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Abstract

Background: Low lung function has been associated with increased body mass index (BMI). The aim of this study
was to investigate whether the effect of BMI on lung function is mediated by DNA methylation.

Methods: We used individual data from 285,495 participants in four population-based cohorts: the European
Community Respiratory Health Survey, the Northern Finland Birth Cohort 1966, the Swiss Study on Air Pollution and
Lung Disease in Adults, and the UK Biobank. We carried out Mendelian randomisation (MR) analyses in two steps
using a two-sample approach with SNPs as instrumental variables (IVs) in each step. In step 1 MR, we estimated the
causal effect of BMI on peripheral blood DNA methylation (measured at genome-wide level) using 95 BMI-
associated SNPs as IVs. In step 2 MR, we estimated the causal effect of DNA methylation on FEV1, FVC, and FEV1/
FVC using two SNPs acting as methQTLs occurring close (in cis) to CpGs identified in the first step. These analyses
were conducted after exclusion of weak IVs (F statistic < 10) and MR estimates were derived using the Wald ratio,
with standard error from the delta method. Individuals whose data were used in step 1 were not included in step
2.
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Results: In step 1, we found that BMI might have a small causal effect on DNA methylation levels (less than 1%
change in methylation per 1 kg/m2 increase in BMI) at two CpGs (cg09046979 and cg12580248). In step 2, we
found no evidence of a causal effect of DNA methylation at cg09046979 on lung function. We could not estimate
the causal effect of DNA methylation at cg12580248 on lung function as we could not find publicly available data
on the association of this CpG with SNPs.

Conclusions: To our knowledge, this is the first paper to report the use of a two-step MR approach to assess the
role of DNA methylation in mediating the effect of a non-genetic factor on lung function. Our findings do not
support a mediating effect of DNA methylation in the association of lung function with BMI.
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Background
There are several cross-sectional studies showing lower
forced respiratory volumes (FEV1 and FVC) in those
who are overweight and obese. Evidence on the associ-
ation between obesity and FEV1/FVC is less clear [1].
Longitudinal studies also suggest that an increase in
body mass index (BMI) is associated with increased lung
function decline. An increase in BMI among overweight
and obese people has been associated with greater than
average decline of FEV1 and FVC [2, 3]. There is always
a risk that such associations may be confounded, but a
large Mendelian randomisation (MR) study has shown
that increasing BMI leads to the decline in both FEV1

and FVC [4], suggesting that this association is causal.
The underlying mechanisms for this association are

unclear with some hypothesising that it reflects pulmon-
ary biological responses to obesity and its related pro-
inflammatory status, and others suggesting it reflects
thoracic compression (i.e., a mechanical effect) [5, 6]. As
both differences in BMI and lung function have been as-
sociated with DNA methylation levels [7–10], we
hypothesised that association of lung function with BMI
is in part mediated by DNA methylation.
A new method using MR to investigate the mediating

effect of DNA methylation on the association of risk fac-
tors and health outcomes has recently been described
[11, 12]. This two-step epigenetic MR approach relies on
the use of genetic variants potentially controlling DNA
methylation. In the first step, a single nucleotide poly-
morphism (SNP), or group of SNPs, that proxies for the
risk factor of interest (here BMI) is used to assess the
causal relationship between the risk factor and DNA
methylation. If this association is confirmed, in the sec-
ond step, a SNP that proxies for methylation levels at
the site modified by the risk factor is used to interrogate
the causal relationship between DNA methylation and
the main outcome (here lung function). We applied this
technique to investigate the mediating role of DNA
methylation in the association of lung function with
BMI in European cohorts, after using a conventional
non-MR approach.

Methods
Conventional (non-MR) analysis
We assessed the cross-sectional association of lung func-
tion (FEV1, FVC, FEV1/FVC) with BMI in participants of
the European Community Respiratory Health Survey
(ECRHS, n = 470), the Northern Finland Birth Co-
hort 1966 (NFBC1966, n = 681), and the Swiss Study on
Air Pollution and Lung Disease in Adults (SAPALDIA,
n = 962) (see Supplementary File 1 for details) who also
had information on peripheral blood DNA methylation.
This analysis was carried out using linear regression
models adjusted for centre, sex, age, height, sex-age
interaction, sex-height interaction, educational level,
smoking status, and pack-years of smoking. We esti-
mated the association of each lung function parameter
with BMI for each cohort, and then combined them in a
random effects meta-analysis.

