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We explore the emergence of chiral magnetism in one-dimensional monatomic Mn, Fe, and Co
chains deposited at the Pt(664) step-edge carrying out an ab initio study based on density functional
theory (DFT). The results are analyzed employing several models: (i) a micromagnetic model, which
takes into account the Dzyaloshinskii-Moriya interaction (DMI) besides the spin stiffness and the
magnetic anisotropy energy, and (ii) the Fert-Levy model of the DMI for diluted magnetic impurities
in metals. Due to the step-edge geometry, the direction of the Dzyaloshinskii vector (D-vector) is not
predetermined by symmetry and points in an off-symmetry direction. For the Mn chain we predict
a long-period cycloidal spin-spiral ground state of unique rotational sense on top of an otherwise
atomic-scale antiferromagnetic phase. The spins rotate in a plane that is tilted relative to the Pt
surface by 62◦ towards the upper step of the surface. The Fe and Co chains show a ferromagnetic
ground state since the DMI is too weak to overcome their respective magnetic anisotropy barriers.
An analysis of domain walls within the latter two systems reveals a preference for a Bloch wall for
the Fe chain and a Néel wall of unique rotational sense for the Co chain in a plane tilted by 29◦

towards the lower step. Although the atomic structure is the same for all three systems, not only the
size but also the direction of their effective D-vectors differ from system to system. The latter is in
contradiction to the Fert-Levy model. Due to the considered step-edge structure, this work provides
also insight into the effect of roughness on DMI at surfaces and interfaces of magnets. Beyond
the discussion of the monatomic chains we provide general expressions relating ab initio results to
realistic model parameters that occur in a spin-lattice or in a micromagnetic model. We prove that
a planar homogeneous spiral of classical spins with a given wave vector rotating in a plane whose
normal is parallel to the D-vector is an exact stationary state solution of a spin-lattice model for a
periodic solid that includes Heisenberg exchange and DMI. In the vicinity of a collinear magnetic
state, assuming that the DMI is much smaller than the exchange interaction, the curvature and
slope of the stationary energy curve of the spiral as function of the wave vector provide directly the
values of the spin stiffness and the spiralization required in micromagnetic models. The validity of
the Fert-Levy model for the evaluation of micromagnetic DMI parameters and for the analysis of ab
initio calculations is explored for chains. The results suggest that some care has to be taken when
applying the model to infinite periodic one-dimensional systems.

PACS numbers: 75.70.Tj, 71.15.Mb, 71.70.Gm, 73.90.+f

I. INTRODUCTION

In a seminal work, Gambardella et al.1,2 showed for
the first time the presence of a truly one-dimensional
(1D) metallic magnet. They succeeded in growing high-
density arrays of monatomic Co chains on vicinal Pt(997)
surfaces,3–5 denoted as Co/Pt(997), and investigated the
magnetic properties by X-ray magnetic circular dichro-
ism (XMCD). They found that, below a blocking temper-
ature of about TB = 15 K, a long-range ordered collinear
spin state is observed with magnetic moments aligned in
the easy axis direction. The authors explained this fer-
romagnetic order with a large magnetic anisotropy en-
ergy (MAE) of ∆E = (2.0 ± 0.2) meV / Co atom that
counteracts the magnetic fluctuations due to the finite
temperature. The success in growing and measuring 1D
magnetic monatomic chain structures as well as a detec-
tion of an unusual easy axis direction pointing perpen-
dicular to the chain direction and tilted by an angle of
43◦ towards the upper terrace triggered theoretical inves-
tigations based on density functional theory (DFT),6–11

that affirmed the presence of an unusual direction of the
easy axis. The strong MAE could be traced back to the
large spin-orbit coupling (SOC) contribution of the Pt
substrate. Succeeding these pioneering experiments al-
ternative 1D systems had been investigated, among those
FePt alloys12 and submonolayer Fe stripes,13,14 both on
Pt(997), as well as Fe stripes15 and Co zigzag chains,16

both on an Ir(001) (5×1) surface.
In this paper we address the question in how far

these results and their interpretation remain unchanged
in the light of the recently discovered interface in-
duced Dzyaloshinskii-Moriya interaction (DMI).17 The
DMI18,19 appears in magnetic systems that lack inversion
symmetry and exhibit strong SOC. Only recently it was
found to be an indispensable ingredient to understand
non-collinear magnetic structures of unique rotational
sense observed in thin films, for the first time demon-
strated by Bode et al.17 who measured and analyzed a
Mn monolayer on a W(110) substrate. Up to now a num-
ber of similar systems are known in which the DMI leads
to magnetic ground states that are described as cycloidal
spin spirals20–22 or to the formation of a two-dimensional

ar
X

iv
:1

60
3.

01
57

8v
2 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
5 

Ju
n 

20
16



2

generalization of spirals with one-dimensional propaga-
tion vectors, the topological magnetic skyrmions.23,24

Also for biatomic Fe chains deposited on an Ir(001)
(5×1) surface such a DMI-induced non-collinear mag-
netic ground state has been predicted25,26 and experi-
mentally verified shortly after.27

In the light of these analyses we turn to the Pt step-
edge structure and investigate the leading magnetic in-
teractions for different monatomic TM chains deposited
along the step-edges. Due to the reduced symmetry oc-
curring at step-edges, a complex interplay of DMI, MAE,
and exchange interaction is found to determine the mag-
netic ground state or the rotation type within a domain
wall.
The magnetic structures are explored in the context

of a micromagnetic model that is introduced in Sec. II.
There, we discuss consequences of the symmetry of the
investigated structure on the magnetic anisotropy and
DMI and derive two micromagnetic criteria that deter-
mine the appearance of homogeneous and inhomogeneous
spin spirals as magnetic ground states. In Sec. III we give
details on the unit cell and the performed DFT calcula-
tions. We proceed in Sec. IV with presenting the results
of the performed calculations for the three investigated
systems, monatomic chains of Mn, Fe, and Co at Pt(664)
step-edges, and extract parameters for the previously dis-
cussed micromagnetic model. Based on these parameters
we predict the magnetic ground state for each system and
characterize possible domain wall structures. We con-
clude this paper with four appendices: In Appendix A
we relate the micromagnetic parameters to the param-
eters of a lattice-spin model. In Appendix B we show
that the spin spiral as calculated from first principles is
a stationary state of the lattice-periodic spin model con-
taining Heisenberg interaction and DMI. In Appendix C
we relate the micromagnetic parameters with the spin-
spiral energetics as calculated from first principles. In
Appendix D we analyze the relation between the micro-
scopic DM vectors as obtained from the Fert-Levy model
and the micromagnetic DM vectors. DM vectors are eval-
uated and compared to the ab initio results from the
main text.

II. MICROMAGNETIC ANALYSIS OF THE

STEP-EDGE STRUCTURE

A. Symmetry considerations

Many of the systems, in which the DMI is known to
lead to a non-collinear magnetic ground state, consist of
one or more layers of 3d transition-metal (TM) elements
placed on top of a heavy element substrate17,21,22 and
exhibit two mirror planes. This restricts the direction of
easy, medium, and hard axis as well as the direction of
the effective Dzyaloshinskii-vector28 (D-vector) to high-
symmetry directions. Thus, the D-vector always points
along either easy, medium, or hard axis. In the step-edge

structure discussed in this paper (see Fig. 1), however,
only one mirror plane perpendicular to the chain direc-
tion remains. A consequence of this reduction of sym-
metry with respect to film structures is the previously
mentioned easy axis direction for the Co chains, tilted
by 43◦ towards the upper terrace. Similarly, the rules
of Moriya19 only allow to reduce the possible orientation
of the D-vector to the plane perpendicular to the chain
axis, which is why ab initio calculations become neces-
sary to determine not only the strength of the DMI but
also the direction of the D-vector.
Due to this particular symmetry at hand, the search

for the magnetic ground state takes place in a higher-
dimensional space. Besides the strength of the D-vector
and the differences among easy, medium, and hard axes,
one has to include in the final analysis the relative an-
gle between D and the principal axes of the anisotropy
tensor.

B. The micromagnetic model

To systematically study the magnetic phases in a solid
from first principles one usually employs a multiscale ap-
proach. DFT calculations are performed that allow to ex-
tract system-specific parameters, which characterize the
behavior of the system in terms of a suitable model, e.g.,
a (generalized) Heisenberg or spin-lattice model29 with
spins placed on a discrete lattice. When the magnetic
structure varies slowly across the crystal, meaning that
the magnetic moments rotate on a length scale that is
much larger than the interatomic distance, a micromag-
netic model becomes favorable. Instead of a classical spin
vector on each atomic site, such a model uses a continu-
ous magnetization vector field m(r) (with |m| = 1) with
effective parameters in which atom-specific contributions
are implicitly contained. In case one deals with an an-
tiferromagnetic spin-alignment, the classical spin vector
is replaced by a staggered spin vector where the differ-
ence of up and down spins on neighboring atoms form a
new order parameter, that is treated then as a continu-
ous field. Regarding the atomic structure we deal with
in this paper, a linear chain of magnetic atoms along the
y direction as depicted in Fig. 1, the magnetic energy for
such spin textures can be expressed by the micromagnetic
energy functional

E[m] =

∫

dy

[

A

4π2
(ṁ)

2
+

D

2π
· (m× ṁ) +mTKm

]

,

(1)
with m = m(y) and ṁ = d

dym. The first term in

Eq. (1) contains the spin stiffness, A, and favors collinear
spins (ṁ ≡ 0). In contrast, the second term is linear
in ṁ and thus shows a preference for a certain rota-
tional sense of m with a strength and direction deter-
mined by the Dzyaloshinskii-vector, D. Finally, the mag-
netic anisotropy is accounted for by the last term, that
features the anisotropy tensor, K, whose principal axes
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point along hard, medium, and easy axes.59 Note that in
this work, without loss of generality, the energy-zero is
given with respect to a magnetic configuration in which
all spins are aligned along the easy axis. Furthermore,
we point out that the local character of the integrand in
Eq. (1) is reasonable as long as the range of the magnetic
interactions is shorter than the characteristic length scale
of the magnetic structure that is described.
In the following it is assumed to have knowledge of the

model parameters A, D, and K. Considering the symme-
try of the step-edge structure (cf. Fig. 1 and discussion
in previous Sec. IIA) the latter two are of the form

D =





Dx

0
Dz



 , K =





Kxx 0 Kxz

0 Kyy 0
Kxz 0 Kzz



 . (2)

The direction of the Dzyaloshinskii vector, êDM =
(sinϑD, 0, cosϑD)T, is described with respect to the z-
axis by the angle60

ϑD = atan2 (Dx, Dz) ∈ (−180◦, 180◦] . (3)

The eigenvalues of the anisotropy ellipsoid K, K1, K2,
and K3, are the magnetic anisotropies along the prin-
cipal axes. The principal axis corresponding to K2 is
parallel to the y-axis. The axes ê1 = Ry(ϑK)êx and
ê3 = Ry(ϑK)êz associated with K1 and K3 are obtained
by a clockwise rotation, Ry(ϑK), of the magnetization
m → Ry(ϑK)m around the y-axis by an angle

ϑK =
1

2
atan2 (−2Kxz,Kxx −Kzz) ∈ (−90◦, 90◦] ,

(4)
which results to

K1 = Kxx cos
2 ϑK −Kxz sin 2ϑK +Kzz sin

2 ϑK , (5)

K2 = Kyy , (6)

K3 = Kxx sin
2 ϑK +Kxz sin 2ϑK +Kzz cos

2 ϑK . (7)

C. Homogeneous versus inhomogeneous flat spin

spirals

It was first shown by Dzyaloshinskii30 that the magne-
tization m(y) that minimizes the energy in functional (1)
may correspond to spins that are periodically modulated
rather than collinearly aligned along the easy axis. Ac-
cording to the analysis of Heide et al.28 such a non-
collinear spin structure can be either a three-dimensional
(3D) spin spiral or a flat spin spiral with a propagation
vector q along the step-edge (y direction) with magnetic
moments rotating around the rotation axis of the spiral

êrot = (sinϑr, 0, cosϑr)
T
with an angle ϑr that encloses

êrot and the z-axis (the surface normal) and that is re-
stricted to −90◦ < ϑr ≤ 90◦. In the following we restrict
our analysis to flat spin spirals, i.e., the magnetization
direction is always perpendicular to the rotation axis and

y

ê2

ê3

ê1

ϑKêDM

ϑD

x

z
ϕ

m(y)

êrot

ϑr ê‖

ê⊥

D

Dr

Fig. 1: (color online) Step-edge structure, unit vectors and
parameters used in the text with respect to the Cartesian
coordinate system (x, y, z): The D-vector, being orthogonal
to the y-axis, points along êDM and encloses an angle ϑD

with the z-axis. The pairwise orthogonal principal axes of
the anisotropy tensor K, ê1, ê2, and ê3, are associated with
K1, K2, and K3, respectively, where ê3 encloses an angle ϑK

with the z-axis. The rotation axis êrot is perpendicular to the
y-axis and encloses an angle ϑr with the z-axis. Dr denotes
the projection of the D-vector onto êrot. ê‖ and ê⊥ are par-
allel and perpendicular to the y-axis and are associated with
K‖ and K⊥, respectively, the anisotropy components within
the rotation plane perpendicular to êrot. The magnetization
density m(y) varies as function of distance along the step-
edge (y-axis) within the rotation plane (see semitransparent
orange area) and encloses the spin-spiral rotation angle ϕ with
ê⊥. Note, that the angles ϑK , ϑD, and ϑr are positive (nega-
tive) when pointing towards the lower (upper) terrace of the
step-edge.

