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Abstract: In this paper, we report on the measurement and modeling of enhanced optical

refractometric sensors based on whispering gallery modes. The devices under test are optical

microresonators made of silicon nitride on silicon oxide, which differ in their sidewall

inclination angle. In our approach, these microresonators are vertically coupled to a buried

waveguide with the aim of creating integrated and cost-effective devices. Device modeling

shows that the optimization of the device is a delicate balance of the resonance quality factor

and evanescent field overlap with the surrounding environment to analyze. By numerical

simulations, we show that the microdisk thickness is critical to yield a high figure of merit

for the sensor and that edge inclination should be kept as high as possible. We also show that

bulk-sensing figures of merit as high as 1600 RIU−1 (refractive index unit) are feasible.

Keywords: whispering gallery mode; optical resonators; wedge resonator; optical sensing;

refractometric sensing; biological sensing; limit of detection; figure of merit
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1. Introduction

It was more than a decade ago when a whispering gallery mode (WGM) optical resonator was

used to experimentally prove the feasibility of a label-free biosensor [1]. Following up the original

proposal [2], Vollmer and colleagues measured the resonance-wavelength shift induced by a layer of

proteins on a handcrafted silica microsphere [3]. Since then, many other authors have elaborated

this concept, improving its scalability [4,5], the sensitivity of the resonator [6,7], the quality factor

(Q) [8–10], the integration of the sensors in complex and automated systems [11] and the biological

functionalization technique for the specific recognition of the target biomolecule [12].

We recently demonstrated the possibility to integrate on-chip a monolithic free-standing disk

resonator with a vertically-coupled bus waveguide [13]. Our further works showed how the vertical

coupling architecture is particularly suited to couple integrated high-Q wedge resonators, where the

sidewall of the resonator is tilted with respect to the surface of the substrate [14].

A very high Q is a key aspect for the realization of sensors with the highest resolution. In this sense,

wedge resonators could be good candidates for the fabrication of high performance integrated sensors.

In this paper, we investigate both experimentally and theoretically these structures from the point of view

of their application as refractive index sensors.

The experimental observations that motivated this work are reported in the second section. Therein,

we experimentally characterize and compare the optical sensing parameters of a wedge resonator to those

of a disk resonator with similar dimensions.

Then, the model for analyzing the effects of the shape of the structures under test from a sensor

point of view is developed in the third section. Finally, we numerically solve the optimization problem

by means of finite element analysis. We find the critical geometrical parameters for achieving the best

sensing performances, and we compare the results to that of the measured samples.

2. Experimental Observations

Wedge resonators are attractive because of their demonstrated feasibility of obtaining on-chip

ultra-high quality factors, which is particularly appealing for many applications [9]. This class of devices

is made up of WGM optical resonators lithographically defined by means of an isotropic etching step.

Therefore, their sidewalls are not vertical, and the angle with the substrate can be varied to some extent

by tuning the photoresist adhesion [9] and etching parameters.

In Figure 1a, we compare the SEM micrographs of two WGM resonators obtained with different

etching processes. By using an isotropic wet etch in a buffered hydrofluoric acid (BHF) solution, the

sidewall angle is clearly reduced, compared to the case of the anisotropic reactive ion etching (RIE).

A simple scheme of a wedge WGM resonator is shown in Figure 1b, with the definitions of radius

(R), thickness (t) and inclination (θ). AFM images of some of our structures (Figure 1c) show that a

trapezoidal shape is a simplified model for the real profile of our wedges. In this work, we used the

logistic function:

f(x) = t [1 + exp(k(x−R))]−1 (1)
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to model the sidewalls, where k = 4 tan(θ)/t and x is the radial coordinate, with origin in the center of

the disk. On our samples, this function provides better fits to the profile measurements, as can be seen in

Figure 1c.
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Figure 1. (a) SEM micrographs of vertically-coupled monolithically-integrated disk and

wedge microresonators. The buried waveguide can be barely seen below the surface. Note

the difference in sidewall angle; (b) Model of the cross-section profile of the wedge WGM

resonator. R, t and θ are, respectively, the radius, thickness and inclination angle; (c) AFM

profile of the sidewall of a wedge resonator. The red line is the fitted logistic function (1).