Two-step MR
We carried out MR analyses in two steps using a two-
sample approach for summary data with SNPs as instru-
ments in each step. To assess the strength of each SNP
as instrument, we calculated the F statistic [13], and to
avoid bias due to use of weak instruments, we included
in the MR analyses only SNPs with an F statistic equal
to or greater than 10 [14]. Individual-level data used in
these analyses come from four cohorts: ECRHS,
NFBC1966, SAPALDIA, and UK Biobank (see Supple-
mentary File 1 for details). Analyses were conducted
using R v.3.3.2 [15].

First-step MR: examining the causal effect of BMI on DNA
methylation
SNP-BMI association estimates
A recent published genome-wide association meta-
analysis of 125 studies on 339,224 participants reported
the association of BMI with 97 SNPs (accounting for an
estimated 2.7% of the variability of BMI in the popula-
tion) [16]. We extracted their effect estimates and stand-
ard errors and used these SNPs as instruments in the
first step MR (Fig. 1: GX1).
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SNP-DNA methylation estimates
We created a weighted genetic risk score (wGRS) for
BMI from the 97 SNPs for 470 participants from the
ECRHS and 681 participants from the NFBC1966. The
wGRS was the sum of the products of the effect allele
dosage at each of the 97 SNPs and their corresponding
beta coefficients [16]. As a screening stage we used lin-
ear regression to measure the effect of the wGRS on
DNA methylation (Table 1). CpGs associated with
BMI-wGRS at P < 10− 7 were then examined to assess
their association with individual SNPs (Fig. 1: GY1)
contributing to the wGRS. Replication of the identi-
fied associations was sought in the SAPALDIA co-
hort (n = 906) (Table 1). These analyses were
adjusted for ancestry principal components. Partici-
pants included in this analysis are those included in
the conventional (non-MR) analysis, except for 56
participants from SAPALDIA for whom there were
no allele dosage data.

BMI-DNA methylation estimates: MR analysis
To estimate the causal effect of BMI on DNA methyla-
tion levels, we derived MR estimates for each of the 95
SNPs with an F statistic equal to or greater than 10
(Table E1 in Supplementary File 1), using the Wald esti-
mator (ratio of the genotype-outcome regression coeffi-
cient to the genotype-exposure regression coefficient),
with standard error derived using the delta method [17].
The individual MR estimates were combined using

inverse-variance weighted (IVW) fixed-effect meta-
analysis [18]. To investigate the robustness of the MR
findings to pleiotropy, we used the following methods:
1) IVW random-effects meta-analysis [19]; 2) Egger re-
gression with penalized weights [20]; and 3) weighted
median analysis [21].

Second-step MR: examining the causal effect of DNA
methylation on lung function
DNA methylation-cis-SNP association estimates
Using the publicly available mQTL database (http://
mqtldb.org; accessed on 1 December 2017), which con-
tains the associations of peripheral blood DNA methyla-
tion with SNPs as observed in the ALSPAC-ARIES
project, we identified SNPs associated with the CpGs
discovered in step 1 (p < 10− 7) and located within 1Mb
either side of the CpG (cis-SNPs) [22] (Fig. 1: GX2). We
selected independent cis-SNPs, after linkage disequilib-
rium (LD) clumping (‘clump_data’ function from R
package ‘TwoSampleMR’), as the instruments for the
DNA methylation of interest. The regression coefficient
and standard error for the cis-SNP-methylation associ-
ation were used in the MR analysis.