êrot is independent of y. For one part, this allows an an-
alytical treatment of the problem, and for the other, we
will show in Sec. IV that for all investigated systems the
regime of truly 3D spin spirals can be excluded. Thus,
the magnetization direction along the chain is given by

m(y) = Ry(ϑr)





cosϕ(y)
sinϕ(y)

0



 (8)

and depends on a 1D parameter, the spin-spiral rotation
angle ϕ(y). The matrix Ry describes a rotation around
the y-axis. Inserting this into the energy functional from
Eq. (1), normalized to one period length one arrives at
an expression for the average energy density,

Eλ [ϕ, ϑr] =
1

λ

∫ 2π

0

dϕ

[

A

4π2
ϕ̇+

K⊥ cos2 ϕ+K‖ sin
2 ϕ

ϕ̇

]

+
Dr

λ
, (9)

with ϕ̇ = dϕ
dy . Dr is the projection of the Dzyaloshinskii-

vector onto the rotation axis and reads

Dr = D · êrot = Dx sinϑr +Dz cosϑr . (10)

K⊥ and K‖ denote the anisotropy components in the
rotation plane of the magnetization perpendicular and
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parallel to the chain axis and are given by

K⊥ = Kxx cos
2 ϑr −Kxz sin 2ϑr +Kzz sin

2 ϑr ,(11)

K‖ = Kyy = K2 . (12)

Note, that Dr and K⊥ depend explicitly on the an-
gle of the rotation axis, ϑr, such that the functional
of the average energy density in Eq. (9) depends on
ϑr as well. For later purposes we additionally define
Kmax = max{K⊥,K‖}, Kmin = min{K⊥,K‖}, and the

average K =
(

K⊥ +K‖

)

/2. Note, that λ can become
negative since the present formalism also accounts for
the rotational sense of the spiral. We distinguish a right-
rotating spiral for ϕ̇ > 0 and λ > 0 (energetically pre-
ferred when Dr < 0, see Eq. (9)) and a left-rotating spi-
ral for ϕ̇ < 0 and λ < 0 (energetically preferred when
Dr > 0) following the convention that a left-rotating spi-
ral rotates clockwise when projecting the magnetic mo-
ments onto the xy plane and reading the spiral rotation
along the positive y direction (see Fig. 1).
For a homogeneous spin spiral ϕ(y) changes linearly

with distance within the chain and one finds ϕ(y) = y q ·
êy, where q is the spin-spiral wave vector. Thus, ϕ̇ =
q · êy = 2π/λ = const., and Eq. (9) simplifies to

Ehom
λ =

A

λ2
+
Dr

λ
+K , (13)

i.e., the energy density shows a parabolic behavior with
respect to the inverse of the spiral length. Only when the
minimum of this expression,

Ehom
λmin

= −D
2
r

4A
+K , with λmin = −2

A

Dr
, (14)

is below zero (corresponding to the energy of collinear
spins aligned along the easy axis direction), a spiraling
magnetic ground state can be established. This leads to
the criterion for the appearance of a homogeneous spin
spiral,

fhomcrit (ϑr) =
1

4

D2
r

AK

!
> 1 . (15)

In the case of an inhomogeneous spin spiral (ϕ̇ 6= const.)
the energy-density functional in Eq. (9) can be minimized
by means of the Euler-Lagrange formalism30 resulting in

Einh
λ = −2|K⊥ −K‖|

E(ǫ)

ǫ2K(ǫ)
− c+

Dr

λinh
, (16)

λinh = − 2

π
sign(Dr)

√

A/|K⊥ −K‖| ǫK(ǫ) , (17)

with the Lagrange multiplier c > −min{K⊥,K‖}. K(ǫ)
and E(ǫ) are the complete elliptic functions of first and
second kind,61 respectively, with the ellipticity ǫ = ǫ(c) =
√

|K⊥ −K‖|/(Kmax + c). It can be shown that the av-
erage energy density in Eq. (16) gets minimal when
Einh

λ = −c. Together with Eq. (17) this leads to a condi-
tional equation for c = c(ǫ),

|Dr| =
4

π

√

A|K⊥ −K‖|
E(ǫ)

ǫ
. (18)

An inhomogeneous spiral appears for −c < 0, leading to
the criterion

f inhcrit(ϑr) =
1

4

D2
r

AK
· α(K⊥,K‖)

!
> 1 , (19)

where

α(K⊥,K‖) =
K

Kmax





2

π
E





√

|K⊥ −K‖|
Kmax









−2

(20)

is a factor that depends on the ellipticity of the
anisotropy energy within the plane of rotation of the
magnetic moments spiral rotation axis: If the ellipticity ǫ
within the rotation plane is zero (K⊥ = K‖), then α = 1,
which means that both criteria, Eqs. (15) and (19), be-
come identical. One can show that elsewise α > 1, mean-
ing that the criterion for the appearance of an inhomo-
geneous spin spiral is always easier to be fulfilled than
the criterion for the appearance of a homogeneous spiral,
Eq. (15). For the case that the easy axis lies along the
rotation axis (Kmin = 0) we have α = π2/8 and Eq. (19)
simplifies to

D2
r

AKmax

!
>

16

π2
, (21)

which has been already discussed in literature.30,31

As a final remark we state that the anisotropy term in
Eq. (9) can also be written as

(

K⊥ −K‖

)

cos2 ϕ + K‖,
which leads to the same expressions as derived above.

D. Micromagnetic Parameters

The three micromagnetic parameters A, D, and K are
related to the site-dependent microscopic parameters of
a spin-lattice model via

A

4π2
= − 1

2∆

∑

j>0

R2
0jJ0j ,

D

2π
=

1

∆

∑

j>0

R0jD0j , and K =
1

∆
K0 , (22)

where ∆ defines the distance between two neighboring
atoms within the chain, and R0j = j∆ is the distance
between atoms at sites 0 and j. J0j , D0j , and K0 are the
exchange interaction, the Dzyaloshinskii vector between
a pair of atoms at sites 0 and j, and the on-site anisotropy
at the representative atom labeled 0, respectively (see
Appendix A and Ref. 22 for details).
The integrand of Eq. (1) is an energy density. For the

quasi one-dimensional magnets studied in this work, it
has the unit energy per length. Accordingly, the param-
eters A, D, and K take the units energy times length,
energy, and energy per length, respectively. However, it
is often convenient to use another normalization, and rep-
resent energy densities in units of energy per TM atom.



5

The conversion from the first normalization to the sec-
ond one is done by multiplication with ∆. In analogy,
the units for the micromagnetic parameters A, D, and K
change to energy times area per TM atom, energy times

length per TM atom, and energy per TM atom, respec-
tively. For the rest of this paper we use the same sym-
bols for the two different normalizations, and the used
normalization can be inferred from the unit.
Notice, it is customary that both communities, the mi-

cromagnetic and the spin-lattice model community, refer
to D or Dij , respectively, as the Dzyaloshinskii-vector,
although they are obviously different. We follow this tra-
dition, but refer in addition to the D-vector in the spin-
lattice model as microscopic D-vector, and in the micro-
magnetic model either as the micromagnetic or effective
D-vector or as the spiralization,32 whenever necessary.
The spin stiffness and spiralization can be obtained di-

rectly from first-principles calculations invoking the ho-
mogeneous spin-spiral state. In Appendix B we prove
that for each wave vector q there are two flat homoge-
neous spin spirals of opposite handedness with a rota-
tion axis parallel and antiparallel to the D-vector of that
given mode. The lowest energy is found for a wave vector
Q with a spin-chirality opposite to the D-vector of that
mode. In Appendix C we show that if Q is in the vicin-
ity of a high-symmetry point in the Brillouin zone, e.g.,
Q = 0 in case of the ferromagnetic state, typically this
implies that the DMI is small compared to the exchange
interaction. For the step-edge structure q becomes one-
dimensional and we obtain the spin stiffness from the
curvature A ∝ d2E(q)/dq2. The spiralization projected
onto the direction of the DMI-vector is obtained from
the slope [êDM · D] ∝ dE(q, êDM)/dq of the energy cal-
culated for wave vectors q in the vicinity of the high-
symmetry point. In the following Section we calculate
A and D from E(q) for spin-spiral waves with q-vectors
of different length from first principles in two separate
steps: At first, E(q) is calculated without spin-orbit in-
teraction employing the generalized Bloch theorem, from
which the spin stiffness is determined and for which the
spiralization is zero by definition, and then the spiral-
ization is determined by calculating the change of the
total energy ∆E(q) adding the spin-orbit interaction in
first order perturbation calculated from electronic states
related to the spin-spiral solution.

