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e early detection and classi�cation of dementia are important clinical support tasks for medical practitioners in customizing
patient treatment programs to bettermanage the development and progression of these diseases. E�orts are beingmade to diagnose
these neurodegenerative disorders in the early stages. Indeed, early diagnosis helps patients to obtain the maximum treatment
bene�t before signi�cant mental decline occurs. 
e use of electroencephalogram as a tool for the detection of changes in brain
activities and clinical diagnosis is becoming increasingly popular for its capabilities in quantifying changes in brain degeneration
in dementia. 
is paper reviews the role of electroencephalogram as a biomarker based on signal processing to detect dementia
in early stages and classify its severity. 
e review starts with a discussion of dementia types and cognitive spectrum followed by
the presentation of the e�ective preprocessing denoising to eliminate possible artifacts. It continues with a description of feature
extraction by using linear and nonlinear techniques, and it ends with a brief explanation of vast variety of separation techniques to
classify EEG signals. 
is paper also provides an idea from the most popular studies that may help in diagnosing dementia in early
stages and classifying through electroencephalogram signal processing and analysis.

1. Introduction

Dementia refers to a group of disorders caused by the gradual
dysfunction and death of brain cells. 
is disorder can be
described clinically as a syndrome that causes a decline
in cognitive domain (i.e., attention, memory, executive
function, visual-spatial ability, and language) [1]. Predicting
dementia in the early stages would be essential for improving
treatment management before brain damage occurs.


e early diagnosis of dementia will help dementia
patients start an early treatment based on the symptoms.
In the past years, signi�cant advances have been made to
reveal the early stages of dementia through biomarkers.
ese

improvements include biochemical, genetic, neuroimaging,
and neurophysiological biomarkers [2, 3]. 
erefore, devel-
oping and integrating these biomarkers to identify dementia
in early stages are important to derive an optimal diagnostic
index.

In parallel, over the last two decades, signi�cant growth
was noted in the research interest on EEG, as the full
investigation of neurodynamic time-sensitive biomarker that
helps in detecting cortical abnormalities associated with
cognitive decline and dementia [4–7]. An EEGmarker would
be a noninvasive method that may have the sensitivity to
detect dementia early and even classify the degree of its
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severity at a lower cost for mass screening. EEG is also widely
available and faster to use than other imaging devices [8, 9].


is review has focused on using EEG as an investigating
tool and physiological biomarker to identify dementia in
early stages and classify the degree of its severity by signal
processing and analysis. 
e review aims to reveal subtle
changes that might de�ne indicators for the early detection
of dementia that will help medical doctors and clinicians
in planning and providing a more reliable prediction of the
course of the disease in addition to the optimal therapeutic
program to provide dementia patients additional years of a
higher quality of life.

2. Dementia and Medical Diagnosis

Dementia occurs when the brain has been a�ected by a
speci�c disease or condition that causes cognitive impair-
ment [10]. 
e diagnosis of dementia is usually based on
several criteria, such as the medical history of patients
with clinical, neurological, and psychological examination,
laboratory studies, and neuroimaging [3].

2.1. Types of Dementia and Cognitive Spectrum. Dementia is
associated with neurodegenerative disorder diversity, as well
as neuronal dysfunction and death. Dementia has di�erent
types based on its cause; these types include Alzheimer’s
disease (AD), vascular dementia (VaD), Lewy body, fron-
totemporal dementia (FTD), and Parkinson’s disease, among
others [2, 11].

AD and VaD are considered the two most common types
of dementia in the world, and thus the present review deals
with the e�ect of AD and VaD on the brain [12]. AD is the
most prevalent in theWesternworld, whereasVaD is themost
prevalent in Asia [13].

Half of people aged 85 years or older have AD, and
this number will roughly double every 20 years due to the
aging population [14, 15]. Several neuropathological changes
act together to develop AD. 
ese changes include loss of
neuronal cell and development of neuro�brillary tangles
and amyloid plaques in the hippocampus, entorhinal cortex,
neocortex, and other regions of the brain. 
ese changes can
also occur in a nondemented individual, and they are asso-
ciated with AD development even before typical cognitive
symptoms are evident [16, 17]. 
e reduction in cholinergic
tone caused by neural damage results in an increase in
cognitive di�culties [18].

VaD is another type of dementia. Between 1% and 4% of
people aged 65 years su�er from VaD, and the prevalence
for older people doubles every 5 to 10 years [19, 20]. VaD is
the loss of cognitive function caused by ischemic, ischemic-
hypoxic, or hemorrhagic brain lesions as a result of cere-
brovascular disease and cardiovascular pathologic changes,
such as ischemic heart disease and stroke [21–23].