Note that the axes’ scales have been modified to properly show the small aspect-ratio of

the structure.

The resonant structures herein analyzed were intended to be operated in the NIR-visible spectrum.

Thus, the chosen dielectrics are:

• silicon nitride (SiNx) for the core, for its high refractive index and transparency;

• borophosphosilicate glass (BPSG) for the lower cladding, to allow for the fabrication of the vertical

coupling scheme, through a planarization technique, as described in [13];

• water for the upper cladding (label-free experiments are actually carried out in buffer solutions,

which usually have a refractive index very similar to that of water ±1%).

In order to compare the sensing properties of the commonly-used disk resonators (i.e., those with

a vertical sidewall) versus wedge resonators, we have run two fabrication processes (the details and

method are reported in [14]). These two runs have in common the same plasma-enhanced chemical

vapor deposition (PECVD) steps and same lithography masks, but they differ in the etching procedure

during the resonator definition. The resulting devices are 350 nm thick, with a radius R = 25µm and

R = 24µm for disk and wedge resonators respectively. The disk edge inclination is θ ∼ 85°, while the

wedge inclination is θ ∼ 7°. Both resonators are vertically coupled to an integrated silicon oxynitride

bus waveguide. Please note that, even if these samples lay on a solid substrate (BPSG), which limits the

area available for sensing, a free-standing device could be fabricated for optimal sensing performances,

as explained in [13,14].

Laser light with a wavelength near 1550 nm can be coupled in these two structures. Depending

on the horizontal displacement of the bus waveguide with respect to the edge of the microresonators,

the coupling changes, and therefore, different resonance families can be excited. This parameter was

adjusted to achieve a critical coupling to the first and second radial quasi-TE (transverse electric) family
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modes. We measured the spectral position and quality factor of these resonances as a function of

the refractive index of the liquid in contact with the sensor surface. As explained and motivated in

Section 3, from these data, we calculated the bulk sensitivity S and the bulk figure of merit FOMb:

S =
∂λ

∂n
(2)

FOMb =
S

Γ
=

QS

λ
(3)

where λ, Γ and Q are the resonance wavelength, linewidth and quality factor, respectively, and n is the

refractive index of the sensing liquid.

Since the resonance position of our WGM sensors depends on the temperature, with a measured

thermal sensitivity of 15 pm/°C, during the experiments, the temperature of the samples was stabilized

within 0.01 °C with a Peltier element. The fluid delivery to the sensor surface is achieved with

a syringe pump, operated at a constant flow rate of 5µL/min, and a simple PDMS flow cell.

The volume of the flow cell is about 1µL, with a cross section area at the sensor position of

0.3mm2. A simple 3D sketch representing the WGM sensors, the flow cell, the capillaries and

the lens-tapered optical fibers is depicted in Figure 2a. To change the refractive index of the

sensing liquid, we prepared several glucose-water solutions, with concentrations spanning from 0%

to 0.5% wt/wt, which provide a refractive index variation of up to 6.5 × 10−4 RIU (refractive index

unit). The refractive index of these solutions was measured at higher concentrations with an Abbe

refractometer and then was extrapolated linearly to the used range. To corroborate these results,

we compared them with the data reported in [15]. The solutions were injected as fixed-volume

plugs in the stream of water with the use of a Rheodyne injection valve (loop volume 20 µL).

Before and during the dispensing, the spectrum of the resonator has been continuously acquired

using a swept laser at wavelengths in the range 1530−1560 nm. The spectral position and quality

factor of a selected resonance are measured in real-time by fitting a portion of the spectrum with a

Lorentzian function.

In Figure 2b,c, we show an example of the measured resonance shifts for a disk resonator exposed

to several water-glucose solutions, and we compare the sensing performances of the disk and wedge

resonators in Figure 2d. We notice that, compared to the commonly-used first radial resonance of

the disk resonator (S = 85 ± 4 nm/RIU), the bulk sensitivity is enhanced by either using the second

radial family (S = 91 ± 4 nm/RIU) or reducing the inclination (S = 108 ± 4 nm/RIU). This is

reasonable, since both choices have the effect of reducing the confinement of the WGM and, therefore,

of increasing the interaction of the mode with the sensing liquid. However, the WGMs of the second

radial family exhibit lower quality factors. In fact, we measured a quality factor Qdisk, 2 = 4100 ± 200

and Qwedge, 2 = 1580 ± 30 for the second radial families of disk and wedge resonators, respectively,

in comparison with Qdisk, 1 = 9600 ± 200 and Qwedge, 1 = 14, 100 ± 300 for the first radial families.