III. FIRST-PRINCIPLES THEORY

A. Structural Model and Computational Details

The ab initio calculations based on DFT are car-
ried out in film geometry of the full-potential linearized
augmented plane-wave (FLAPW) method33,34 as imple-
mented in the fleur code.35 The chains at stepped sur-
faces are modeled like in earlier studies,10,11 where the
chosen unit cell, a (664) step-edge structure, turned out
to be a suitable structural model. The setup of the unit

TM

Pt

13.24 Å 2.82 Å

[111]

z

[664]

z
′

y
x

x
′

Fig. 2: (color online) Sketch of the unit cell, a slab of a (664)
vicinal surface decorated with a monatomic chain along the
edge, and its repetition within the x′y plane. The dark blue
spheres correspond to the transition metals (Co, Fe, Mn)
and the bright gray spheres represent the substrate atoms
(Pt). The chain-to-chain distance is 13.24 Å and the nearest-
neighbor distance within the chain is 2.82 Å. The inset in
the lower left illustrates the use of the coordinates within the
text. Note that the structure is periodic with respect to the
x′y plane. Although in the actual calculation all quantities
are referenced with respect to (x′yz′), throughout this pa-
per they are given with respect to (xyz), in accordance with
Fig. 1.

cell is inversion symmetric and consists of a tilted 8-layer
Pt slab with two monatomic TMs deposited on both sides
of the slab onto the step-edge. Throughout this investi-
gation no relaxation of the structure is considered. This
is motivated by the finding that relaxations can lead to
an unphysically strong quenching of the orbital moment
and, thus, to less accurate results for the MAE.10,11,36

In Fig. 2 we sketch the structural model and indicate
the unit cell by the darker spheres in the foreground.
The chain axis and, thus, the propagation direction of
the investigated spiral structure is chosen as y-axis. To
ensure a periodic repetition of the structure along the
x′-direction, as required by a solid-state code, the steps
of the surfaces with normal [111] direction are tilted by
an angle of about 10◦, so that the z′-direction of the unit
cell is [664] and the x′-direction is [113] (see inset in the
lower left of Fig. 2), resulting in a (6×1) surface unit
cell. The used lattice constant is aPt = 3.99 Å as calcu-
lated by Baud et al.10 Along the x direction the unit cell
has the length of the distance of two vicinal TM chains,
ax′ =

√
11 · aPt ≈ 13.24 Å. The width corresponds to

the distance between two neighboring TM atoms within
one chain, ay = aPt/

√
2 ≈ 2.82 Å. For all types of atoms

within the 2D unit cell the muffin-tin (MT) radius is
chosen to be RMT = 1.16 Å. If not stated otherwise, all
energies obtained from first-principles calculations refer
to energies per computational unit cell. Depending then
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on the micromagnetic quantity under consideration, this
energy can be related to energy per magnetic TM atom
or per chain atom, respectively.
For the exchange and correlation functional we chose

the local density approximation (LDA) as proposed by
Moruzzi, Janak, and Williams.37 The computational cut-
off values for the expansion of the Kohn-Sham potential
are Gmax = 12.0 a.u.−1 for the potential and Gxc

max =
9.5 a.u.−1 for the exchange-correlation potential. The
Hamiltonian matrix elements for all atoms in the unit
cell due to the non-spherical part of the potential are
expanded up to ℓn−sph

max = 6. The spherical harmonics
expansion of the LAPW basis includes functions up to
ℓmax = 8 within each MT sphere and all basis functions
satisfying |k‖ +G‖| < Kmax are included. If not stated

otherwise, Kmax = 3.5 a.u.−1 is used. All self-consistent
calculations have been carried out with 128 k-points in
the full 2D Brillouin zone, whereas for one-shot calcu-
lations employing the force theorem of Andersen38 512
k-points have been used.

B. Spin stiffness

The parameters A, D, and K are calculated as outlined
in Refs. 22 and 39. The spin stiffness, A, is obtained by
determining the total energy ESS(q) of the system as
function of flat homogeneous spin spirals with wave vec-
tors q of different lengths, all in the vicinity of the fer-
romagnetic or antiferromagnetic state and all along the
chain direction. Since the lengths of the q-vectors are
small we applied the force theorem of Andersen38 to ob-
tain these energies as deviations from the collinear state
whose densities are calculated self-consistently employing
the scalar relativistic approximation and which served as
the initial state from which the force theorem is applied.
To avoid numerical errors the magnetization in the in-
terstitial region was set to zero before applying the force
theorem. A detailed description can be found in Ref. 29.
When calculating the spin stiffness we omitted the en-
ergy correction due to SOC, because it proved small in
tests and thus we can restrict ourselves to the use of the
generalized Bloch theorem.40

C. Dzyaloshinskii-Moriya interaction

The effective D-vector is determined treating SOC in
first-order perturbation theory on top of flat homoge-
neous spin-spiral solutions used to determine A. The
DM energy is given by22,39

EDM(q, êrot) =
∑

kν

f(ǫ0kν , T ) δǫkν(q, êrot) . (23)

The occupation numbers are given by the Fermi function
f(ǫ, T ), which introduces a broadening of the occupation
around the Fermi energy by the temperature T . They

depend on the wave vector q through the unperturbed
(i.e., without SOC) eigenvalue spectrum ǫ0kν(q). The
change of the eigenvalue spectrum

δǫkν(q, êrot) = 〈U(êrot)ψkν(q)|Hso|U(êrot)ψkν(q)〉 (24)

due to SOC described by the Hamiltonian Hso, depends
additionally on the rotation axis êrot. The unitary trans-
formation U(êrot) directs the flat spin spiral of the unper-
turbed state rotating around the z-axis to the global spin-
rotation axis and ψkν(q) denotes the spin-spiral eigen-
states of the unperturbed Hamiltonian. The summation
in Eq. (23) runs over all states characterized by the Bloch
vector k and band index ν. Due to the finite number of
k-points (512 k-points in the whole 2D unit cell) the ef-
fect of the broadening temperature will be a subject of
study in Sec. IVB, which allows an estimation for the
qualitative reliability of our results.
We analyzed EDM, the change of the DM energy for a

set of q-vectors that point along the chain direction (i.e.,
the y-axis) but vary in length, as well as two different ro-
tation axes oriented along x- and z-direction (êrot = êx
and êrot = êz, see Fig. 1 and Eq. (10)) to determine
independently the two non-vanishing components of the
D-vector (the third component vanishes due to symme-
try, as already discussed in Sec. II A). In the micromag-
netic limit, i.e., in the limit of long-period spirals, Eq. (9)
is applicable. Therefore, if the spin-orbit interaction is
included, the DM energy is expected to change linearly
with the length of the wave vector q in the vicinity of the
collinear spin alignment. Consequently we evaluate the
effective D-vector as the slope of the energy change with
respect to q in the limit q → 0.
As outlined in Ref. 22, the spin-orbit coupling opera-

tor Hso can be safely approximated by an atom-by-atom
superposition of SOC operators limited to the muffin-tin
spheres of the atoms, i.e.,

Hso =
∑

µ

ξ(rµ)σ · Lµ , (25)

where ξ is the spin-orbit strength related to the spherical
muffin-tin potential V (rµ), ξ ∼ r−1 dV/dr, rµ = r−Rµ,
and |rµ| < Rµ

MT. Rµ references the center and Rµ
MT

is the radius of the µth muffin-tin sphere, with µ run-
ning over all atoms in the unit cell. The atom-by-atom
analysis is supported by the observation that ξ ∼ r−3

for small r. We observed for example in case of the
Rashba effect that 90% of the Rashba strength is pro-
duced by the wave function occupying a volume in the
vicinity of the nucleus given by a radius of only about
10% (0.25 a.u.) of the muffin-tin radius.41 We expect
an analogous behavior for the DMI. Thus, according to
Eqs. (24) and (25) also δǫµkν(q, êrot) is atom dependent
and the DM energy is a result of atom-by-atom con-
tributions EDMI(q, êrot) =

∑

µE
µ
DMI(q, êrot), at least

in first-order perturbation theory that we discuss here
throughout the paper. The linear fit of Dµ(êrot) q to
Eµ

DMI(q, êrot) at the vicinity of a high symmetry point
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in the Brillouin zone of propagation vectors gives then
the decomposition of theD-vector into contributionsDµ,
which satisfy

(Dµ · êrot) q ≃
∑

kν

f(ǫ0kν , T ) δǫ
µ
kν(q, êrot) . (26)

For the interpretation of the atom dependent spiraliza-
tion we refer to the discussion of the Fert-Levy model in
Sec. IVB and in Appendix D.
Since the structure of the unit cell setup in our ab ini-

tio calculation is inversion symmetric, the contributions
of the DMI to the total energy cancel when all atoms are
taken into account. Thus, we manually break the inver-
sion symmetry by considering only the energy differences
due to SOC from the atoms that are placed in the upper
half of the unit cell.

D. Magnetic anisotropy

For the magnetic anisotropy energy the force theorem
of Andersen38 is applied, now in order to extract en-
ergy differences between collinear systems with magneti-
zations pointing in different directions. Starting point for
the force theorem are self-consistent calculations includ-
ing SOC, for which the magnetic moments point along
the y direction. For each system we evaluate the total
energy for several directions of the magnetic moments
collinearly aligned within the xz plane and the yz plane.
Out of the obtained energy landscape one is able to ex-
tractK1,K2, andK3, the principal axes of the anisotropy
tensor, K (cf. Eq. (2)).

IV. RESULTS AND DISCUSSION

A. Spin stiffness

The results of the spin-spiral energy ESS(q) for all
three investigated systems as function of the wave vector
q along the one-dimensional Brillouin zone are summa-
rized in Fig. 3. For Co and Fe chains the minimal energy
is found for the ferromagnetic state, i.e., the state with
wave vector q = 0, whereas the Mn chains align in the an-
tiferromagnetic order. According to the micromagnetic
model in Sec. II C (see Eq. (9)) and the discussions in
Sec. IID we expect in the long-wavelength limit a lin-
ear relationship between the exchange energy and the
squared inverse wavelength, which is realized by these
systems for a large fraction of the Brillouin zone (40%)
and shown in the right panel of Fig. 3 with the result-
ing fit. The slope gives the spin stiffness A. For the Mn
system it is smallest (0.030 aJnm) and rises when going
to Fe (0.041 aJnm) and Co (0.055 aJnm). The results
are also collected in Table I. A small spin stiffness is fa-
vorable for the stabilization of a chiral spin spiral and in
this respect the Mn chain is the most favorable system.

0.0 0.2 0.4
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Fig. 3: (color online) Determination of the spin stiffness: In
the left panel the total energies relative to their respective low-
est energy, ESS, are shown as functions of the length of the
wave vector, q, for Mn, Fe, and Co chains (magenta circles,
red diamonds, and blue triangles, respectively). All systems
show a collinear ground state, i.e., a ferromagnetic (q = 0)
ground state for the Co and Fe chains and an antiferromag-
netic (q = 0.5 in units of 2π/ay) ground state for the Mn
chains. The right panel shows the energy as function of λ−2 in
the linear regime with the corresponding linear fits. The slope
represents the spin stiffness, A. Note that for the Mn chain
we consider the antiferromagnetic ordering vector, meaning
that λ → ∞ leads to the AFM spin alignment. The relative
error due to the linear regression is in the order of 5% to 8%
for the shown data range.

B. The Dzyaloshinskii-vector

Fig. 4 displays the DM energies per chain atom EDM

and the x and z components of the spiralization vector
D for the Mn chains. In the upper panel we present
EDM(1/λ, êx/z) as function of the inverse wavelength,
1/λ, for clockwise rotating (negative values of λ) homo-
geneous spin spirals of two rotational directions êx and
êz. Analogously to the discussion of the spin stiffness, we
utilize the micromagnetic model and expect a linear be-
havior of EDM(1/λ, êx/z) ∝ Dx/z · 1/λ for corresponding
wave vectors in the vicinity of high-symmetry points in
the one-dimensional Brillouin zone, q = 0 and q = π/ay.
Indeed we find a linear behavior for wave vectors covering
10% of the Brillouin zone measured from the antiferro-
magnetic state at π/ay for EDM(1/λ, êx). However, for
EDM(1/λ, êz) we notice a periodic modulation on top of
the linear behavior. Such oscillations can occur due to fi-
nite numerical resolutions, e.g., due to finite sampling of
the Brillouin zone.22 In the lower panel of Fig. 4 we ana-
lyze the effect of the electronic Fermi surface broadening
temperature, T , on the obtained slopes that correspond
to the D-vector components and the loss of linear behav-
ior reflected in the error bars. When T is decreased, the
values of the slopes and thus those of the D-vector com-
ponents converge while at the same time the error bars
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Fig. 4: (color online) The upper panel displays for
Mn/Pt(664) the Dzyaloshinskii-Moriya energy EDM (see
Eq. (23)) in the vicinity of the AFM state as function of the
inverse wave length for flat homogeneous spirals rotating in
the yz plane (magenta squares and solid line) and in the xy
plane (magenta spheres and dashed line) for a temperature
broadening of kBT = 27.2 meV. The slopes give the values
for the components of the D-vector (see Eq. (2)) which are
shown in the lower panel as function of a broadening tem-
perature. Since for kBT = 27.2 meV (dotted vertical line)
the values are converged and the error bars are still reason-
ably small (for this system as well as for the other two the
relative error due to the linear regression is in the order of
5% to 10%.), the corresponding values are considered in the
following.

are increasing. In the following, the values corresponding
to kBT = 27.2 meV (see dotted vertical black line in the
lower panel of Fig. 4) are used and can be found in Ta-
ble I. Among the three systems the resulting D-vectors
show remarkable differences in direction and strength.
Therefore, we investigate its origin in more detail in the
next paragraph.