Cognitive impairment introduces individuals to the
dementia spectrum that is illustrated in Figure 1.
e demen-
tia spectrum can be viewed as a sequence in the cognitive
domain that starts from mild cognitive impairment (MCI)
and ends with severe dementia, and the period beyond

Dementia
symptoms

Brain at risk MCI Dementia Severe dementia

FuturePast

Figure 1: Block diagram of dementia spectrum.

dementia in which the brain is at risk is called cognitive
impairment no dementia (CIND) [24].

MCI refers to the decline in cognitive function that is
greater than expected with respect to the age and education
level of an individual, but the reduced cognitive function
does not interfere with daily activities. Clinically, MCI is the
transitional stage between early normal cognition and late
severe dementia and is considered heterogeneous because
some MCI patients develop dementia, whereas others stay as
MCI patients for many years. However, patients who were
diagnosed with MCI have a high risk to develop dementia,
that is, threefold that of people without a cognitive dysfunc-
tion. 
e most commonly observed symptoms of MCI are
limited tomemory, whereas daily activities of patients remain
the same [25].

As dementia diagnosis is not easily performed due to the
heterogeneity of the symptoms within the cognitive impair-
ment spectrum, itmay be advisable to integrate the neuropsy-
chological testing with biomarkers.
e latest diagnosis crite-
ria for AD and MCI support this idea as they highlight the
importance that several biomarkers (structural MRI, FDG-
PET, and biochemical analyses of the cerebrospinal �uid)
have to con�rm that a pathological process of AD is, indeed,
the cause of the cognitive symptoms [26–29]. 
e diagnosis
criteria usually focus of assessing diverse dementia signs,
particularly memory disturbance. 
e most common diag-
nosis criteria are developed and characterized by theNational
Institute of Neurological and Communication Disorder and
Stroke-Alzheimer’s Disease andRelatedDisorder Association
(NINDS-ADRDA) for AD [26–30] and the National Institute
of Neurological Disorders and Stroke and Association Inter-
nationale pour la Recherché et l’Enseignement en Neuro-
sciences (NINCDS-AIREN) for VaD [31] and Diagnostic and
StatisticalManual ofMental Disorders Fourth Edition (DSM-
IV) criteria [32]. 
e severity of cognitive symptoms could
be assessed using Clinical Dementia Rating (CDR) scale [33]
and Geriatric Depression Scale (GDS) [34] and Hachinski
Ischemic Scale (HIS) [35], whereas the functional outcome
can be assessed by instrumental and basic activity of daily
living (IDAL) and (BDAL) [36]. 
e most usable tests to
evaluate the early dementia stages even severity of dementia
in clinical practice are the Mini-Mental State Examination
(MMSE) [37], Montreal Cognitive Assessment (MoCA) [38],
and Addenbrooke’s Cognitive Examination Revised (ACE-R)
[39]. Several validate clinical neuropsychological assessments
are used to assess cognitive domain including (but not
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limited to) Trail Making Test (TMT) [40] and Clock Drawing
Test (CDT) [41] for attention and executive function, Rey
Osterrieth Figure Copy [42] for construction praxis test, and
Phonological and Semantic �uency Token test for language
test [43].

2.2. Biomarkers for Detecting Dementia. An objective mea-
sure, which is related to molecules that are concentrated
in the brain or biological �uids or to other anatomical or
physiological variables, that help in diagnosing and assessing
the progression of the disease or the response to therapies
is called a “biomarker.” A biomarker can be used to view
the pathogenesis of dementia and helps predict or evaluate
the disease risk to identify a clinical diagnosis or therapeutic
intervention monitoring that may alter or stop the disease
[44, 45]. Ideally, the biomarker should detect the neuropatho-
logical processes even before a clinical diagnosis and should
help in identifying people who are at risk of developing
dementia.
e biomarkers for the early detection of dementia
may include numerous studies in multiple �elds and may
be divided into four main categories, namely, biochemical,
genetic, neuroimaging, and neurophysiology [2, 3, 11, 46].

2.2.1. Biochemical Marker. Two main types of biochemical
markers were identi�ed to re�ect the pathological events,
particularly detection of dementia, cerebrospinal �uid (CSF),
and serum [2, 47].

Several studies have addressed the development in amy-
loid � (A�), total tau (T-tau), and hyperphosphorylation tau
(P-tau) protein analysis in CSF and plasma as biomarkers for
AD. Although CSF biomarkers are speci�c of AD, Paraskevas
et al. [48] has investigate their potential contribution for
the di�erential diagnosis between AD, MCI, and VaD. For
instance, A�42 and T-tau in CSF are useful in di�erentiating
MCI and other dementia stages within the dementia spec-
trum, whereas the CSF measurement of P-tau and A�42 can
assist in diagnosing VaD or FTD [49]. However, both CSF
and serum are used as markers to identify dementia, but
the sensitivity and the speci�city of these tests are limited
[11].

