension of actin microspikes and filopodia. Obviously the true situation is much more

complex [17] but the simple picture will be helpful to keep in mind in the more detailed

discussion below. An exciting new aspect of Rho and other small GTPases is the visualization

of the active states of these GTPases in living cells, clearly demonstrating that extracellular

stimuli cause a precise spatio-temporal activation of the GTPase that is intimately associated

with the formation of actin structures and the directionality of migration [18,19].

Basic aspects of actinomyosin network organization

The lamellipodium, a key structure underlying cell motility, is supported by a highly branched

actin network. Lateral branching of actin is mediated by the binding of the multi-protein Arp2,3

complex to an existing actin filament and is regulated by a set of proteins that includes Wave/

Scar, Abi,Nap125, Sra-1 and HSPC-300 that in turn is regulated by the Rac GTPase;

alternatively the Arp2,3 complex can be regulated by WASP or N-WASP which are activated

via Cdc42 [20,21]. Another key aspect of lamellipodial function, essential to cell migration,

concerns the actin severing activity of cofilin and related proteins. Cofilin's severing ability is

inactivated by phosphorylation at the serine 3 position, a process controlled by the action of

kinases, including LIM kinase and TES kinases, and of phosphatases, particularly of the

slingshot and chronophin families [22,23]. Regulation of this phosphorylation process can in

part be traced back to Rho family GTPases; for example Rac or Cdc42-mediated activation of

PAK kinases leads to phosphorylation and activation of LIM kinase thus increasing cofilin

activity [24]. An interesting recent finding is the role of the coronin 1b protein as a coordinator

of the activities of cofilin and the Arp2/3 complex in lamellipodial regulation [25]. The VASP/
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Ena proteins represent another important set of modulators of lamellipodial function. These

proteins inhibit capping of actin filament barbed ends and also decrease the density of Arp2/3

mediated branching; this serves to regulate the overall geometry of the lamellipodium [26].

The VASP/Ena proteins are regulated in part via phosphorylation by cyclic AMP and cyclic

GMP activated kinases.

Contractility is a key aspect of cell shape and migration. Rho A contributes to contractility

through its ability to trigger increased phosphorylation of the light chain of myosin II. Rho

activates Rho kinases (ROCK I and II) which can both directly phosphorylate myosin light

chain and also phosphorylate and inhibit myosin light chain phosphatase, both events leading

to increased myosin light chain phosphorylation, increased actinomyosin contractility, and the

enhanced formation of stress fibers [17,27,28]. In addition Rho also contributes to stress fiber

formation by activating the formin protein mDia1 that, in cooperation with profilin, promotes

barbed-end growth of long actin filaments [29].

Regulation of Polarity and Directionality

Migrating cells assume a polarized form with a leading lamellipodium and a retracting tail.

This polarity is essential for maintaining directional rather than random cell migration. Rac,

and especially Cdc42, play essential roles in initiating and maintaining cell polarity, acting

through several different mechanisms. One important aspect involves the formation of a

complex between PAK kinase, the Rac-specific GEF PIX, the Arf small GTPase-specific GAP

Git1 and the focal adhesion protein paxillin that contributes to localized activation of Rac near

the leading edge; in contrast, formation of a complex of comprised only of paxillin and Git1

in the tail leads to Rac inactivation [30,31]. Another key aspect of cell polarity involves Cdc42

regulation of the Par3/Par6/atypical PKC complex that is involved in microtubule function and

leads to orientation of the microtubule organizing center in the direction of the leading edge

[32]. As mentioned above Cdc42 also contributes to formation of highly polarized filopodia,

acting in part via the formin mDia2 to promote extension at the barbed end of the actin filament

[3]. Some of the roles of Rho GTPases in regulation of cell polarity and actin organization (and

thus possible sites of DLC-1 actions) are highlighted in Fig 2.