For the three investigated systems, a more detailed
study of the atom-resolved contributions to theD-vectors
is given in Figs. 5(a)-5(c). These atom-resolved contri-
butions, i.e., Dµ for the atom with label µ, are obtained
by switching on the SOC contribution for atom µ only.
For each system they are plotted as vector with x and
z components twice, (i) with respect to atom µ in the
step-edge structure in the left part of each panel and
(ii) with respect to the same origin in the right part of
each panel, where in addition their sum, the D-vector,
is shown as bold arrow. At first, we realize that for the
Mn and Fe chain both D-vectors point into very similar
directions. Although all three D-vectors point towards
the upper step-edge, the direction of the D-vector of the
Co chain is quite different from those of the Mn and of
the Fe chain. The lengths of the D-vectors for Fe and Co
chains are quite similar, but about only half as large as
for the Mn chain. In general, the contribution Dµ of the
3d atom itself is nearly negligible. The largest contribu-

tions come from atoms that are located next to the chain,
albeit some contributions from some farther atoms can
play a role as it is the case for Fe. A dominant contri-
bution comes from the nearest-neighbor Pt atom at the
upper terrace. For all systems they are of similar size,
but for Pt next to Co, Dµ points in a direction differ-
ent to the Mn or Fe case (cf. discussion at the end of
this section). For the Co and Fe systems, each Pt atom
µ with a dominant contribution Dµ has a vicinal atom
with a Dµ vector of opposite sign and similar size. The
dominant term for the Mn system, the nearest-neighbor
atom at the upper terrace, has no counteracting contribu-
tion and consequently leads overall to a larger size of the
Dzyaloshinskii-vector D. This analysis shows that, al-
though the atom resolved contributions might have large
values themselves, the sum of all contributions can still
lead to a rather moderate D-vector due to mutual com-
pensation.

In Fig. 5(d) we show an attempt to describe the re-
garded structure in terms of the model proposed by Fert
and Levy,42,43 where the DM energy Eµ

DMI is given as
sum over two distinct magnetic atoms within the chain
interacting with the substrate atom µ (see Appendix D
for details). Within this model, the direction of the atom-
resolved Dµ-vectors is predefined to be perpendicular to
the connection of the center of atom µ and the chain
axis and perpendicular to the chain direction. This is in
good agreement with the directions for theDµ-vectors for
the Mn and the Fe chains (cf. Figs. 5(a) and 5(b) with
Fig. 5(d)), while it cannot be used to explain the direc-
tions for the Dµ-vectors for the Co chain (cf. Fig. 5(c)
with Fig. 5(d)).

We next discuss the strength of the Dµ-vectors. Ap-
plying the Fert-Levy model to a periodic infinite chain,
one finds that Eµ

DMI vanishes in the limit q → 0, while
its derivative and thus the Dµ-vector, diverges. There-
fore, this model is not applicable in this limit and the
introduction of corrections attenuating or truncating the
interaction between atoms in the infinitely long periodic
chain after a certain interaction range, e.g., due to the
lack of phase coherence or the presence of disorder will
resolve this problem. Here, however, we avoid this sin-
gularity by evaluating the strength of Eµ

DMI(q0)/q0 for
a finite wave vector q0 = 0.05 2π

ay
, which corresponds to

λ−1 = 1.77 nm−1 and thus matches in length with a q-
vector used in the presented ab initio calculations, see
leftmost data points in upper panel of Fig. 4. The result-
ing strengths of the Dµ-vectors decrease with distance
to the chain (see Fig. 5(d)). The same behavior is also
found for the three investigated chains, albeit the length
of the vectors cannot be explained by the distance to the
chain only. In Appendix D we furthermore show that the
strength decays with distance much faster when the mag-
netic moments of the atoms within the chain show a AFM
short-range order, as compared to a FM short range order
in the same chain. This observation, however, cannot be
extracted from the ab initio results, e.g., when compar-
ing the Mn chain (see Fig. 5(a)) to the Fe or the Co chain
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Fig. 5: (color online) The atom resolved contributions {Dµ} to the D-vectors are shown (a) for the Mn chain, (b) for the Fe
chain, and (c) for the Co chain, extracted from the performed ab initio calculations, as well as (d) for a TM chain when applying
the Fert-Levy model (see Appendix D). For each of the four cases, these contributions are depicted twice. In the left image, a
cross section of the step-edge structure is shown with these vectors {Dµ}, for convenience, located at the corresponding atom
µ (in fact, these vectors act only on the TM atoms within the chain, represented by the light blue circles). In the right image,
they are given with respect to the same origin. In addition, the resulting D-vector, i.e., the sum over atoms µ, D =

∑

µ Dµ,
is printed in boldface.

(see Figs. 5(b) and 5(c)). In conclusion, with regard to
the structure of an infinite chain of magnetic atoms, we
find that the model of Fert and Levy does not capture
the diverse behavior of the three considered chains and
we advise the application of this model to chains with
some precaution. A more thorough investigation of the
predictive power of the Fert-Levy model with respect to
films and heterostructures would be interesting.

Finally, we provide some arguments why the directions
of Dµ from Pt atoms next to Co contributing to the total
DMI vector are so different as compared to those next to
Mn or Fe. From a simple tight-binding model that we
developed in Ref. 44, we identified spin-flip transitions
between occupied and unoccupied states as the relevant
process for a non-vanishing DMI. For the Mn chain, the
spin-up (spin-down) channels are entirely occupied (un-
occupied) and all transitions yield a contribution to the
DMI. Going now to Co, some spin-down states become
occupied and transitions into these states do not con-
tribute anymore to the DMI. Since the remaining empty
states exhibit particular orbital characters, theDµ vector
may well be rotated as compared to Mn. The situation
for Fe is similar to Mn: most of the spin-down states
are still unoccupied. Of course, a quantitative analyze
requires many more details, such as bandwidths, the na-
ture of the chemical bond etc., but this goes beyond the
scope of this paper.
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Fig. 6: (color online) Magnetic anisotropy energy for
Mn/Pt(664). The energy is plotted for magnetic moments
pointing along directions discretized by the angles ϕ and ϑ
relative to the orientation in z direction. The symbols rep-
resent ab initio calculated energy differences, whereas the fit
functions correspond to Eq. (27). In the case of ϕ = 0◦ (solid
red line) the xz plane and in the case of ϕ = 90◦ (dashed blue
line) the yz plane is sampled.
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C. The anisotropy tensor

Following the findings of Sec. IVA we investigate the
magnetic anisotropy tensor for the ferromagnetic order
for the Co and Fe chains, and for the antiferromagnetic
order for the Mn chains. The two required data sets for
the latter system are shown in Fig. 6. The fit functions
represent the leading order term and have the form

Eϕ(ϑ) = Aϕ · cos2 (ϑ+Bϕ)− Ez (27)

with the energy offset Ez = Eϕ=0(ϑ = 0), the polar
angle ϑ as argument, the azimuth angle ϕ ∈ {0◦, 90◦}
as parameter (see the inset in Fig. 6), and fit parameters
Aϕ and Bϕ. The mirror plane perpendicular to the chain
direction is reflected by the fact that Bϕ=90◦ = 0, leading
to a symmetric function with respect to ϑ. The resulting
hard, medium, and easy axes for all three systems are
summarized in Table I. In the following we use the easy
axis as energy offset.
With respect to the resulting principal components the

Mn system appears to be the most promising candidate
for a non-collinear ground state. The anisotropy ener-
gies for the medium and the hard axis are the smallest
compared to those of the other two systems. In addition,
the easy axis points along the chain direction which is
of relevance for the following reason: The only spin-orbit
driven spin spiral that the D-vector (perpendicular to
the chain axis) can stabilize are of cycloidal character,
meaning that the spiral rotation plane always contains
the direction along the chain. Thus, the rotation over
the easy axis is achieved automatically, regardless of the
rotation axis. For the Co chains the easy axis is at about
61◦ tilted towards the upper terrace, which is in satisfy-
ing agreement with other experimental1 and theoretical
findings.6–8 The easy axis of the system containing the Fe
chains is directed in approximately the same direction as
the one for the Co chains. A remarkable finding for the
Fe system is the strength as well as the orientation of the
hard axis. It not only exhibits the largest value among
all three systems, but also is oriented along the chain di-
rection. Therefore, it shows the most unfavorable setup
for a cycloidal spiral to appear since a rotation over the
hard axis would be unavoidable.

D. Magnetic ground states

In the previous Secs. IVA, IVB, and IVC we extracted
the parameters that now can be used to evaluate the cri-
teria for the appearance of homogeneous and inhomoge-
neous spin spirals (see Eqs. (15) and (19), respectively)
and their respective properties.62 Those criteria depend
on the spin stiffness A as well as Dr, the projection of the
Dzyaloshinskii-vector onto the rotation axis êrot, andK‖,
and K⊥, the two principal axes of the anisotropy tensor
that describe spins rotating in the plane perpendicular to
the rotation axis (see Fig. 1). Evaluating Eqs. (15) and

(19) the resulting magnetic ground state is determined
by the functions fhomcrit (ϑr) and f inhcrit(ϑr) and whether their
value exceeds the critical threshold of 1 for at least one
rotation direction, described by the rotation angle ϑr. As
we can see in Fig. 7 the Mn chains indeed fulfill both cri-
teria when the direction of the spin-rotation axis, around
which the magnetic moments of the spiral rotate, is in
the regime between about −90◦ ≤ ϑr ≤ −20◦. The max-
imum values of fhomcrit (ϑr) and f inhcrit(ϑr) are obtained for
ϑr = −62◦, which at the same time represents the mini-
mum of the total energy, i.e., the magnetic ground state.
This rotation angle can be understood as a compromise
between the optimal DMI contribution (ϑr = −38◦, ro-
tation axis parallel to D-vector) and the minimal MAE
barriers (ϑr = −72◦, rotation axis along K3, the hard
axis). Since Dr is positive for ϑr = −62◦, the obtained
magnetic structure is a left-rotating spiral, which modu-
lates the otherwise antiferromagnetic order. As the mag-
netic anisotropy within the yz plane (see Fig. 6, dashed
blue curve) is small, the findings for homogeneous and
inhomogeneous spirals are quite similar. For the same
set of parameters, Eqs. (14) and (17) lead to a spiral
length of λ = 15.7 nm for a homogeneous spin spiral and
λ = 16.3 nm for an inhomogeneous spiral. Both values
correspond to a period length of about 60 atoms along the
chain, which is equivalent to an average rotation angle of
ϕ ≈ 174◦ between neighboring Mn atoms and a q-vector
of q = − 1

60
2π
ay

êy, measured from the AFM alignment.

These large period lengths justify in retrospect our ansatz
of a micromagnetic model. Employing Eqs. (14) and (16)
we find an averaged energy gain of ∆E = −0.106 meV
per chain atom (∆E = −0.376 meV nm−1) for the ho-
mogeneous spin spiral and ∆E = −0.113 meV per chain
atom (∆E = −0.399 meV nm−1) in the case of an inho-
mogeneous spin spiral.

In contrast to the analysis of the Mn chains, the ob-
tained parameters for the Fe and Co chains confirm a
ferromagnetic ground state, which is in line with previ-
ous studies.10–12 For one part the resulting DMI is not
large enough to change the collinear order favored by the
spin stiffness, which we trace back to oppositely directed
atom-resolved contributions to the D-vector of the Pt
atoms nearby the chain (cf. Figs. 5(b) and 5(c)). On the
other hand, the magnetic anisotropy causes energy barri-
ers that prevent the system from forming a non-collinear
ground state. Especially for the case of Fe chains the
formation of a spin spiral turns out to be energetically
unfavorable, as the spin moments would have to rotate
over the hard axis, as mentioned in Sec. IVC.