2.2.2. Genetics Biomarkers. Gene expression pro�le is con-
sidered a promising approach for the early detection of
dementia. Several studies have been conducted through
the genetic analysis of related disorders, such as AD, to
evaluate the genetic risk factor that may lead to dementia.
Moreover, blood-based gene expression pro�ling has been
described as capable of diagnosing brain disorders by several
independent groups. Numerous advantages are o�ered by
the expression pro�ling of whole blood RNA in deciphering
aberrant patterns of gene regulation in neurogeneration.

erefore, the genetic biomarker provides an indication to
develop dementia but also needs other biomarkers, such as
neuroimaging and chemical biomarkers [2, 3, 11].
e �4 allele
of the apolipoprotein E gene is the major lipid carrier of
protein to the brain, and its inheritance is associated with the
onset of AD andVaD. Accordingly, age and the inheritance of
the �4 allele have been used as a common risk factor and/or
pathogenesis for both AD and VaD [45, 50].

2.2.3. Neuroimaging Biomarkers. Neuroimaging has been
available for a few decades. 
is technique can be classi-
�ed into structural and functional based on the principal
information that it provides. Both magnetic resonance imag-
ing (MRI) and computed tomography (CT) are structural
imaging techniques; they help clarify the brain diagnosis
by detecting the a�ected area and the type of atrophy or
vascular damage. 
e role of CT is to distinguish two
structures and separate them from each other, as CT has
good spatial resolution. By contrast, MRI distinguishes the
di�erences between two arbitrarily similar but not identical
tissues. MRI provides a good contrast resolution. Positron
emission tomography and single photon emission computed
tomography are considered functional imaging techniques
that can measure brain metabolism parameters, such as
regional cerebral blood �ow and regional cerebral glucose
metabolism. 
ese parameters provide good indication for
AD and VaD before morphological changes occur. Moreover,
functional MRI is used to measure the brain function over
time based on blood oxygen level at rest. It indirectly re�ects
neuronal activity and identi�es the brain activities that are
associated with cognitive tasks. Functional imaging tech-
niques are suitable in early dementia detection and diagnosis
[2, 3, 11]. 
ese techniques have high spatial resolution for
anatomical details but limited temporal resolution. 
us,
these neuroimaging techniques are incapable of di�erentiat-
ing the stages within the brain distribution network in series
or in parallel activation [51]. Additionally, CT and MRI may
be a�ected by �uid imbibition a�er brain injury in some cases,
thus becoming incapable of detecting the best risk changes
or becoming inadequately sensitive to detect dementia in its
early stages [52].

2.2.4. Neurophysiological Biomarkers. Neural changes asso-
ciated with dementia can also be detected with clinical
biomarkers, such as EEG, quantitative electroencephalogra-
phy, event related potential, transcranial magnetic stimula-
tion, and Vagus nerve stimulation [2, 18]. EEG is a neu-
rosignal that tracks information processingwithmilliseconds
precision. It has been subjected to interpretation by clinician
visual inspection that results in acceptable and successful
diagnosis results. However, EEGs are characterized by spatial
resolution that is lower than that of other neuroimaging tech-
niques, although these techniques do not provide functional
information about the brain in addition to their limitation in
temporal resolution; EEG provides high temporal resolution
and it is thus crucial for studying brain activity [53, 54].

us, the interpretation of the degree of EEG abnormality
and severity of dementia are the bene�ts of signal processing
and analysis of EEG. EEG signal analysis provides a relatively
precise localization of electrical activity sources by tracking
the hierarchical connectivity of neurons in the recording
place. EEG may provide useful indication of the patterns of
brain activity if it is integrated with other biomarkers, such as
structural and functional neuroimaging [51].

With the dramatic progress in EEG devices, sensors,
and electrodes, this review has been focused solely on the
function of EEG as a subtle and suitable biomarker in
explicitly identifying the neuronal dynamics and cognitive
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Figure 2: EEG frequency waveform. (a) One second of EEG signal. (b) Delta wave. (c)
eta wave. (d) Alpha wave. (e) Beta wave. (f) Gamma
wave.

manifestation in most dementia cases, such as AD and VaD,
through techniques of EEG signal analysis and processing.