Endo/Exocytosis and Cell Migration

It has long been thought that vesicle trafficking processes contribute to cell motility, for

example by bringing adhesion receptors to the leading edge of the cell [4]. However, recent

studies have unveiled complex interactions between the Rho, Arf and Rab families of small

G-proteins that link vesicular trafficking to cell migration via multiple pathways. The Arf

proteins promote vesicle formation by assisting in the assembly of coat-protein complexes

[33]. In particular, Arf6 operates in the cell periphery and endosomes where it can recruit and

activate phosphatidylinositol kinases. There is also a complicated relationship between Arf6

activation and Rac activation; this may be mediated in part through the Dock180-Elmo complex

which is a Rac-specific GEF. In addition, Rac associated with lipid rafts can shuttle between

the plasma membrane and internal depots in an anchorage dependent fashion; in this context

Arf 6 is involved in the return of lipid rafts to the plasma membrane [34]. Other recent studies

have found a link between the Rab family of small GTPases that regulate many aspects of

membrane trafficking and the process of Rac activation. Thus Rab5 has been implicated in a

key functional recycling of Rac that involves co-recruitment of Rac and the Rac-specific GEF

Tiam1 to endosomal surfaces, followed by shuttling of Rac to the plasma membrane where it

triggers actin meshwork formation [35]. These recent examples probably herald the emergence

a rich new vein of information.
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III RhoGAPs and their Role in Control of the Cytoskeleton and cell migration

Basic aspects of RhoGAPs

As discussed earlier, Rho GTPase GDP/GTP cycling is controlled by two classes of regulatory

proteins that accelerate the otherwise very slow intrinsic guanine nucleotide exchange and GTP

hydrolysis activity [36]. There are two major RhoGEF families, one comprised of the Dbl

family (69 members) and the other the DOCK family (11 members) [37]. Similarly, the number

of RhoGAPs (>70) also greatly outnumber the number of Rho GTPases [38,39]. That there

exist multiple GEFs and GAPs, as well as effectors, for a single Rho GTPase reflects the critical

role of these proteins as nodes in complex signaling networks.

Much recent evidence has uncovered a striking role for the mutation or aberrant expression of

many RhoGEFs and RhoGAPs in a multitude of cellular processes and disease states, especially

cancer and the related processes of cytoskeletal organization and cell migration [40]. For this

review, we will focus on RhoGAPs and particularly the DLC family of RhoGAPs. All

RhoGAPs share a conserved RhoGAP catalytic domain [38,39]. Otherwise, they show little

sequence similarity in their remaining sequences, which typically contain multiple additional

protein-protein and protein-lipid interacting domains, as well as many putative phosphorylation

sites. These domains dictate the specific subcellular localization and regulation of each

RhoGAP [39]. Such mechanisms of control allow high spatial and temporal control of the

termination of GTPase activation, preventing inappropriate or prolonged signals. The spatial

regulation of Rho activation in turn influences effector utilization, thus providing a critical

mechanism of regulation of Rho GTPase function. Thus, the GAPs serve a critical signaling

nodes, incorporating diverse cellular stimuli in order determine specific Rho GTPase outcomes.

In contrast to RhoGEFs, much less is known regarding RhoGAP regulation. A few RhoGAPs

have been studied in molecular detail, including p190RhoGAP and Deleted in liver cancer-1

(DLC-1). For example, p190RhoGAP is tyrosine phosphorylated and binds to the RasGAP,

p120RasGAP, both regulating its function [41]. However, very little is known about the full

cellular regulation mechanisms of most of the RhoGAPs. This will be a great but important

challenge in the Rho GTPase field, as different RhoGAPs likely play different and specific

roles in different aspects of Rho GTPase function. Uncovering the signaling mechanisms that

regulate RhoGAPs in specific cellular contexts will be necessary for a full understanding of

Rho GTPase function. The future challenges will especially include an understanding of 1)

which Rho GTPases are the targets of each RhoGAP in vivo, 2) which downstream signaling

targets of each Rho GTPase do the GAPs affect, 3) which RhoGAPs are redundant and which

are specific to certain Rho functions and 4) which Rho GTPases are most involved in disease

processes and could serve as drug targets to specifically affect certain aspects of GTPase

function without altering others. Below we discuss what is known regarding DLC-1 and related

RhoGAPs.

DLC-1 in Cell Migration and Invasion

First identified as a gene deleted in liver cancer, subsequent studies found loss of DLC-1 gene

expression in a wide variety of human cancers, including lung and breast [8]. Interestingly, the

rate of heterozygous loss of DLC-1 in some cancer types approaches that of p53, underscoring

its potential role as a tumor suppressor [42]. Additionally, recent genome-wide sequencing

analyses of human tumors have identified missense mutations in DLC-1 [43,44]. Likewise,

several studies have demonstrated that reintroduction of DLC-1 into liver, lung or breast cancer

cell lines results in decrease tumorigenic growth [45-47], and in a recent mouse model of liver

cancer, loss of DLC-1 together with Myc oncogene activation resulted in increased tumor

growth [42]. Together, these results demonstrate an important role for DLC-1 in cancer and

support a tumor suppressor role for DLC-1. DLC-2 and DLC-3 are highly related isoforms of
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DLC-1 and similar less extensive observations also support their role as tumor suppressors

[8]. Whether loss of DLC-2 and DLC-3 as well as that of DLC-1 must occur in cancer will be

a subject of future investigation.