We conclude the investigation on the magnetic ground
state with a brief discussion on the possibility of finding
non-planar spin spirals. For systems with orthorhom-
bic anisotropy, phase diagrams are known28 that take
such three-dimensional non-collinear spin structures into
account. However, to make our parameters match the
Ansatz made in Ref. 28 one has to assume that the D-
vector is oriented along one of the two principal axes of
the anisotropy vector, K1 or K3. This is to some extent
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Fig. 7: (color online) In the upper panels we show the values of the functions fhomcrit and f inhcrit for the appearance of homogeneous
and inhomogeneous spin spirals (cf. Eqs. (15) and (19), respectively) in (a) Mn, (b) Fe, and (c) Co chains as functions of ϑr, the
direction of the rotation axis, see Fig. 1. For each system the inset shows the relative orientation of the D-vector with respect
to the principal axes of the anisotropy tensor. In the lower panels the corresponding parameters Dr, K‖, and K⊥ are plotted.
In the last two systems the critical threshold of 1 is missed by more than one order of magnitude. For the Mn chains, however,
both criteria are fulfilled, and their respective curves reach their maxima for ϑr = −62◦. This can be seen as a compromise
between finding the largest DMI contribution (dashed green line) and having the smallest anisotropy energy K⊥ (dashed brown
line).
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Mn 52 7.2 −38 0.69 0.0 0.19 −72 −62 4.00 0.04

Fe 72 3.5 −49 0.84 2.61 0.0 25 (−42) 3.27 0.14

Co 97 3.4 −102 1.65 0.97 0.0 29 (+46) 2.20 0.19

TABLE I: Collected results for the three investigated TM chains on Pt(664) step-edges: Spin stiffness A, absolute value of
the Dzyaloshinskii-vector |D| and its orientation ϑD, principal components of the anisotropy tensor K (cf. Eq. (2)), K1, K2,
K3, and ϑK , the orientation of the principal axis corresponding to K3, the rotation angle ϑmax

r , as well as the spin magnetic
moment µmag and orbital magnetic moment µorb of the TM atom for the case that the spin-quantization axis points along the
easy axis. All angles are measured with respect to the z-axis, see Fig. 1 and the insets of Figs. 7(a), 7(b), and 7(c). ϑmax

r

indicates where the function f inhcrit gets maximal, representing the planar inhomogeneous spin-spiral of lowest energy among all
spirals. Only for the Mn chains this energy is lower than the one for the collinear state (i.e., criterion (19) is satisfied) and
a spin-spiral state is formed as ground state. For the Fe and Co chains the collinear state always remains lower in energy.
Note that K2, the anisotropy along the chain, is the easy axis for the Mn chains but the hard axis for the Fe system. A,
|D|, and Ki can be expressed in units directly compatible to the micromagnetic equation (1) dividing the parameter values by
∆ = 0.282 nm / TM atom.

only reasonable for the Fe chains where the angle be-
tween easy axis direction and D-vector is 16◦ (see insets
in Fig. 7). In addition this system is the best candidate
for a three-dimensional spiral since a rotation over the
unfavorable hard axis is avoided, so that we restrict our
analysis onto the Fe chains only. Following the notation
of Ref. 28 we arrive at DI = 0.32 and KI = −0.48, when
the D-vector is assumed to point along the easy axis di-
rection. Thus, we miss the critical regime of DI > 1 by

a factor of 3, and this pair of parameters distinctly lies
in the collinear region (cf. Fig. 3(b) in Ref. 28).

E. Formation of domain walls

Although for Fe and Co chains the DMI is not strong
enough to introduce a chiral magnetic ground state its
presence can influence the formation of domain walls.45
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We follow the analysis of chiral domain walls put for-
ward by Dzyaloshinskii,30 but apply this analysis to the
ferromagnetic Fe and Co chains. Once again the starting
point is the energy functional as given in Eq. (1), now
with the boundary condition

m(y)
y→±∞−−−−−→ ±measy . (28)

By this constraint a rotation by 180◦ is forced to take
place spreading within the infinite chain. A distinction is
made between a Bloch wall (helical rotation) and a Néel
wall (cycloidal rotation). For both cases a characteristic
width of the planar domain wall can be defined by45

w =
1

π
·
√

A

K
, (29)

where K represents the anisotropy energy for magnetic
moments that point perpendicular to the easy axis direc-
tion within the spin rotation plane. The expression for
the minimal energy reads45

E =
2

π
·
√
AK − |êrot ·D|

2
, (30)

where for the Néel wall êrot·D is equal to the expression in
Eq. (10), but vanishes for a Bloch wall (êrot ⊥ D). Thus,
only for a Néel wall a preference in the rotation direction
is expected and Néel walls can be realized even if the
MAE favors a Bloch wall. Note, that the energetically
favored rotational sense of the domain wall is accounted
for by the minus sign and the absolute value of the second
term in Eq. (30).
The resulting domain wall energies as well as the pre-

dicted wall widths for Fe and Co chains are listed in Ta-
ble II. Since for both systems the easy-axis direction is
perpendicular to the chain direction, the rotation axis is
fixed by Eq. (28) and the chain direction. If the easy axis
points along the chain direction, êrot is a compromise be-
tween magnetic anisotropy and DMI as it was the case
for the ground-state analysis. In such a case no Bloch
wall can be established.
For the Fe chains, a Bloch wall is energetically more

favorable than the Néel wall even when the DMI contri-
bution is taken into account, so that we do not expect a
preference in the rotational sense for the domain walls for
this system. One reason is that a Néel wall forces a rota-
tion of the spins over the chain direction that is the hard
axis of this system. Furthermore, the rotation plane is
predefined by the easy axis direction. Since the D-vector
is oriented nearly within this plane, the projection to the
rotation axis êrot is relatively small.
For the Co chains, the energy of the Bloch wall, EB, is

already by more than 6 meV higher in energy than the
corresponding Néel wall, EnoDMI

N , where the DMI contri-
bution is neglected. When in Eq. (30) the DMI contri-
bution is taken into account the preference of a Néel wall
is even higher. This gain in energy is achieved only for a
right-rotating domain wall. This is because the rotation

TM
EB

(meV)

wB

(nm)

EN (EnoDMI
N )

(meV)

wN

(nm)

Fe 17.49 2.94 29.06 (30.82) 1.67

Co 28.26 2.42 17.73 (21.68) 3.15

TABLE II: The domain wall energies for a Bloch wall and a
Néel wall, EB and EN respectively, as well as the correspond-
ing wall widths, wB and wN, are listed. Due to the DMI,
the Néel wall always exhibits a certain rotational sense that
lowers the energy with respect to its value without taking the
DMI into account (EnoDMI

N ). For the Fe chains the Bloch wall
is energetically always more favorable, for the Co chains the
Néel wall is preferred.

y

−62◦

êrot x

z(a)

y

29◦

x

z

êrot

(b)

Fig. 8: (color online) Schematic visualization of the energeti-
cally preferred rotational sense for (a) the ground-state of the
Mn chain (left-rotating spin-spiral) and (b) the domain wall
for the Co chain (right-rotating Néel wall).

angle ϑr = 29◦ that describes a rotation plane perpendic-
ular to the easy axis leads to a negative Dr, see Fig. 7(c).
Such a spin-orbit driven preference of a particular rota-
tional sense of the Néel wall should be observable in an
experiment.

V. SUMMARY AND OUTLOOK

Density-functional theory (DFT) calculations were
performed to study the magnetic interactions in Mn, Fe,
and Co chains at Pt step-edges. These calculations al-
low to extract parameters for a micromagnetic model
that takes into account the spin-stiffness constant, A, the
magnetic anisotropy tensor, K, and the D-vector, which
arises from the Dzyaloshinskii-Moriya interaction (DMI).
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Using this model, the magnetic ground state for the three
investigated systems is determined employing two differ-
ent instability criteria for the appearance of spin-orbit
driven non-collinear structures, one for the homogeneous
and one for the inhomogeneous spin spiral. The main
results are listed in Table III.

Our results predict a spiral magnetic ground state for
the Mn chains, that modulates the antiferromagnetic or-
der with a period length of about 16 nm or 50-60 atoms
along the chain. These findings establish Mn as a promis-
ing candidate for experimental research groups to inves-
tigate the DMI in 1D systems. A new aspect of this
system, different to the systems studied in the literature,
is the non-trivial direction of the D-vector, that is not
fully determined by symmetry. As a result the spiral ro-
tates in a plane that is tilted by about 62◦ towards the
upper terrace (see Fig. 8(a)). For the Fe and Co chains
we conclude that the formation of a non-collinear spi-
ral magnetic structure is unlikely. For one part, this is
due to magnetic anisotropies that are larger compared
to the Mn chains. For the other part, their D-vectors
are too small to overcome these anisotropy barriers. A
detailed atom-resolved analysis of this quantity showed
that their moderate strengths are due to compensation
of the atomic contributions. For Co, the results are con-
sistent with recent findings for the Co zigzag chain on
Ir(001) (5×1),16 for which also no spiraling solution was
observed. On the other hand, the Fe/Pt step-edge be-
haves different to the biatomic Fe chain Ir(001),27 for
which a spiral with a short period pitch was observed.

The calculated directions and strengths of the D-
vectors for the different chains were compared to those
that result from the model of Fert and Levy. It appears
that this model reproduces to some extent the directions
of the D-vectors of the Mn and the Fe chains. For the Co
chain, however, it fails to describe the direction of D cor-
rectly. We noticed that the model of Fert and Levy may
be used with some precaution at least for one-dimensional
chains as the micromagnetic DM vector diverges for infi-
nite chains in the limit of long wavelengths. A more thor-
ough investigation of the predictive power of the Fert-
Levy model with respect to films and heterostructures
would be interesting.

Furthermore, an analysis of planar domain wall struc-
tures for the Fe and the Co chains was presented. It
appears that in the Fe system a Bloch wall is energeti-
cally more favorable. Since this type of domain wall is
by symmetry not affected by the DMI, a preferred sense
in the rotation direction is not expected. In contrast, the
Co chains form a Néel wall, which shows a homochiral
preference in the wall rotation that is caused by the DMI
(see Fig. 8(b)).

We encourage experimental groups to verify our find-
ings for the Mn chains in terms of the magnetic ground
state. Furthermore, a statistically preferred rotational
sense of domain walls in the Co chains should be observ-
able in experiment. This could add a substantial aspect
to the understanding of magnetism in low-dimensional

systems and could provide some insight into the conse-
quences of surface and interface roughness on the DMI.
Previous investigations revealed a strong dependence of
the MAE on the number of transition-metal strands in
the chain11,13,46. For example, a strong softening of the
MAE was observed for Fe double-chains13, i.e., magnetic
parameters may be tuned as functions of the number of
strands to meet the criterion for a chiral ground state.

In this paper we focused exclusively on infinite peri-
odic chains. Here we comment briefly on the magnetism
for chains of finite lengths. We may discuss the finite-
ness in terms of a boundary effect, which are strongest
where the chain terminates and whose effects decay away
from the boundary into the chain. This affects shorter
chains stronger than larger chains. Thus, in the center of
larger chains we expect the same behavior as for periodic
chains. In general, due to the finiteness of the chain three
additional factors may play a role: (i) Atoms in a finite
chain lose the mirror symmetry in a plane normal to the
chain direction. (ii) Thus, edge effects of finite chains re-
sult in non-vanishing components of D-vectors along the
chain direction. Although the remaining non-vanishing
component is small when averaged across the finite chain,
locally we expect an additional tilt of the magnetic mo-
ments and subsequently an additional energy gain. This
supports the formation of a chiral magnetic ground state
in a finite chain over an infinite one, similar to the surface
twist in films of B20 alloys that stabilize the skyrmions
phase in films over B20 bulk alloys.47 Even if we assume
that the electronic structure at the boundary of the fi-
nite chain does not change and all microscopic magnetic
parameters remain unchanged, the micromagnetic DMI
experience a change due to symmetry and this additional
tilt of the magnetization has been investigated by S. Ro-
hart and A. Thiaville48 but not for chains but for nanos-
tructures. (iii) The change of the electronic structure at
the boundary of the chain is an additional factor. Actu-
ally we investigated this for finite clusters49 and it might
be an important effect. Then all micromagnetic param-
eters change, but most affected are the DMI and MAE.
This can modify the threshold for the occurrence of a chi-
ral magnetism in the chain. If the chain length becomes
below two times the length scale, where the electronic
structure is modified due to the presence of the finiteness
of the chain, nothing can be said about the magnetic
property of the short chain. Additional ab initio studies
are required.