3. Function of EEG in the Early Detection and
Classification of Dementia

As a neurophysiological biomarker, EEG can characterize
di�erent physiological and pathological conditions, such as
dementia e�ects on cortical function distribution. EEG could
be used not only as a clinical diagnosis tool, but also as a tool
for predicting the stages of dementia [7]. Numerous studies
have been conducted to deal with EEG changes associated
with dementia and to identify the degree of severity of
dementia, and some studies support the possibility for EEG
to detect dementia in early stages [55–59]. For instance,
Henderson et al. identi�ed dementia presence early through
EEG with high sensitivity and speci�city [55, 60]; they
showed the possibility of using EEG as a marker for AD [61].
EEG may play an important role in detecting and classifying
dementia because of its signi�cant in�uence on dementia
abnormalities in terms of rhythm activity. EEG is useful for
clinical evaluation because of its ease of use, noninvasiveness,
and capability to di�erentiate types and severity of dementia
at a cost lower than that of other neuroimaging techniques
[8, 9].

3.1. EEG Signal and Mental States. To deal with EEG signals
and to extract useful information and features that help in
early dementia diagnosis, an EEG signal should be illustrated
in terms of its rhythmic activity [9]. A clinical EEG wave
forms an amplitude that is typically between 10 and 100 �v
and at a frequency range of 1Hz to 100Hz. EEG can be
classi�ed into the following �ve rhythms according to their
frequency bands as shown in Figure 2.

(1) Alpha (�) wave: this rhythmicwave appears in healthy
adults while they are awake, relaxed, and their eyes
are closed. It occurs at a frequency range of 8Hz to
13Hz with a normal voltage range of approximately
20�v to 200�v [62]. � waveform is diminished by
opening the eye, sudden stimulus and attention, and
a phenomenon known as alpha blockage or desyn-
chronization. As �wave distribution and outcome are
based on etiology, the EEG patterns which predomi-
nate in the � frequency band in case of unconscious
or comatose state are de�ned as alpha coma [63].
� rhythm is composed of subunits including alpha1,
alpha2, and alpha3, whose spectral band power gives
an indication on dementia severity [64, 65]. � wave-
form is mostly observed in the posterior region of the
head [66].
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(2) Beta (�) wave: the frequency of � waves ranges from
13Hz to 30Hz, which is higher than that of the �
waveform, but their amplitudes are lower and range
from 5 �v to 10 �v [62]. � waves appear with extra
excitation of the central nervous system, increasewith
attention and vigilance, and replace � wave during
cognitive impairment. � waves are observed in the
parietal and frontal region of the scalp [66].

(3) 
eta (�) wave: the frequency range of � wave is 4Hz
to 7Hz. 
is waveform is prominent during sleep,
arousal in older children and adults, emotional stress,
and idling. �wave is recorded across the temporal and
parietal region of the scalp with an amplitude range
of 5 �v to 10 �v [62]. Two types of � are found among
adults based on their activity; the �rst type shows a
widespread distribution across the scalp and is asso-
ciated with decreased alertness, drowsiness, cognitive
impairment, and dementia, whereas the second type
is called frontal midline theta because it is distributed
within the frontal midline and is generated by the
anterior cingulated cortex, which is the largest region
with a positive correlation between the theta current
density and glucose metabolism. 
is wave has been
linked to activities such as focusing, attention, mental
e�ort, and stimulation processing [66].

(4) Delta (�) wave: the lowest frequency of � wave
is less than 3.5Hz, and its amplitude ranges from
20�v to 200�v. � wave occurs during deep sleep,
in infancy, and with serious organic brain diseases.

is waveform can be recorded frontally in adults and
posteriorly in children [62].

(5) Gamma (�)wave: the frequency of �wave ranges from
30Hz to 100Hz [62]. 
is waveform is recorded in
the somatosensory cortex in the case of cross model
sensory processing, during short-term memory to
recognize objects, sounds, tactile sensation, and in
pathological case because of cognitive decline, partic-
ularly when it is related to � band [66].

Until late adulthood, the activities of � and � waves diminish
with age, whereas those of � and � waves increase linearly
[67].
e current density of � and glucosemetabolismpossess
an inverse relationship in the case of cerebrovascular diseases,
such as stroke, and may be found within the subgenual
prefrontal cortex as an outcome of dementia cognitive
impairment [68].