Cis-SNP-lung function association estimates
We regressed lung function parameters (FEV1, FVC,
FEV1/FVC) on the cis-SNPs (Fig. 1: GY2) in the ECRHS
(n = 773), NFBC1966 (n = 4501), SAPALDIA (n = 2303),
and UK Biobank (n = 275,861) cohorts (Table 1). The

Fig. 1 Flow diagram of the 2-step epigenetic Mendelian randomisation analysis

Table 1 Body mass index and lung function of study populations included in the genotype-outcome association analyses

MR
step

Study N Age (years), median
(IQR)

BMI (kg/m2), median
(IQR)

FEV1 (L), median
(IQR)

FVC (L), median
(IQR)

FEV1/FVC (%),median
(IQR)

1st ECRHS 470 55 (49–60) 26.0 (23.3–29.3) 2.9 (2.4–3.5) 3.8 (3.2–4.6) 76 (72–80)

NFBC1966 681 46 (46–47) 25.8 (23.3–29.1) 3.4 (2.9–4.0) 4.4 (3.8–5.2) 77 (74–81)

SAPALDIA 906 58 (50–68) 25.9 (23.3–29.3) 2.9 (2.4–3.5) 4.0 (3.3–4.8) 74 (69–78)

2nd ECRHS 773 54 (48–60) 26.3 (23.8–29.8) 2.9 (2.5–3.5) 3.9 (3.3–4.7) 76 (72–80)

NFBC1966 4501 47 (46–47) 26.1 (23.5–29.4) 3.3 (2.9–3.9) 4.3 (3.7–5.1) 78 (74–82)

SAPALDIA 2303 60 (50–67) 25.7 (23.1–28.6) 3.0 (2.5–3.6) 4.1 (3.4–4.9) 74 (69–78)

UK
Biobank

275,
861

58 (50–63) 26.6 (24.1–29.7) 2.7 (2.3–3.3) 3.6 (3.0–4.3) 77 (73–80)

MR Mendelian randomisation. IQR Interquartile range. BMI Body mass index. FEV1 Forced expiratory volume in one second. FVC Forced vital capacity
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analysis was adjusted for ancestry principal components
and did not include data from participants included in
step one. As a sex difference in the association of lung
function with BMI has been reported [2], FEV1, FVC
and FEV1/FVC were adjusted for sex.

DNA methylation-lung function estimates: MR analysis
To estimate the causal effect of DNA methylation on
lung function, we derived MR estimates for each SNP
with an F statistic equal to or greater than 10 using the
Wald estimator, with standard error derived using the
delta method [17].

Results
A description of the BMI and lung function parameters
of the participants in the several cohorts included in this
analysis is presented in Table 1. On average, BMI was
similar across cohorts and lung volumes were higher in
NFBC1966 and SAPALDIA.

Conventional (non-Mendelian randomisation) analysis
A higher BMI was associated with lower FEV1 (beta co-
efficient = − 0.009, 95% CI − 0.019 to 0.0) and FVC (beta
coefficient = − 0.19, 95% CI − 0.03 to − 0.009) among
participants of ECRHS, NFBC and SAPALDIA who had
DNA methylation. The FEV1/FVC ratio was positively
associated with BMI (beta coefficient = 0.0013, 95% CI
0.0005 to 0.002) (Fig. 2).

First-step MR: examining the causal effect of BMI on DNA
methylation
The genotype-BMI association estimates for the 97 SNPs
used as instrumental variables for BMI are presented in
Table E1 (see Supplementary File 1). In the screening
stage, the 97-SNP wGRS was associated with two CpGs,
one in SBK1 (cg09046979) and one in NPIPB11
(cg12580248) (Table E2 in Supplementary File 1). MR
estimates, from IVW fixed effect meta-analysis, for the
effect of BMI on these two CpGs are presented in
Table 2. A 1-unit increase in BMI was responsible for

Fig. 2 Association of lung function with body mass index: non-Mendelian randomisation approach

Table 2 Step 1: IVW fixed-effect MR estimates of the causal effect of BMI on CpG methylation

ECRHS + NFBC (n = 1151) SAPALDIA (n = 906)

CpG Gene Chromosomal position MR estimate (SE)a P I2b MR estimate (SE)a P I2b

cg09046979 SBK1 16:28333134 −0.021 (0.010) 0.03 41% 0.007 (0.015) 0.6 39%

cg12580248 NPIPB11 16:29412940 0.022 (0.012) 0.08 43% – – –
aChange in methylation (unit is %) per one-unit increase in BMI (kg/m2); MR Mendelian randomisation; SE Standard error. bBetween-instrument heterogeneity
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less than 1% change in methylation at either of the
CpGs. The effect of BMI on cg09046979 was statistically
significant in ECRHS and NFBC1966, but not in
SAPALDIA. The effect of BMI on cg12580248 was not
statistically significant in ECRHS and NFBC1966 and
could not be assessed in SAPALDIA as a probe for this
CpG is not present in the methylation chip used in
SAPALDIA. Results from the IVW random effects meta-
analysis, Egger regression and weighted median analysis
were consistent with those of the IVW fixed effect meta-
analysis (Fig. 3).