By simulating the contributions to the optical losses, as will be explained in the next section, we found

that radiative losses are responsible for the lower quality factor of the second radial family modes. For

these reasons, the highest bulk FOM is achieved by the wedge resonator’s first radial WGM family.

Compared to the disk geometry, which exhibits a FOMdisk = 530 ± 40RIU−1, the wedge microresonator

performs almost twice better, with a FOMwedge = 980± 60RIU−1.
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Figure 2. (a) 3D model of the experimental apparatus. The waveguides on the photonic

chip are accessed with lens-tapered optical fibers. A PDMS flow cell is fixed above the

sensor surface, and the liquid is delivered via quartz capillaries; (b) Resonance shift temporal

evolution during the injection of a small volume of glucose-water solution (concentration

0.5% wt/wt, refractive index variation 6.5 × 10−4 RIU, refractive index unit). The probed

resonance comes from the first radial TE (transverse electric) mode of a disk resonator;

(c) Experimental data showing the linear relation between resonance wavelength and the bulk

refractive index of water-glucose solutions for the first radial TE mode of a disk resonator;

(d) Bulk sensitivity and figure of merit measured on the first and second TE radial-family

whispering gallery modes (WGMs) of disk and wedge resonators. We considered resonances

with center wavelengths close to 1540 nm.

We need to remark here on a few details about quality factors:

(1) The high-quality factor of the wedge resonator, measured close to the critical coupling (intrinsic

quality factor Q0 ∼28,000), is not limited by surface scattering, but rather by material absorption.

In the adopted spectral region, in fact, silicon nitride has an absorption coefficient in the order of

α ∼ 1 cm−1 [16,17], and water has an absorption coefficient in the order of α ∼ 10 cm−1 [18].

The same wedge resonators, when dried and exposed only to air, exhibit intrinsic quality factors

in excess of Q0 & 60,000. This is evidence of the limitations imposed by the material absorption,

which could be circumvented by changing the operating wavelength, as suggested elsewhere [19].

(2) On the contrary, the lower quality factor that the disk resonator exhibits cannot be explained in

terms of material losses or radiation losses. The disk resonator, in fact, has very similar dimensions,

the same materials as the wedge one and a lower confinement factor in the water (main source of
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absorption). The reason for the worse quality is the higher roughness on the sidewall surface of

the disk resonator, which is defined via a dry etching instead of a wet etching [9,14]. For a fair

comparison between disk and wedge resonators, we would ideally need to compare structures with

different geometries and fabricated with similar etching processes.

The results here reported highlight the superior performances (FOM) of sensors defined via an

isotropic wet etching step. However, due to the lack of resonator samples with different thickness, it

is not clear whether the effect of the sidewall inclination generally improves the sensing or if the same

(or better) performances could be obtained with different geometries. To answer this question in a more

general way, we decided to analyze the influence of the geometry of the wedge resonator on the sensing

performances by means of numerical simulations. This model is also helpful for finding optimized

geometrical parameters to achieve the highest figure of merit.

3. Problem Analysis and Sensor Design

The problem of the optimization of the sensor can be addressed by different strategies. For example,

in a recent paper the author’s aim was to maximize the sensitivity to analyte while minimizing the thermal

sensitivity [20]. A different approach is used in [21], where the optimal parameters for minimizing the

analyte detection limit are extensively studied starting from the measurement of the amplitude, position

and linewidth of the resonance. In this paper, we use an approach similar to that of [22], whereby

we analyze both the sensitivity and quality factor of the supported resonant modes as a function of the

geometrical parameters of the resonator.