3.2. EEG Finding in Dementia. EEG has been used as a
benchmark for the detection and diagnosis of dementia for

two decades. Numerous studies have supported the capability
of EEG recording to detect AD and VaD early [59, 69].
Other studies have used EEG as a tool for di�erentiating AD
from other types of dementia, particularly in the di�erential
diagnosis of AD and VaD [70, 71]. EEG can diagnose the two
most common types of dementia (i.e., AD and VaD) because
both of these types are cortical, and EEG re�ects hidden brain
abnormalities [72, 73].


e �rst EEG clinical observation was illustrated by
Berger in the beginning of the last century [74, 75].
e inter-
pretation of the conventional visual characteristics related
to AD can be summarized by slowing the EEG dominant
posterior rhythm frequency, increasing the di�used slow
frequency, and reducing both alpha and beta activities,
whereas the occipital alpha activity is preserved and theta
power is increased in the case of VaD. 
e delta power
is increased in both AD and VaD patients [4, 76]. 
e
computerized EEG signal analysis provides quantitative data,
including reduced mean frequency, increased delta and theta
power along with decreased alpha and beta power, reduced
coherence in the cortical area, and reduced EEG complexity
in dementia patients [4]. Numerous studies by Moretti et al.
investigate subrhythmswithin alpha, where the power ratio of
alpha3/alpha2 is used as an earlymarker for prognosis ofMCI
and the increase in this ratio is correlated with hippocampal
atrophy in both MCI and AD patients, whereas theta/alpha1
ratio could be as a reliable index for cerebrovascular damage
[64, 77–79]. However, EEG may exhibit normal frequency
and may appear similar to normal aged control subjects
during the earliest stages of dementia [4]. Nonetheless, EEG
signal analysis may contribute to the deeper understanding
of dementia because such computerized analysis provides
quantitative data instead of mere visual inspection.

3.3. EEG Signal Processing. 
e recorded EEG needs suc-
cessive stages of signal processing to extract meaningful
markers from the EEG signal of dementia patients, and these
markers re�ect brain pathological changes. 
e main stages
of EEG signal processing are denoising, feature extraction,
and classi�cation. Figure 3 illustrates the stages of EEG signal
processing.

3.3.1. EEG Signal Acquisition Stage. EEG is a medical device
that re�ects the electrical activity of the neurons of the
brain and records from the scalp with metal electrode and
conductive media [80].

Figure 4 shows the general EEG machine schematic
diagram; it consists of electrodes, ampli�ers, A/D converter,
recorder, storage, and display devices.
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Figure 5: EEG cap electrodes.

For dementia patients, several procedures have been
proposed to record the EEG signal; for instance, the gold plate
cup electrodes shown in Figure 5 have been used to record
EEGs. 
e skin should be swabbed with alcohol and gel or
paste should be applied before placing the electrode on the
scalp to reduce the movement of the device and improve
the electrode conductivity; the EEG electrode-scalp contact
impedance should be below �ve kilo-ohms to record good
quality signal [81].

Referentialmontage is themost popularmontage used for
EEG recording for dementia that is employed to record the
voltage di�erence between the active electrode on the scalp
and the reference electrode on the earlobe, for example, as
shown in Figure 6 [82, 83].

For fruitful clinical application, the EEG of dementia
patients has been recorded in a specialized clinical unit state
with the 10–20 systemof the international federation,which is
adopted by theAmericanEEGSociety, while restingwith eyes
comfortably closed, as shown in Figure 7. Hamadicharef et
al. [84] used 19-recording electrodes plus ground and system

reference for EEG recording for dementia patients; these
electrodes were located according to 10–20 electrode system
as follows: Fp1, Fp2, F7, F3, Fz, F4, F8, A1, T3, C3, Cz, C4, T4,
A2, T5, P3, Pz, P4, T6, O1, and O2 [85].

An example of the most popular EEG device contains a
lowpass, high pass, andnotch �lters. Typical frequency values
for low pass �lter (LPF) (i.e., 3 dB) are 0.16, 0.3, 1.6, and 5.3Hz,
and the upper cuto� frequency can be, for example, 15, 30,
70, or 300Hz. Typically, the frequency for EEG recording
for dementia range is from 0.3Hz to 70Hz, and the notch
�lter is 50Hz or 60Hz [86]. 
e sampling frequency can be
128Hz, 173Hz, or even higher such as 256Hz and it is selected
based on the application with a 12 bit or 16 bit A/D converter
digitalizing the signal to be more accurate. Finally, the EEG
signal will be printed on papers, displayed on the computer
screen, and stored for further examination in the next stage
[81].

3.3.2. Denoising Stage. 
e reliability of the recorded EEG
signal is heavily a�ected by its noise factors. Most artifacts
overlap with the frequencies of EEG signals. 
e artifacts
that contaminated the EEG signal are divided into physio-
logical (e.g., muscle activity, pulse, and eye blinking) [87–90]
and nonphysiological artifacts (e.g., power line interference
noise and sweat) [90, 91] and/or neuronal activity (e.g.,
background). 
e noise has a direct e�ect on EEG signal
properties, and thus di�erent signal processing techniques
have been applied to overcome this problem and to extract
relevant information from the recorded EEG signal. In order
to focus on the role of EEG in the diagnosis of dementia, the
mathematical details have been simpli�ed in the text. 
is
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e 10–20 EEG electrodes placement system. (a) and (b) 
ree-dimensional side view and top view, respectively [85].

section discusses the most popular and e�ective methods
used for EEG denoising.