All RhoGAPs contain an ∼150 amino acid RhoGAP catalytic domain [38,39]. DLC-1 and

related isoforms contain two additional domains, an N-terminal SAM domain and a C-terminal

START domain (Fig. 3). In vitro, we determined that the isolated RhoGAP domain acts as a

potent GAP for RhoA, RhoB, RhoC, and to a lesser degree for Cdc42, but not Rac1 [48]. SAM

domains (∼70 amino acids) are putative protein interaction modules found in a diverse

spectrum of signaling and nuclear proteins, typically as components of multi-domain proteins

(e.g., Eph-related tyrosine kinases, Ets transcription factors). SAM domains have been shown

to homo- and hetero-oligomerize, and can additionally bind both non-SAM domain-containing

proteins. Structural studies of the SAM domain of DLC-2 suggest that it may bind lipids

(although the specificity and in vivo relevance is unknown [49]). START domains (∼120 amino

acids) are lipid-binding domains found in proteins that transfer lipids between organelles.

START domains are found in StAR, HD-ZIP and other signaling proteins. Representatives of

the START domain family have been shown to bind different ligands such as sterols (StAR

protein) and phosphatidylcholine.

Much less is known about the function of the SAM and START domains in DLC function.

Our studies have found that the SAM domain appears to be involved in autoinhibition of the

RhoGAP activity [50]. Between the SAM and RhoGAP domains is a long unstructured region

that includes a phosphorylation-independent binding site (Y442 in human DLC-1) for the Src

homology 2 domains of tensin family of adaptor proteins [51,52]. This binding region is

necessary for focal adhesion localization as well as tumor suppression, suggesting that

RhoGAP activity at or near focal adhesions and not total cell RhoGAP activity is necessary

for tumor suppression. A phosphorylation site for rat DLC-1 has also been identified in this

N-terminal region (S329), by activated AKT and RSK1 kinases, although the functional

consequence of this modification has not been determined (Fig 3). Future work will involve

understanding how DLC-1 is regulated by its additional domains and phosphorylation, as well

as the precise the downstream mechanisms through which DLC-1 acts as a tumor suppressor.

Since aberrant activation of RhoA and RhoC has been implicated in oncogenesis, a logical

hypothesis is that loss of DLC-1 function will lead to hyperactivation of these Rho GTPases,

resulting in their stimulation of cell proliferation. Consistent with this possibility, two studies

suggest that tumor suppression by DLC-1 works through RhoA [53,54], although our study

demonstrated partial RhoGAP independent tumor suppression by DLC-1 [48]. Our studies also

found that ectopic expression of DLC-1 in DLC-1 deficient lung tumor cells reduced the level

of activated RhoA. Additionally, although FA association does not appear to alter DLC-1

RhoGAP activity in vivo or in vitro (unpublished results), FA association appears to be required

for proper spatial regulation of Rho GTPases for tumor suppression.

As indicated above the Rho and Cdc42 GTPases play multiple critical roles in the regulation

of actin organization, cell polarity, and cell migration. Thus the aberrant function of DLC-1

seen in many types of cancers would be expected to influence the activation state of these

critical GTPases and to have significant effects on cytoskeletal organization and cell motility.

We have recently explored this aspect in some detail [50]. Thus, overexpression of various

activated forms of DLC-1 leads to profound changes in cytoskeletal organization with

disruption of focal adhesions and the rapid, continuing and apparently random extension of

long protrusions, as well as inability to retract the tail of the cell. These effects are likely

mediated via reduction in Rho activity. Using single cell tracking assays, we have also found

that overexpression of a form of DLC-1 (DLC-1ΔSAM) that lacks the SAM domain (and is

thus activated), but which retains the remainder of the N-terminal region, has a profound effect
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on cell motility. DLC-1ΔSAM increases the velocity of migration but reduces directionality;

the overall result in bulk migration assays is a reduction in migration, presumably due to loss

of directionality, an effect that may be mediated via DLC-1's inhibition of CDC42 and

consequent effects on polarity. These effects on migration are not seen with active forms of

DLC-1 that lack the N-terminal region. DLC-1ΔSAM is capable of associating with focal

adhesions, but when it is expressed extensive disruption of these structures occurs. Thus it is

not clear whether the profound effects of DLC-1ΔSAM on migration are due to its ability to

localize to residual focal adhesions, or due to other interactions mediated through the N-termus.