By using a perturbative approach [23,24], the sensitivity SV, i to a variation of the refractive index in

the domain V and corresponding to the i-th WGM with resonance wavelength λi can be calculated from

the optical mode profile Ei(r) as:

SV, i =
∂λi

∂nV

=
λi

nV

∫∫∫
V
ǫ(r)|Ei(r)|

2d3r
∫∫∫

∞
ǫ(r)|Ei(r)|2d3r

(4)

Here, the two integrals are evaluated in the sensing volume and in the whole model, respectively,

and nV is the unperturbed refractive index of the homogeneous medium contained in V . In the

same way, in both integrals, the dielectric constant ǫ(r) and the electric field Ei(r) are meant

to be unperturbed, i.e., when no analyte is present. As can be seen, the sensitivity density

( λi

nV

ǫ(r)|Ei(r)|
2/

∫∫∫
∞
ǫ(r)|Ei(r)|

2d3r) is proportional to the electric field energy density 1

2
ǫ|E|2. Due to

the complex geometrical structure, finite element method (FEM) modeling of the resonator has been used

to obtain the mode profiles Ei(r). Since the coupling region between the resonator and bus waveguide

is small compared to the WGM size, we assume that the mode profile in the cavity is not significantly

altered by the presence of the waveguide, at least far from the coupling region. Thus, our model excludes

the waveguide from the simulations. The advantage of this choice is that the cylindrical symmetry of the

structure is not broken, and a simple and fast axisymmetric 2.5D simulation can be performed.

When light is confined in a waveguide or in a cavity, it is quite common to obtain evanescent tails,

which extend from the surface of the structure for tens to hundreds of nanometers [25,26]. When used

as label-free sensors, the volume of interaction between the analyte and the WGM evanescent field is
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very small and mainly limited by the thickness of the layer of the captured analyte. In the case of

nanometric-sized molecules (like proteins), this means that most of the evanescent tail is unperturbed

and does not contribute to the signal. For a fair comparison between different structures, it is very

helpful to introduce the superficial sensitivity σA, i defined as:

σA, i =
λi

nV

∫∫
A
ǫ(r)|Ei(r)|

2d2r
∫∫∫

∞
ǫ(r)|Ei(r)|2d3r

=
∂2λi

∂tV ∂nV

≈
SV, i

tV
(5)

where A is the area of a thin layer of volume V and thickness tV placed on the surface of the sensor. The

approximation in Equation (5) is valid for layers V much thinner than the extension of the evanescent

field (tV / 20 nm). Please note the double partial derivative in Equation (5); this is different from

the definition usually adopted ∂λi/∂tV (see, for example, [22]), which is not independent from the

refractive index of the analyte to be sensed in the volume V (denser analytes will produce higher fictitious

sensitivities). The definition that we adopted only depends on the unperturbed refractive index nV of the

bulk above the sensor area and can be used for direct comparison between different structures or models.

To calculate the quality factor, in our model, we account for radiative losses, absorption losses

and coupling losses. The first ones are modeled implementing perfect matched layers (PML) at the

boundaries of the simulation [27]; the second ones are added in both water and core material as the

imaginary part of the refractive index, while the last ones are simply considered by dividing the quality

factor by two (critical coupling regime). Assuming that the resonators are defined through a wet etching

process, which ensures the best surface quality, in our model, we neglected scattering losses, according

to the experimental results discussed at the end of Section 2.

To evaluate the bulk and superficial sensing performances and to choose the optimal set of

parameters, we use two figures of merit (FOM) calculated from the sensitivities and quality factors

of every resonance:

FOMb =
SV, i

Γi

=
QiSV, i

λi

(6a)

FOMs =
σA, i

Γi

=
QiσA, i

λi

(6b)

From now on, all of the subscripts i used to label the different modes are dropped for simplicity of

reading, and without any additional specification, V and A are meant to be the whole sensing volume/area

above the parts of the sensor exposed to analytes.

This definition of the bulk figure of merit is equivalent to that used in surface plasmon resonance

(SPR) label-free sensors [28]. With this figure of merit, it is possible to directly compare the

performances of sensors exploiting different techniques. A table that reviews the FOM of WGM

resonators, photonic crystals (PhC) and SPR sensors is reported in [29]. In addition, we also introduce

the superficial figure of merit FOMs, which in our opinion is a more convenient and fairer index to

compare the performances of surface sensors, used, for example, in label-free detection.