Independent component analysis (ICA) is a blind source
separation higher order statistical method used to split a set
of recorded EEG signal (i.e., mixed signals) into its sources
without previous information about the nature of the signal.
Langlois et al. and McKeown et al. used ICA to observe the
EEG signal mixture that re�ects multiple cognitive activities
or artifacts, particularly the ocular artifact [92–94].

Wavelet transform (WT) is an e�ective denoising proce-
dure that was introduced to process nonstationary signals,
such as EEG. Zikov et al., Krishnaveni et al., and other
researchers used WT to remove ocular artifact [95–98]. 
e
continuous wavelet transform (CWT) can be used as a set
of decomposition functions called mother wavelet; the most

popular mother wavelets used in biomedical signal denoising
are Daubechies, coi�ets, and dyme, as shown in Figure 8.

WT is considered a method for multiresolution analysis
that provides varying resolutions at di�erent time and fre-
quency [99], as shown in Figure 9.

Nazareth et al. and other researchers applied an e�ective
new approach by combining ICA and WT resulting in
an ICA-WT hybrid technique, as shown in Figure 10. As
an example, ICA-reconstructed data were cascaded as an
input to WT decomposition. 
is merge assists ICA in
distinguishing the signal and noise even if both nearly have
the same or higher amplitude and removes overlapping noise
signal. Furthermore, the WT can decompose EEG signals
into di�erent subbands based on the decomposition levels
[100–105]. 
e ICA-WT technique has illustrated successful
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results in removing the electrooculography andmuscle activ-
ity artifacts [105]. Accordingly, this technique is useful in
revealing hidden EEG characteristics by the next stage. 
us,
the signal is ready for the next stage (i.e., feature extraction
stage).

3.3.3. Dementia Feature Extraction and Selection. 
e
denoised EEG signal from the previous stage undergoes
feature extraction to detect dementia and develop a useful
diagnostic index using EEG. 
is stage aims to extract the

useful information from the EEG of dementia patients by
linear and nonlinear techniques.

Linear techniques have been used to extract meaningful
features from the EEG of dementia patients that are useful as
early dementia indices. Jeong used linear techniques based
on coherence and spectral calculations that were used to
�nd EEG abnormalities [4]. A slowdown in EEG signals
in dementia is illustrated by the shi�ing of power to the
lower frequency and the decrease in interaction among the
cortical area (i.e., increase in delta and theta power along
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with decrease of alpha power) [106]. Spectral analysis has
intensively been used to gain insight into dementia, for
instance, Escudero et al. [107] have analyzed the magnetoen-
cephalogram (MEG) signals to quantify their abnormalities
in the spectra of dementia patients with two spectral features
(i.e., the median frequency (MF) and the spectral entropy
(SpecEn)) based on their usefulness in distinguishing the
brain activity of dementia patients from the normal-age
match subjects. Both spectral features provide information
about the relative power of low and high frequencies that
re�ect the local synchronization of the neural assemblies
[108]. 
erea�er, the electrical brain activity for dementia
patients is characterized by the slowing of brain frequency,
and this property can be performed using MF and SpecEn
[107].

AD and VaD patients share spectral analysis properties,
such as the slowing of alpha power and increase in delta
power, but theta power is higher in VaD patients than in AD
patients [86]. However, EEG frequencies may look normal
in the early stages of AD [109]. Generally, the severity of
cognitive impairment and the degree of EEG abnormalities
are correlated [4].

EEG coherence is used to evaluate the cortical connec-
tion functionality and quantify cortico-cortico or cortico-
subcortical connection. Moreover, the coherence function
can be used to quantify the linear correlation and detect
the linear synchronization between two channels; however,
this function does not distinguish the directionality of the
coupling [110, 111]. A decrease in coherence is interpreted
as a reduction in linear function connection and function
uncoupling in the cortical area. By contrast, an increase
in coherence is interpreted as augmented linear function
connection and function coupling in the cortical area [51].