Second-step MR: examining the causal effect of DNA
methylation on lung function
Using the mQTLdb and after LD clumping, we found
that methylation at CpG cg09046979 had been associ-
ated with two independent SNPs (rs9938394 and
rs9939450) occurring within 1Mb either side of the
probe (cis-SNPs). We could not find publicly available
information from independent cohorts on genotype-
DNA methylation associations where the Infinium
MethylationEPIC BeadChip was used to measure levels
of methylation. The genotype-DNA methylation associ-
ation estimates for the two SNPs, which were used as in-
strumental variables for DNA methylation, are presented
in Table E3 (see Supplementary File 1).
MR estimates for the effect of DNA methylation, at

cg09046979, on FEV1, FVC and the FEV1/FVC ratio are
presented in Table 3. There was no evidence of an

association between methylation levels at this site and
lung function.

Discussion
The findings of this 2-step epigenetic MR study suggest
a small causal effect of BMI on DNA methylation at one
or two CpGs, but also suggest that these are unlikely to
exert a causal effect on lung function.
As this is a multicentre study across several countries,

confounding due to population stratification is possible.
However, most study participants were of European des-
cent and ancestry principal components were included
in the analyses. There is always concern within an MR
study that pleiotropy (when an SNP affects several phe-
notypes related to the outcome [23], in this case, DNA
methylation in the first step MR and lung function in
the second step MR) may exist and there was some evi-
dence of heterogeneity (I2 of 41% for cg09046979 and
43% for cg12580248) suggestive of pleiotropy. However,
we used methods that are robust to pleiotropy (i.e. IVW
random effects, Egger regression, and weighted median)
and found results to be consistent with those of the
IVW fixed effect analysis. The sample size of the first
step MR was limited by the relatively small number of
ECRHS, NFBC1966 and SAPALDIA participants with
available data on DNA methylation, which may have re-
duced the chances of identifying causal associations of
BMI with DNA methylation. Despite the very large sam-
ple size in the second step MR, our capacity to fully ex-
plore our findings for one of the CpGs was limited by
the lack of information on associations between SNPs
and CpG methylation assessed using the EPIC (850 K)
chip from independent studies. All studies that utilise
peripheral blood DNA methylation data to explore asso-
ciations of lifestyle and environmental factors with organ
specific abnormalities are limited by the lack of consist-
ent clear evidence that DNA methylation in peripheral
blood reflects well what is going on in the relevant dis-
ease tissue. Although some concordance in DNA methy-
lation levels between blood and lung tissue has been
reported [24] as well as for BMI related blood methyla-
tion with that in adipose tissue [25], some argue this is
unlikely to be common [26]. As variation in DNA
methylation levels across the epigenome is often tissue-
specific [27], we cannot for sure say that the association

Fig. 3 Mendelian randomisation estimates of the causal effect of
body mass index on DNA methylation using methods robust
to pleiotropy

Table 3 Step 2: IVW fixed-effect MR estimates of the causal effect of DNA methylation on lung function

CpG Gene Lung function MR estimate (SE)a (ECRHS + NFBC + SAPALDIA + UK Biobank; n = 283,476) P

cg09046979 SBK1 FEV1 −0.0003 (0.003) 0.89

FVC −0.001 (0.005) 0.75

FEV1/FVC −0.0002 (0.003) 0.93
aMR estimates (S.E.) represent the change in lung function (L) per methylation proportion (unit is %)
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of lung function with BMI is not mediated by DNA
methylation within lung tissue.

Conclusion
In conclusion, our findings do not support a mediating
effect of peripheral blood DNA methylation in the asso-
ciation of lung function with BMI.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12890-020-01212-9.

Additional file 1. Supplementary File 1.
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