On the methodological side we showed that for a spin-
lattice model of classical spins on a Bravais lattice in-
cluding Heisenberg and Dzyaloshinskii-Moriya interac-
tion the homogeneous spin-spiral is an exact solution if
the rotation vector of the spin-spiral points either par-
allel or antiparallel to the D-vector, representing a so-
lution of two different chiralities. This has important
consequences since the spin-spiral state is a state that is
frequently employed in the first-principles context using
density functional theory. One consequence is that the
slope and the curvature of the spiral energy as function of



14

TM GS (no SOC) GS (with SOC) easy axis DW type

Mn AFM ℓ-SS ‖ chain —

Fe FM FM ⊥ chain BW

Co FM FM ⊥ chain r-NW

TABLE III: Summary of the outcome of the paper: Whereas
in the absence of SOC only collinear ground-states (GS) occur
(FM and AFM), the Mn chain forms a left-rotating homochi-
ral spin spiral (ℓ-SS) when SOC is taken into account. The
easy axis can point along the chain (Mn) or perpendicular to
it (Fe and Co). For the definition of ϑK see Fig. 7 or Eq. (4).
The analysis of the domain wall (DM) type reveals that the
Fe chain prefers a Bloch wall (BW) whereas for the Co chain
a right-rotating Néel wall (r-NW) is energetically favored.

the wave vector as calculated in density functional theory
provides directly the spin stiffness and the spiralization
that enter a material specific micromagnetic model.
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Appendix A: Relation between micromagnetic and

spin-lattice model

A natural starting point for a multiscale analysis of a
complex magnetic structure is the spin-lattice Hamilto-

nian

E{S} =
∑

i<j

[Jij Si · Sj +Dij · (Si × Sj)]+
∑

i

ST
i Ki Si ,

(A1)
where Jij is the exchange integral between atoms at sites
i and j, Dij is the Dzyaloshinskii vector and Ki is the
microscopic on-site anisotropy tensor. If these parame-
ters are determined from first principles, one refers to a
realistic spin-lattice model. Assuming lattice periodicity
it follows that Jij = J|j−i|, Dij = Dj−i = −Di−j , and
Ki = K0 for all sites i, and considering that the exchange
interaction and the DMI are even and odd functions, re-
spectively, with respect to inversion symmetry. In this
appendix we relate these parameters to the micromag-
netic parameters of model (1).

If we assume that the magnetic structure is slowly
varying along the chain, meaning that the magnetic mo-
ments rotate on a length scale that is much larger than
the interatomic distance, then it is certainly possible
to choose for the magnetization direction a continuous
normalized function m(y) with |m(y)| = 1, such that
m(j∆) = Sj , where ∆ denotes the spacing between the
lattice points along the y-axis. If we assume further that
m does not vary much on a length scale at which the
interactions J and D are relevant, then the interactions
can be considered local over that length scale which is
consistent with the formulation of the interactions in the
micromagnetic energy functional (1). Under these condi-
tions one can Taylor expand Sj = m(j∆) aroundm(i∆).
The energy expression (A1) treated within the lowest rel-
evant order reads then

E =
∑

i

∆





∑

j>i

[

−1

2
(j − i)2∆J|j−i| ṁ

2(i∆) + (j − i)Dj−i · (m(i∆)× ṁ(i∆))

]

+
1

∆
m(i∆)T K0 m(i∆)



 , (A2)

For the exchange term we make explicitly use of the nor-
malization as m2(y) = 1, d

dy m2(y) = 2m(y) · ṁ(y) = 0

and d2

dy2 m
2(y) = 2m(y) · m̈(y) + 2 ṁ2(y) = 0.

Reminding that the distance Rij between atoms at site

i and j is given by (j − i)∆ = Rij , replacing ∆ by dy in
(A2) in the limit of small changes, the energy functional
of spin-model (A1) approaches the energy functional of
micromagnetic model (1), E{S} → E[m], with parame-
ters A, D and K as summarized in Eq. (22).
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Appendix B: Spin-spiral solution of spin-lattice

model with Dzyaloshinskii-Moriya interaction

From the view-point of first-principles calculations of a
magnetic crystalline solid, the planar helical or cycloidal
spin-spiral represents an interesting magnetic state, be-
cause in the absence of spin-orbit coupling the spin-spiral
state can be calculated by partitioning a solid into the
same (chemical) unit cell that is used for non-magnetic or
ferromagnetic calculations. This becomes possible by em-
ploying the generalized Bloch theorem40 and holds true
for any arbitrary wave vector q ∈ BZ taken from the Bril-
louin zone (BZ) of wave vectors. It is a major concept to
make such first-principles calculations feasible.
In this Appendix B we show that the planar homoge-

neous spin-spiral state of wave vector q, whose rotation
axis points parallel or antiparallel to the Dzyaloshinskii-
Moriya vector, is a stationary solution, and for a par-
ticular wave vector Q, the spin-spiral state is also the
energy minimizer of the spin-lattice model (A1) for a pe-
riodic solid, when the magnetic anisotropy term is ig-
nored. It is known that the spin-spiral state is the sta-
tionary solution of a classical Heisenberg model on the
Bravais lattice.50–53 Here we show that the solution holds
true also for the Heisenberg exchange plus DMI. In differ-
ence to the Heisenberg exchange only, where the energy
is isotropic with respect to the rotation directions of the
spirals, the DMI lowers the rotational symmetry, and se-
lects spirals whose rotation directions are parallel and
antiparallel to Dzyaloshinskii-Moriya vector Dq of mode
q.
In the following we assume a crystalline solid with lat-

tice periodicity and restrict ourselves for simplicity to one
atom per unit cell. We neglect the single-site anisotropy
tensor in (A1). The spin-model (A1) on the Bravais lat-
tice is then replaced by the quadratic form

E{S} =
1

2

∑

i,j

ST
i Jij Sj , (B1)

with prefactor 1/2 preventing a double counting of terms
and the exchange tensor

Jij =







Jij Dz
ij −Dy

ij

−Dz
ij Jij Dx

ij

Dy
ij −Dx

ij Jij






∈ R

3×3 , (B2)

and Jij = J T
ji . The lattice periodicity implies Jij =

J0,j−i = J T
0,i−j . The aim is to find the set of spins {Si},

with Si : Z → S
2 ⊂ R

3, that minimizes E{S} subject to
the constraints that the length of spins are on sphere S

2

of radius S and remain unchanged at all sites i,

Si · Si = S2 ∀ i ∈ Z . (B3)

Luttinger and Tisza54,55 realized that the minimization
of a quadratic form under N strong constraints can be

replaced by a much simpler problem of minimizing the
energy (B1) subject to the weak constraint

∑

i

Si · Si = NS2 , (B4)

where N is the number of lattice sites. This is a neces-
sary condition and becomes sufficient if the solution also
fulfills the strong constraint, as given in Eq. (B3).
To take advantage of the translational symmetry of

the crystalline solid, we transform the spin at lattice site
i with the lattice vector Ri into momentum space

Si =
1√
N

∑

q

Sq e
iqRi and Sq =

1√
N

∑

i

Si e
−iqRi .

(B5)
Without loss of generality we assume here Ri ∈ R

3,
but the derivations hold correct also for one- and two-
dimensional lattices. Since Si ∈ R

3 is a three-tuple of real
numbers, it holds that S∗

q = S−q. With this definition,
the quadratic form (B1) and the weak constraint (B4)
can be expressed in momentum space as

E{Sq} =
1

2

∑

q

ST
−q Jq Sq =

1

2

∑

q

S†
q Jq Sq (B6)

and
∑

q

S−q · Sq =
∑

q

S†
q Sq = NS2 , (B7)

respectively, with

J αα′

q =
∑

j

J αα′

0j e−iq(0−Rj) =
(

J α′α
q

)∗

=
(

J αα′

−q

)∗

=







(

J αα′

q

)∗

for α = α′

−
(

J αα′

q

)∗

for α 6= α′
, (B8)

and α ∈ {x, y, z}. Since the off-diagonal elements of J αα′

q

are purely imaginary, we replace Dα
q by iDα

q . The ex-
change tensor in momentum space is then related to the
tensor in real space (B2) as

Jq =







Jq iDz
q −iDy

q

−iDz
q Jq iDx

q

iDy
q −iDx

q Jq






∈ C

3×3 , (B9)

with Jq and Dα
q ∈ R. Analogously, we find for the ex-

pression of the DM energy of the spin-model (A1)

EDM{S} =
1

2
N

∑

j

D0j ·C0j with C0j = S0 × Sj ,

(B10)
in terms of the vector chirality C0j , or sum over modes
in momentum space, respectively,

EDM{Sq} =
1

2

∑

q

Dq ·Cq with C(Sq) = iS∗
q × Sq ,

(B11)
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where C(Sq) is the vector chirality of mode Sq. Obvi-
ously energy is gained if the vector chirality is antiparallel
to the Dzyaloshinskii-Moriya vector, Cq ∝ −Dq.
To simplify the minimization problem it is convenient

to transform the 3N dimensional quadratic form (B6)
into the principal axes by diagonalizing the matrix Jq.
Since Jq = J †

q is Hermitian, Jq has 3 real eigenvalues
λq,γ with γ ∈ {1, 2, 3}:

λq,1(3) = Jq (∓) |Dq| and λq,2 = Jq (B12)

with orthonormal eigenvectors Vq = {vq,1,vq,2,vq,3} ∈
C

3×3. The eigenvector vq,2 points for each wave vector
q into the direction of the Dzyaloshinskii vector vq,2 =
êq,DM = Dq/|Dq| (see also Eq. (3)). Obviously eigenvec-
tors vq,1 and vq,3 live in the orthogonal subspaces. With-
out loss of generality we choose for each mode q the coor-
dinate system of the spin space such that êq,DM coincides
with the z-axis, êq,DM = êz. In this new frame of refer-
ence RqDq = (0, 0, Dq)

T with Dq = |Dq| ≥ 0, the eigen-
vectors transform to Wq = RqVq = {wq,1, êz,wq,3} ∀q,
whereRq ∈ R

3×3 is the respective rotation matrix, which
conserves handedness, i.e., detR = 1. With those defini-
tions it is clear that R−q = −Rq, because of the symme-
try D−q = −Dq (see Eq. (B8)) and our definition that
the local z-axis points always parallel (not anti-parallel)
to Dq. We can always choose a transformation such that
the exchange tensor becomes block diagonal

Rq Jq RT
q =







Jq iDq 0

−iDq Jq 0

0 0 Jq






, (B13)

the eigenvectors simplify to

wq,1 =
1√
2







1

i

0






= (wq,3)

∗
, wq,2 =







0

0

1






, (B14)

and the energy in momentum space reads

E{Sq} =
1

2

∑

q

3
∑

γ=1

S†
qRT

qwq,γλq,γw
†
q,γRqSq . (B15)

The eigenvalues and eigenvectors are invariant with re-
spect to space inversion symmetry I transforming Iq =
−q, and complex valued functions as IJ (q) = J ∗(−q),
and Iwq,γ = w∗

−q,γ . The matrix of vector chirality for
the three eigenvectors C(Wq) = {−êz,0, êz} ∀q are mo-
mentum independent and the chirality vector of the state
with the lowest (highest) eigenvalue point antiparallel
(parallel) to the direction of the DMI.
Now we turn to our primary goal to find the state SQ

that minimizes the energy expression E{Sq} of Eqs. (B6)
or (B15), respectively. Irrespective of the sign of Jq,
eigenvalue λq,1 is always the lowest eigenvalue for any
wave vector q, Λq,min = λq,1. Considering the symme-
try relation J (q) = J (−q)∗ (see Eq. B8)), both matri-
ces have the same eigenvalues and subsequently Λq,min =