Nonlinear dynamic techniques have been used inten-
sively to analyze the EEG signal, particularly the EEGs of
dementia patients, for decades. Researchers have used EEG to
investigate the complex dynamic information that is re�ected
from the brain cortex and recorded by EEG devices [112, 113].

e hypothesis that the brain is stochastic may be rejected
based on the capability of the brain to perform sophisticated
cognitive tasks thanks to its complicated structure.Moreover,
brain neurons are controlled by nonlinear phenomena, such

as threshold and saturation processes, such that brain behav-
ior can be classi�ed as nonlinear. 
e nonlinear dynamic
analysis may be considered a complementary approach in
detecting mental diseases, because it provides additional
information to that of traditional linear methods [114, 115].
Moreover, numerous methods have been introduced to study
time series EEG data from human brain activity to under-
stand and detect EEG abnormalities.


e �rst nonlinear methods that were used to analyze
EEG are the correlation dimension (D2) and the �rst Lya-
punov exponents (L1). D2 was applied by Grassberger and
Procaccia in 1983 to quantify the number of independent
variables that are necessary to describe the dynamic system. It
was used to provide the statistical characteristic of the system.
By contrast, L1 was applied by Wolf in 1985 as a dynamic
measure to gauge the �exibility of the system [116, 117]. Early
detection of dementia can be predicted using fractal dimen-
sion (FD), zero-crossing interval (ZCI), entropy, such as
sample entropy (SampEn) and Kolmogorov entropy, central
tendency measure, and Hojorth-Index. Hamadicharef et al.
presented the performance results of these methods based on
sensitivity, speci�city, accuracy, area under the ROC curve,
and standard error and found that FD and ZCI are the best
methods [118].

Henderson et al. successfully applied FD as a powerful
tool for transient detection in terms of waveform that is
used to measure the signal structure details in biology
and medicine. 
e derivation of FD of the autocorrelation
function can be found in [119]. Moreover, they used ZCI to
analyze EEG [55].

Lempel-Ziv-Welch (LZW) is a metric that has been
applied to evaluate the signal complexity by measuring the
number of distinct substring and their rate of recurrence
along the time series; Ferenets et al. introduced an algorithm
to compute the LZW [120].

Several methods have dealt with the complexity or irreg-
ularity in the ability of the system to create information by
entropy methods, such as Tsallis entropy (TsEn), approxima-
tion entropy, SampEn, and multiscale entropy (MSE) [55, 61,
115, 121–124].

To sum up, linear spectral methods have been used
traditionally in the �eld. 
eir interpretation may be more
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straightforward for clinicians, as they are closely related to
the power associated with di�erent brain rhythms (alpha,
beta, delta, and theta), whereas nonlinear techniques may
provide complementary information. Nonlinear methods
are motivated by the nonlinear behavior of the neurons in
the brain. Both approaches have been used to inspect the
EEG activity in dementia, but most studies have focused on
only one of those families of methods and there are few
comprehensive comparative studies [108]. Despite potentially
promising �ndings, the sizes of the analyzed datasets limit the
results.
ese features are applied to the next stage to estimate
the degree of the severity of dementia.

3.3.4. Dementia Classi�cation Techniques. 
e classi�cation
staging is necessary to predict the qualitative properties of the
mental state of dementia patients. In this stage, the feature
vectors extracted from the previous stage were classi�ed into
three categories, namely, CIND, MCI, and dementia. Feature
vectors must be analyzed further before being applied to the
classi�er to avoid overloading the classi�er and reduce the
computational time, increasing the accuracy of classi�cation.

ese feature vectors can be processed using dimensional-
ity reduction techniques as shown in Figure 11. Numerous
methods can be used including principal component analysis
(PCA) and ICA.
esemethods are well-establishedmethods
for dimensionality reduction. PCA is a widely used method
to avoid the redundancy because of high-dimensional data
[125–127]. 
e dimensionality-reduced features were used
as an input to the classi�ers to improve the accuracy of
the classi�cation of the severity of dementia by EEG signal
analysis.

In EEG applications, highly accurate classi�cation is
strongly related to the quality of extracted features, the
dimensionality reduction, and the classi�ers. Linear discrim-
inant analysis (LDA) and support vector machine (SVM)
classi�ers are themost popularmethods used to classify brain
disorders, such as dementia and epilepsy, because of their
accuracy and applicability in numerous studies [125, 126].

LDA has been widely used for its fast and simple imple-
mentationwith low computational requirements. It is suitable
for real-time implementation [128]. Its objective is to create a
new variable that combines the original predictors by �nding
a hyperplane that separates the data points representing
di�erent classes and that minimizes the variance within the
class under the assumption of normal data distribution [125].

SVM is a linear binary classi�er that can be used as
an alternative to multilayer perceptron. It can support fea-
ture vectors with many components [129]. SVM gives the

researchers a way to come up with a nonlinear classi�er by
appropriate kernel methods. Speci�cally, SVM uses hyper-
planes that maximize the distance between the two classes of
SVMs based on the principle of maximizing the margin of
separation of the classi�er to split class [130]. In nonlinear
cases, SVM can be extended to the concept of hyperplane
separation of data that are o�en linearly nonseparable. 
e
two classes are mapped with kernel methods onto a new
higher dimensional feature space via nonlinear mapping
[130]. Figure 12 shows the architecture of the SVM.