For what concerns the WGM sensor, it is common practice to compare their performances in terms

of their limit of detection (LOD). This parameter, however, depends also on the features of the apparatus

employed in the experiment, like the laser source wavelength uncertainty or the temperature stability. On

the contrary, the figure of merit here defined depends only on the WGM resonator, which is the object
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of our study. If the resolution of the resonance wavelength measurement could be considered limited

exclusively by the resonance linewidth itself, one can still estimate the achievable LOD as:

LODb/s =
1

η

1

FOMb/s

(7)

where η accounts for an enhanced resolution given by a proper resonance fitting procedure. This

parameter η depends on experimental details and usually lays in the range 10∼100 [30].

4. Wedge Geometry Optimization

Using a commercial FEM solver (Comsol Multiphysics), we solved the electric field eigenfunctions

supported by the structure shown in Figure 1. We varied the value of the wedge inclination from θ = 2°

to θ ∼ 90 °, and the wedge thickness from t = 200 nm to t = 500 nm. For every solution, we calculated

the bulk and superficial sensitivity, S and σ, the quality factor, Q, and the two figures of merit, FOMb/s.

The other geometrical parameters were kept fixed, and their values are reported in Table 1.

Table 1. Parameters used in the optimization study. BPSG, borophosphosilicate glass.

Parameter Value Description

R 24 µm resonator radius

λ ∼1540 nm resonance wavelength

nwater 1.32 water refractive index (real part)

kwater 1× 10−4 water refractive index (imaginary part) [18,31]

nSiN 1.99 SiNx refractive index (real part)

kSiN 5× 10−5 SiNx refractive index (imaginary part) [17,31]

nBPSG 1.46 BPSG refractive index (real part)

kBPSG 0 BPSG refractive index (imaginary part)

tV 5 nm auxiliary layer thickness (for σ)

Figure 3 shows the first radial TE and TM (transverse magnetic) modes for three different

wedge angles and the same wedge thickness t = 400 nm. The difference in the confinement

and distribution of the electric field is evident, particularly when comparing the two polarizations.

Slightly more difficult to notice, but very interesting, is the fact that the mode reaches its

highest confinement for intermediate wedge angles (roughly between 30° and 60°, depending

on the other parameters). For greater angles, the field extends mainly from the top surface

of the resonator, while for smaller angles, the field is affected by the area above the

external sidewall.

In Figure 4, we report the 2D contour plots summarizing the optimization analysis of the bulk and

surface FOM for the first radial TE and TM modes.
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Figure 3. Electric field energy density for the first radial transverse electric, TE, (a,b,c)

and transverse magnetic, TM, (d,e,f) modes for wedge angles of 89 (a,d), 45 (b,e) and

10 (c,f) degrees. The white arrows depict the orientation of the electric field. The resonator’s

thickness is t = 400 nm.
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Figure 4. Figure or merit (FOM) analysis performed on the first radial TE (a,c) and TM

(b,d) modes, as a function of the wedge inclination θ and thickness t. The plots report

the bulk (a,b) and superficial (c,d) figure of merit FOMb/s. The red circles in (a) label the

geometries of the samples characterized in Section 2. Notice that the simulated bulk FOM

of the disk geometry is actually slightly higher than the FOM of the wedge geometry. The

discrepancy between experimental data and the simulated values is justified by the higher

scattering losses of the disk, as thoroughly explained in the text.

For what concerns the bulk sensing (the sensor used as a refractometer for liquids), it is interesting to

notice that a wide set of parameters can be used to achieve good performances. Once the thickness has
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been optimized (i.e., t ∼ 280 nm for TE polarization and t ∼ 430 nm for TM polarization), the value

of the inclination has little impact on the bulk FOM, at least for θ & 40°. In this configuration, we get

FOMb & 1200/RIU for TE polarization and FOMb & 1600/RIU for TM polarization. Conversely, the

choice of the optimal set of parameters for a sensor used for surface sensing (e.g., a label-free biosensor)

is much more strict. The best FOM is achieved with a vertical wedge angle (i.e., a disk resonator) both

for TE (FOMs & 9.2/nm RIU) and TM polarization (FOMs & 11.7/nm RIU). We should point out

here that it is not possible to create vertical sidewalls with wet etching. However, wedge resonators with

an inclination θ ∼ 30° have already been reported [9], and we think that inclinations of at least θ ∼ 40°

could be feasible. Thus, even if this analysis is purely theoretical, it still gives very useful guidelines to

realize optimized wedge resonators, suggesting the use of the highest feasible inclination and indicating

the best thickness depending on θ.