Further evidence for a key role for focal adhesion localized DLC-1 comes from our studies of

a truncated version of the protein (DLC-1N) that contains the N-terminal domain but not the

GAP domain; we also constructed a second version with a mutation at the Y442 site (DLC-1N

Y442A). DLC-1N retains the ability to localize to focal adhesions, but the version with the

mutation at 442 does not. Overexpression of DLC-1N leads to almost complete paralysis of

cell movement, whereas the 442 mutant had no effect. Using fluorescence microscopy and

immunochemistry we have demonstrated that DLC-1N displaces endogenous DLC-1 from

focal adhesions. This strongly argues that, not only GAP activity, but also proper focal adhesion

localization of DLC-1, play important roles in the control cell migration. Presumably focal

adhesion associated DLC-1 can orchestrate localized effects on Rho and CDC42 that are critical

for control of cell velocity and directionality.

In addition to the work described above, a number of other studies have demonstrated that

DLC-1 inhibits cell motility or invasiveness in cultures of liver, breast, ovarian and lung cancer

cell lines [48,55–58]. Further, the observed effects of DLC-1 on cell motility are consistent

with its proposed role as a metastasis suppressor gene [8]. For example, using gene chip array

analysis several groups have found that DLC-1 is unde-rexpressed in highly metastatic cells

[55,59].

In summary, the RhoGAP DLC-1 and related family members play important roles both in the

regulation of tumorigenesis and in associated cytoskeletal activities that impact on the motile,

invasive and metastatic characteristics of cancer cells. Whether these two aspects of DLC-1

function occur through the same or different GTPase pathways will be an important goal of

future research. The functions of DLC-1 seem to depend not only on its enzymatic activity as

a GAP but also on its focal contact localization and its interactions with other proteins that

regulate and localize its function.
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Figure 1. Rho GTPases function as GDP/GTP regulated on-off switches in signal transduction

Rho GTPases function as GDP/GTP regulated on-off switches in signal transduction. Rho

GTPase cycle between an active GTP-bound and an inactive GDP-bound state. This cycle is

regulated by RhoGEFs that promote GDP/GTP exchange and by RhoGAPs that stimulate

hydrolysis of the bound GTP. Activated Rho GTPases preferentially associate with

downstream effectors, which in turn regulate cytoplasmic signaling networks that control actin

organization and other cellular processes. Extracellular stimulus activation of cell surface

receptors cause activation of Rho GTPase primarily by activation of RhoGEFs. There is

emerging evidence that stimuli can regulate Rho GTPase by controlling the activity of

RhoGAPs.
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Figure 2. DLC-1 Affects the Cytoskeleton and Cell Motility Via Rho and CDC42

This figure illustrates key signaling pathways involving the Rho and CDC 42 GTPases that

are implicated in control of the cytoskeleton, cell polarity and cell migration. Since DLC family

proteins are GAPs for Rho and CDC42, they may influence all of these pathways.
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Figure 3. Interactions of DLC-1

Known interactions and functions of DLC-1. To date, biochemical and cellular analyses of

both rat (p122RhoGAP) and human DLC-1 demonstrate that DLC-1 is a potent GAP primarily

for RhoA and related isoforms. Additionally, there is also evidence for Cdc42 GAP activity.

Our structure-function studies found that the SAM domain may serve as an autoinhibotory

domain for the RhoGAP catalytic activity. Insulin-stimulated activation of the PI3K-AKT or

MEK-ERK-RSK1 protein kinase cascades has been shown to cause phosphorylation at S322

in rat DLC-1 (S329 in human DLC-1). Two recent studies determined that Y422 in human

DLC-1 was critical for this association; this residue is a component of a phosphorylation-

independent motif that binds the Src homology 2 (SH2) domain of tensin family proteins

(tensin-1, cten, etc.) that are associated with focal adhesions.
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