Λ−q,min has at least a twofold degeneracy for q ∈ BZ, but
the eigenvectors corresponding to the lowest and highest
value exchange their roles, i.e., w−q,1 = (wq,1)

∗ = wq,3

and vice versa. A lower bound to E{Sq} can be esti-

mated considering that S†
qJqSq ≥ S†

qΛq,minSq is limited
by the lowest eigenvalue, and thus

E{Sq} ≥ 1

2
Λ
∑

q

S†
q Sq =

1

2
ΛNS2 , (B16)

with Λ = Λ±Q = minqΛq the lowest eigenvalue of all q.
In the state that minimizes the 3N -dimensional ellip-

soid transformed to the principal axis (see Eq. (B15))

with respect to S†
q subject to the constraint (B7) of a

3N -dimensional sphere of radius NS2, it is easy to show
by the method of Lagrange multipliers that the Sq must
satisfy

(λq,γ − 2ξ)w†
q,γRqSq = 0 ∀q, γ , (B17)

where ξ is the Lagrange multiplier independent of q. Us-
ing Eqs. (B17) and (B7), the energy (B15) becomes

E{Sq} = ξNS2 . (B18)

Hence the minimum E{SQ} is obtained for the minimum
ξ for which solutions of Eq. (B17) exist, which is realized
for ξ = 1/2Λ, proving that the ground state satisfies the
equal sign in Eq. (B16).
Now we have a closer look at Eq. (B17). If Sq 6= 0 for

all q and since Wq spans the whole three-dimensional
spin-space there exists for each vector q at least one
eigenvector wq,γ for which w†

q,γRqSq 6= 0. As a conse-
quence for each vector q, there is at least one eigenvalue
λq,γ for which λq,γ = 2ξ. Since ξ is independent of q,
all eigenvalues and thus all Jq, and |Dq| should be inde-
pendent of q, and this is unphysical. On the contrary a
single-q state,

Sq|q̄,γ =

√

NS2

2
RT

q̄ (wq̄,γδq,q̄ +w−q̄,γδq,−q̄) , (B19)

i.e., a state for which Sq = 0, ∀q \ {q̄,−q̄}, made of a
superposition of two arbitrary modes with wave vectors
q̄ and −q̄, for which eigenvalue λq̄,γ = λ−q̄,γ is two-
fold degenerate, with polarization directions determined
by the principal axes of the exchange tensor Jq̄ satisfies
Eq. (B17) for the Lagrange parameter ξ = 1/2λq̄,γ and
the respective energy

E{Sq|q̄,γ} =
1

2
λq̄,γNS

2 , (B20)

and it is a stationary state of the energy functional, with
λq̄,γ from Eq. (B12). The term ∝ RT

q̄wq̄,γδq,q̄ satisfies
also condition (B17), but not the condition S∗

q = S−q,
and thus Si /∈ R. Therefore, this case is not further
discussed.
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The three eigenmodes (B19) exhibit the chirality

C(Sq|q̄,1) = −NS
2

2
RT

q̄ êz (δq,q̄ − δq,−q̄) (B21)

C(Sq|q̄,2) = 0 (B22)

C(Sq|q̄,3) =
NS2

2
RT

q̄ êz (δq,q̄ − δq,−q̄) . (B23)

Obviously, the modes Sq|q̄,1 and Sq|q̄,3 are of opposite
chirality.
A Fourier back-transformation of the eigenmodes

shows that the modes with γ = 1 and γ = 3 correspond
to flat spin spirals,

Si|q̄,1(3) = SRT
q̄







cos(q̄ ·Ri)

(∓) sin(q̄ ·Ri)

0






, (B24)

where the upper (lower) sign corresponds to mode 1 (3)
and the rotation corresponds to a clockwise (counter-
clockwise) rotation around êq̄,DM = RT

q̄ êz. The assign-
ment of sign and handedness is consistent (i) with the
common definition of the rotation matrix

Rz(ϕ) =







cosϕ (±) sinϕ 0

(∓) sinϕ cosϕ 0

0 0 1






(B25)

rotating vector Si|q̄,1(3) in a right-handed coordinate sys-
tem clockwise (counter-clockwise) around êz by an angle
ϕ = q̄ · Ri with 0 ≤ ϕ ≤ π, (ii) as well as with the
definition of the winding number

w1(3) =
1

2π

∮

dϕ S1(3) ×
dS1(3)

dϕ

=
1

2π

∮

dϕ

[

Sx|1(3)(ϕ)
dSy|1(3)(ϕ)

dϕ

−Sy|1(3)(ϕ)
dSx|1(3)(ϕ)

dϕ

]

= (∓)1 (B26)

counting the total number of turns of the spin-spiral as
a curve parametrized by ϕ with 0 ≤ ϕ ≤ 2π, where
counter-clockwise motion counts as positive and clock-
wise motion counts as negative integers, and (iii) with
the vector spin-chirality between atom i and i + 1 de-
fined in

Ci,i+1(Si|q̄,1(3)) = (∓)S
2 sin (q̄ (Ri+1 −Ri)) êq̄,DM .

(B27)
Alternatively we could also say, that mode 1 (3) rotates
counter-clockwise (clockwise) around (∓)êq̄,DM, but this
is not the definition we follow here. These two modes
γ = 1, 3 are separated by an energy NS2|Dq̄|.
On the contrary, the mode Sq|q̄,2 represents a spin den-

sity wave in the direction of Dq̄,

Si|q̄,2 = S êq̄,DM cos(q̄ ·Ri) . (B28)

All three modes satisfy per construction the weak con-
straint (B4), but this mode does not fulfill the strong
constraint (B3) and thus must be excluded from the set
of solutions.
q̄ takes the physical meaning of the propagation vector

of the spin spiral. If the propagation vector is parallel to
the DMI-vector, q̄‖Dq̄, then we call the spiral a helical or
Bloch-type spin-spiral for which holds that curlSq̄,1(3) =
∇R × Sq̄1(3) = (±)(q̄ · êq̄,DM)Sq̄1(3). If the propagation
vector is perpendicular to the DMI-vector, q̄ ⊥ Dq̄, then
we name the spiral a cycloidal or Néel-type spin-spiral for
which curlSq̄,1(3) = (∓)(q̄ · Sq̄,1(3))êq̄,DM. Here the spin-

spiral Sq̄ = Sq̄(R) : R3 → S
2 is a smooth function whose

values coincide at the positions of the lattice vectors Ri

with Si|q̄. The details of the vector relation between q̄

and Dq̄ depend on the symmetry of the crystal lattice.
So far we focused on physical realizations where the

eigenvalues of the stationary state Λq̄ are exactly two-
fold degenerate, namely for q̄ and −q̄ for q̄,−q̄ ∈ BZ.
For systems with a non-trivial point group, the q̄-vector
is equivalent to a star of p q̄-vectors, {q̄}, formed by
consideration of q̄α = Pαq̄ for all symmetry operations
α denoted by Pα of the symmetry group of the lattice.
Accordingly, Λ{q̄} is p-fold degenerate, p different Sq̄α

can satisfy Eq. (B17) simultaneously, and the single-q
state Sq|q̄,γ in Eq. (B19) may be replaced by an alter-
native ansatz describing a multi-q state by a superposi-
tion of properly normalized Sq|q̄α,γ for any choice of α
taken from the symmetry group as long as the strong
constraint (B3) is fulfilled. For q̄ = Q we may expect
a multi-q ground state. The competition of the various
possible multi-q states with the single-q state as possible
ground state is typically determined by energy contribu-
tions beyond the model discussed here.56

Appendix C: Extracting micromagnetic parameters

from first-principles energetics of spin-spiral state

An important aspect in undertaking multi-scale simu-
lations of magnetic structures is the development of real-
istic micromagnetic models with material-specific param-
eters. Here, we show that the spin stiffness A and the spi-
ralization D, which enter the micromagnetic model (see
Eq. (1)) can be extracted directly from first-principles
calculations of the total energy Etot(q, êrot) given per
magnetic atom for a planar homogeneous spin-spiral with
wave vector q and fixed rotation axis êrot related to the
planar spiral as êrot = m̂i × dm̂i/dRi.
In the following we give a rather general derivation

not restricted to one-dimensional chains and thus we
work with the spin-stiffness tensor A ∈ R

d×d rather
than with the spin stiffness A and the spiralization ten-
sor D ∈ R

3×d, also called matrix of Dzyaloshinskii-
Moriya constants, rather than the Dzyaloshinskii-vector
D. d ∈ {1, 2, 3} refers to the dimensionality of the micro-
magnetic problem with d = 1 relevant for chains, domain-
walls or magnetic spirals, d = 2 for films, interfaces or
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the treatment of skyrmions and d = 3 for bulk or bubbles
for example.
In the general case, the expression of the DM en-

ergy density of the micromagnetic energy functional (1)
translates from the one-dimensional case D · (m× ṁ) to
D : (m×∇m) in case of higher dimensions. The expres-
sion in the parenthesis is also called the Lifshitz matrix
L(m) ∈ R

3×d ⊆ R
3×3, a matrix of differential one-forms

with matrix elements Lαβ =
∑

α′α′′ ǫαα′α′′L
(β)
α′α′′ , with

α, β ∈ {x, y, z}. L
(β)
αα′ = −(mα∂βmα′ − mα′∂βmα) are

the Lifshitz invariants and ǫ is the Levi-Civita symbol.
The operator “:” refers to the inner product of two ma-
trices: D :L(m) = tr

[

DTL
]

=
∑

αβ DαβLαβ . Which of
the Lifshitz invariants or which of the maximal 9 compo-
nents of the D-matrix, respectively, are relevant depends
on the point-group of the crystal, an aspect which is not
considered here any further.
Starting point of the derivation is the observation

made in Appendix B that flat spirals with rotation
axis ∓êDM(q) are the stationary states of the spin-
lattice model with Heisenberg and DM interaction with
an energy per atom of E(q, (∓)êDM(q)) = 1

2λq,1(3) =
1
2 (J(q) (∓) |D(q)|) and two opposite rotation senses.63

The extraordinary nature of these states lies in the effi-
cient realization in first-principles theory of the electronic
structure. We recall from the discussion in Sec. III that
by neglecting the magnetic anisotropy energy, the total
energy of a spin-spiral state, Etot(q, êrot) ≃ ESS(q) +
EDM(q, êrot), can be explicitly approximated by calcula-
tions in two steps: self-consistent calculations of the spin-
spiral energy without SOC, ESS(q), and the energy due
to SOC, EDM(q, êrot), in first order perturbation theory
for a given rotation axis êrot. We work here with a nor-
malized length of magnetic spins, S2 = 1, as typical for
spin-lattice and micromagnetic models. The parameters
J(q) and D(q) of particular systems are then obtained
from first principles by a direct comparison of the ener-
gies E(q, (∓)êDM(q)) = 1

2λq,1(3),

δJ(q) = J(q)− J(0) = 2 (ESS(q)− ESS(0)) (C1)

and |D(q)| = 2EDM (q, êDM) , (C2)

∀q ∈ BZ. Note, the equalities hold only if ESS and
EDM are given as energy per magnetic atom. The back
Fourier transformation of J(q) and D(q) according to
Eq. (B8) provides then the Heisenberg exchange param-
eter J0j and the microscopic DM-vectors D0j on the real
space lattice. There might be cases where the direction
êDM(q) is not known a priori. In this case we can deter-
mine the three components of D(q) applying Eq. (C2)
for each wavevector q and for three independent axes of
spiral rotations êrot, i.e., êrot ·D(q) = 2EDM (q, êrot).