As expected, the analysis also confirms that the TM polarization can provide higher FOM if the

resonator is properly optimized. For bulk sensing, the enhancement can be higher than 30%, while for

surface sensing, the enhancement can exceed 20%.

Regarding the experimental results of Section 2, the first observation is that the thickness of the

wedge and disk resonators was not optimal for sensing applications. In Figure 4a, the red circles label

the parameters of the measured sensors on the bulk FOM map. One can realize that the disk should have

been 70 nm thinner, while the wedge should have been 80 nm thicker.

To compare the experimental results with the simulations, Figure 5 reports the bulk FOM together

with the bulk sensitivity and quality factor for the first two radial TE modes of a resonator with

t = 350 nm. For this thickness, the two aforementioned TE modes exhibit the highest FOMb, as also

observed experimentally.
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(continuous line) for the first (red) and second (green) TE radial modes. The vertical blue

lines are markers for the parameters of the fabricated sensors (wedge and disk resonators).

The resonator thickness is t = 350 nm.

The figure qualitatively confirms the experimental results: for this thickness, the wedge resonator can

provide a higher bulk figure of merit with respect to a disk resonator. Similarly, the bulk sensitivity is

higher for θ = 7° than for θ = 85° and even higher for the second mode in both structures. However,

the accuracy of the quality factor for the disk in the simulation is poor: in our model, we did not take into
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account the scattering losses due to the roughness of the resonator. In particular, the disk resonator was

defined through a dry etching process (instead of the assumed wet etching), which is known to lead to a

higher final roughness, as already pointed out in Section 2. This can explain why the real quality factor,

as well as the bulk FOM are actually lower than the simulated ones in the case θ = 85°. The same does

not apply to the case of the bulk sensitivity, since Sb does not depend on the roughness of the structure.

The results of our analysis show that: first, the optimal wedge inclination is the highest one achievable

and, secondly, the control on the resonator thickness is crucial for the realization of optimized sensors.

The use of vertical coupling is thus indicated to have this freedom in the fabrication without imposing

limitations on the geometry of the bus waveguide [13]. This technique, in fact, relies on two deposition

and lithography steps, where the thickness of both deposited layers can be changed independently

according to the results of the optimization analysis.

5. Discussion

In this work, we tested the effectiveness of vertically-coupled integrated wedge resonators for

refractometric sensing applications, with a particular focus on label-free biosensing. These devices are

very appealing because of the very high quality factor that they can exhibit. Nevertheless, the quality

factor is not the only concern when analyzing the device performances. The figures of merit of interest

for sensing applications are also affected by the field overlap with the analyte.

We experimentally verified that under certain conditions, a wedge resonator can perform better

compared to a disk resonator with similar dimensions. At the same time, however, we also showed by

means of numerical analysis that the optimal design for a wedge sensor requires the highest achievable

wedge inclination θ and the proper choice of the thickness.

In the modeling, we used two figures of merit (bulk and surface) that permit a proper and fair

comparison between sensors with different geometries, even between sensors relying on different

physical principles (e.g., SPR or PhC). The bulk FOM shows that our structures perform at least one

order of magnitude better than SPR devices for bulk refractometric sensing, which are in the order of

FOMb ≈ 100/RIU [29]. In addition, we introduced the surface FOM, which can be used to compare

different structures with special focus on surface sensing (like the label-free method).

To summarize, the use of wedge resonators in place of conventional disk resonators is suggested.

The isotropic wet etching step is necessary to obtain better surface quality, but care has to be taken

in order to keep the inclination as high as possible, ideally better if θ & 40 °, at least for resonators

similar to the ones described in Table 1. The analysis here presented shows that the optimization of

the resonator thickness is critical to achieve the best performances. In this regard, the use of vertical

coupling has emerged as particularly appealing, because it gives control of the resonator thickness and

geometry without posing limitations to the bus waveguide. In addition, the vertical coupling could allow

the realization of free-standing sensors.
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