In micromagnetic models one typically assumes that
the ground state of the system is close to the collinear
state qc, e.g., the ferromagnetic state at qc = 0 or an
antiferromagnetic state at a high-symmetry point at the
boundary of the Brillouin zone. At such a point qc in the
Brillouin zone, |J(qc)| typically takes a local minimum.

If we assume that |D(q)| ≪ |J(q)| for q in the vicinity of
qc and measured from qc, i.e., the long wavelength limit
where |q| is small, the relevant energy landscape may be
explored by Taylor expanding Eqs. (C1) and (C2), i.e.,
the exchange parameters

δJ(q) = 2
∑

j≥1

J0j (cos(qRj)− 1)

≈ −
∑

j≥1

J0j(Rjq)
2, (C3)

D(q) êDM(q) = D(q)

3
∑

k=1

(êDM(q) · ê(k)rot) ê
(k)
rot

= 2
∑

j≥1

D0j sin(qRj)

≈ 2
∑

j≥1

D0j (Rjq) (C4)

and the total energy

1

VΩ
Etot(q, êrot) =

[

êrot ·
D
2π

]T

q+ qT A
4π2

q+O(q3)

(C5)
up to second order in |q| measured relative to qc, for
a fixed rotation axis êrot. k labels the maximally three

linear independent rotation axes ê
(k)
rot . In Eqs. (C3) and

(C4) we made explicitly use of the symmetry relations
J(q) = J(−q) and D(q) = −D(−q) and chose J(qc) as
origin of energy. In Eq. (C5), VΩ represents the volume
of the unit cell in a 3D system, the surface area in 2D, or,
respectively, the spacing between magnetic atoms in 1D,
so that the left-hand side represents an energy density.
The numerical prefactors appear in order to keep consis-
tency with the definition of the energy functional in the
main text, Eq. (1). We arrive at the energy expression
with the spin stiffness A obtained from the curvature of
the total energy at wave vector qc,

A
4π2

=
1

2VΩ

∂2

∂q2
ESS(q)|qc

=
1

2VΩ

∑

j≥1

J0jRj ⊗Rj . (C6)

The projection of the spiralization matrix D onto the
direction of the rotation vector êrot, [êrot · D] ∈ R

d, is
obtained from the slope of the total energy calculated for
the rotation axis êrot,

D
2π

= êrot ⊗
1

VΩ

∂

∂q
EDM(q, êrot)|qc

=
1

VΩ

∑

j≥1

D0j ⊗Rj . (C7)

The product denoted by ”⊗” indicates the tensorial prop-
erty of the spin-stiffness and the DM-matrix. These equa-
tions provide the link between the micromagnetic param-
eters, the ab initio results of spin-spiral calculations and
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a spin-lattice model. On the basis of the first expres-
sion on the right-hand side of Eq. (C7) we can interpret
the D-matrix as a tensor in the space spanned by the
magnetization direction and real space.

Appendix D: Atom-dependent micromagnetic

D-vector in the Fert-Levy model obtained for a

spin-spiral state

Applying the Fert-Levy model42,43 for determining the
microscopic DM vector in metals is very appealing due
to its simplicity and clarity. It is frequently applied to
determine the direction of the DM vector and interest-
ing because it could provide a basis for interpreting our
first-principles results. The assumptions under which the
model is derived motivates this appendix, where we ex-
plore the validity and applicability of the model to ex-
tended periodic systems, primarily to chains.
Fert and Levy investigated CuMnT ternary alloys,

with a small concentration (1% or 2%) of Mn impurities
and of heavy non-magnetic atoms T=Au or Pt. They
found that experimental anisotropy data are explained
by Mn atoms carrying a magnetic moment and interact-
ing not only by the typical Rudermann-Kittel-Kasuya-

Yosida (RKKY) interaction, but also by a DM-type in-
teraction due to spin-orbit scattering of the conduction
electrons by the non-magnetic impurities. They derived
the leading order expression for the DMI-energy that is
first order in the spin-orbit coupling and second order
in the exchange interaction, which results from an ex-
pression for the third-order perturbation of the ground-
state energy of the gas of conduction electrons due to the
presence of the Mn spins and the non-magnetic impurity.
Evaluating this expression under the assumption that (i)
the magnetic moments are located at the Mn atoms and
(ii) the spin-orbit interaction at the non-magnetic impu-
rity atoms only, (iii) that both atom types are located
in the host as impurities in the low, but not very low
(> 1000 ppm), concentration limit, (iv) that Cu pro-
vides the gas of homogeneous electrons described by the
Fermi energy, EF, and wavevector, kF, that (v) scatter
at the non-magnetic impurity with the scattering phase
shift δ2(EF) and the spin-orbit strength λ, and hybridize
with the 3d states of the Mn atoms described by Γ, the
exchange interaction strength between the host electrons
and local spins, they arrived at a trilinear expression for
the DMI-energy,

Eijµ
DM = −135π

32

λΓ2

E2
F k

3
F

sin δ2(EF) sin[kF(Riµ +Rjµ +Rij) + δ2(EF)] ·
R̂iµ · R̂jµ

RiµRjµRij
(R̂iµ × R̂jµ) · (Si × Sj) , (D1)

relating three atoms: one non-magnetic impurity denoted
by µ and two magnetic impurities denoted by i, j placed
at the position Ri(j)µ measured from the position of the
spin-orbit impurity. Rij measures the distance between
the two atoms i and j.
Now we apply this model to a single transition-metal

chain on the Pt substrate. We are aware of the fact
that neither the spin-orbit atoms Pt nor the magnetic
chain atoms are in the low concentration limit. Also the
Fermi surface of Pt is more complex than Cu and the
isotropic approximation of the Fermi wavevector under-
lying this model is a further approximation. Further, we
assume that all Pt atoms, irrespective of their distance
and position from the chain are electronically identical,
i.e., δµ2 = δ2, and λµ = λ. In difference to the ab ini-

tio calculations we consider here a truly single magnetic
chain and no periodic repetition of the surface unit cell.
This is a good approximation for Pt atoms µ close to
the chains, but differences are expected for atoms in the
center of the terrace as they experience competitive in-

teractions to chains at the upper and lower terrace.

The DM-energy contribution of a magnetic texture
which arises solely through the presence of a certain spin-
orbit atom µ is given by

Eµ
DM =

∑

〈i,j〉

Eijµ
DM . (D2)

The brackets denote a summation over all pairs of mag-
netic chain-atoms i and j. For a fixed atom µ, the direc-
tion of R̂iµ×R̂jµ in Eq. (D2) is always the same, irrespec-

tive of i and j, and we denote it by n̂µ = êy × d̂µ. Here,

d̂µ is the unit vector pointing from the atom µ into the
direction of shortest distance to the chain. Furthermore,

we define ϕiµ as the angle between R̂iµ and d̂µ.

In the spirit of the first-principles calculations, we next
consider a homogeneous spin spiral for which Si × Sj =
sin(q ay (j − i)) êrot, where êrot is the rotation axis, and
we obtain
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Eµ
DM(q) = −C εµ(q) n̂µ · êrot with C =

135π

32

λΓ2

E2
F k

3
F

sin δ2(EF) and (D3)

εµ(q) =
∑

〈i,j〉

sin[kF(Riµ +Rjµ +Rij) + δ2(EF)] ·
cos(ϕjµ − ϕiµ)

RiµRjµRij
sin(ϕjµ − ϕiµ) sin(q ay (j − i)) . (D4)

Clearly, Eµ
DM is lowest if êrot is parallel (anti-parallel) to

n̂µ, depending on the sign of the prefactor.
The contribution of this atom to the spiralization is

defined as

Dµ

2π
=

1

ay

∂Eµ
DM

∂q

∣

∣

∣

∣

q=0

· n̂µ . (D5)

Unfortunately, Dµ diverges in the limit q → 0 for this
periodic model for one dimension, due to an effective
1/R-dependence for each of the two sums over i and j
contained in Eq. (D5). In a realistic solid we expect a fi-
nite phase coherence length of the wave function or some
structural or chemical disorder, which truncates the in-
teraction range of the atoms in the finite chain and thus
the summations in the sums in Eq. (D4). This would
prevent the divergence of Eq. (D5).
In contrast, the energies are well behaved and we have

εµ(q) → 0 for q → 0 (see Eq. (D4)). To compare to
our ab initio results in Sec. IV (Fig. 5), we evaluate for
the rest of this appendix the energy at a fixed wave vec-
tor q0 = 0.05 2π

ay
(corresponding to a pitch of 5.6 nm) as

magnetic state and calculate Eµ
DM numerically. For this

q0, the evaluation of the sum in Eq. (D4) in a supercell
containing 4000 unit cells in the ±y-direction yields well
converged results. We notice, however, that the conver-
gence depends on the value of q0, i.e., that a lower value
of q0 would require a larger number of unit cells in order
to reach convergence. The atom-resolved contributions
to the D-vector are then approximated by the finite dif-
ference,

Dµ ≈ const · εµ(q0)
q0

· n̂µ . (D6)

These values compare to the atom-resolved spiralization
from our first-principles calculations presented in Fig. 5
and discussed in Sec. IV of the main text. Here, we only
discuss the results predicted by the model:
The type of the 3d atom (i.e., Mn, Fe, or Co) only

enters the prefactor in Eq. (D6) through the parameter
Γ. Up to a sign, the directions n̂µ (visualized by arrows
in Fig. 5(d) in the main text) are independent of the
type of magnetic chain 3d atoms. The dependence of the
DMI strength on the substrate atom is governed by εµ
for a fixed q0. For the results in this paper that utilize
the Fert-Levy model (see Eq. (D4)) we use the following
parameters: 2πk−1

F = 2 nm as given by Ref. 57 and δ2 =
π
10Zd, where Zd = 9.4 gives the number of d-electrons.42
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Fig. 9: (color online) Dependence of the DMI energy origi-
nating form a Pt atom, as function of the distance d of the
Pt atom normal to the chain. The nearest-neighbor distance
is denoted by ay. For the magnetic chain, we distinguish spin
spirals of ferromagnetic (FM-SS) or antiferromagnetic (AFM-
SS) short-range order, evaluated at a fixed q0 = 0.05 2π

ay
.

Points and squares highlight the actual positions of atoms
in the Pt(664) unit cell. Two different geometries need to be
considered. For a description of the geometries see text.

In Fig. 9, we analyze εµ as function of the distance d of
Pt atom µ to the chain for two different cases: that the
spin-spiral is of (i) ferromagnetic short-range order (FM-
SS) as the case for Fe and Co, or of (ii) anti-ferromagnetic
type (AFM-SS) as in the case of Mn (see circles and
squares, respectively). More precisely, ε(dµ) is a func-
tion of the distance d of atom µ to the chain if we dis-
tinguish two geometrical cases: (a) that the projection of
the position of atom µ coincides with the position of a 3d
atom, or (b) that this projection is in the middle of two
3d atoms (see Fig. 9). This distance dependence is indi-
cated by solid and broken lines, respectively. We observe
typical RKKY-like oscillations that decay approximately
as 1/d2. In total, we find that for the AFM case the DMI
strength is smaller and decays faster with distance than
for the FM case. As a result, in AFM-SS the first maxi-
mum determines the overall DMI strength nearly alone.
Moreover, the period length of the oscillations is nearly
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by a factor 2 larger in FM-SS (4.5 ay and 2.5 ay for FM-
SS and AFM-SS, respectively).
The disagreement between the Fert-Levy model and

the ab initio results for Co (see Figs. 5(c) and 5(d)) can-
not be resolved by adjusting the parameters for Co or
the different Pt atoms (e.g., the phase shifts or Fermi
wavevector) since for the most important Pt atoms, those
next to Co, the direction of D does not coincide at all

with the model of Fert and Levy, where the direction is
exclusively determined by geometry. Maybe in the case
of Co the interaction between the upper and lower Co
chains, which is included in our ab initio calculations,
but neglected in the Fert-Levy model contributes to this
difference. This and the extension of the model to films
and heterostructures will be a matter of future investiga-
tions.
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