SVM is widely used in biomedical signal classi�cation
application, particularly in EMG and EEG classi�cations,
for its high accuracy and good performance that make it
insensitive to overtraining and dimensionality [126, 132–
134]. SVM may help obtain an accurate classi�cation of the
severity of dementia that provides an indication of themental
disorder and can predict early stages with suitable treatment
management programs.

4. Discussion

EEG plays an important role in evaluating brain activity.
is
review is focused on using EEG as a physiological biomarker
to detect dementia in the early stages and classifying its
severity based on EEG signal analysis and processing.


ere is enormous interest in the detection and diagnosis
of dementia in its early stages.
ismight be achieved through
a combination of diagnosis criteria and reliable biomarkers.

e scienti�c knowledge available through neuropsychologi-
cal testing and biomarkers assessed against diverse dementia
signs would help in capturing both the earliest stages and the
spectrum of dementia before signi�cant mental decline [26–
29]. 
ere is an urgent need for an accurate, speci�c, and
cost-e�ective biomarker to diagnose dementia. 
is makes
the EEG an attractive tool to detect and di�erentiate AD
and VaD in the early stages due to its a�ordability and
noninvasiveness. 
is review has focused on the use of
EEG as a physiological biomarker to provide the impetus to
detect dementia in the early stages. EEG evaluation through
visual inspection is prone to mistakes due to the subjective
experience of neurologists. In addition, it is time consuming
and it may not be able to reveal subtle changes in the EEG,
whereas the computerized EEG signal analysis may simplify
the work of medical doctors and may contribute to making
the evaluations more objective.


is review illustrated EEG signal processing principles
and described useful techniques that have been used to
enhance recorded EEG signals. Numerous preprocessing




e Scienti�c World Journal 11

Table 1: Findings of e�ective linear and nonlinear methods for detecting dementia [55, 107, 121, 122, 131].

Methods Finding

Linear techniques
Spectral analysis

Median frequency (MF)
Dementia is associated with a slowing of brain
frequencies

Spectral entropy (SpecEn)
Dementia causes a change in the frequency content
of the brain signals

Zero crossing interval (ZCI)
ZCI increased in slow activity associated with
dementia

Nonlinear techniques

Fractal dimension (FD)
FD of the EEG is lower for dementia patients than
normal subjects

Lempel-Ziv-Welch (LZW)
Lower LZW of dementia patients than normal
subjects due to reduce complexity

Tsallis entropy (TsEn) Lower TsEn in AD group than the normal
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Figure 12: Support vector machine classi�er [130].

signal and denoising techniques are used to enhance EEG
signals by removing artifacts. Methods like WT and ICA
have been used to remove di�erent types of noise. On
the one hand, ICA, as a higher order statistics method,
has several advantages due to its ability to split a set of
mixed signals into its sources. Nonetheless, ICA may have
di�culties in determining the order of the ICs. However, it
is a powerful method for artifact removal and suitable for
o�ine application. On the other hand, WT is suitable for
nonstationary signal like EEG that provide linear combina-
tion of the sum of wavelet coe�cients and mother wavelet
with frequency and localization information, andWThas the
ability of splitting the signal into subbands (approximation
and detail) using amultiresolution decomposition algorithm.
In recent years, ICA-wavelet hybrid techniques have been
used to overcome the limitation of each individual method
and it may become a more e�ective denoising method. To
improve the performance of ICA and WT, the data can be
projected into a new space when the redundancy is higher
and the features in frequency domain are fully exploited.
is
minimizes the information loss and it enables WT to remove
any overlapping of noise in the EEG signals that ICA cannot
�lter out.


is review also explored linear and nonlinear features
extraction techniques and dimensionality reduction meth-
ods. 
e summary of the �ndings of the most e�ective linear
and nonlinear methods is listed in Table 1.


erea�er, the techniques used to classify EEG sig-
nals based on dementia spectrum (i.e., CIND, MCI, and
dementia) were revised. 
e e�ects of dementia on the
EEG can be summarized as slowing and reducing EEG
complexity and synchrony. 
e SVM classi�er is suggested
as a suitable technique for classifying the features of EEG
signals based on their applicability in many �elds for its
empirically good performance and generalization. Many
researchers have bene�ted from the advantages of SVM in
dealing with large feature spaces. Other researchers have
been applying a combination of classi�cation algorithms that
may help improve the performance, sensitivity, and speci�city
of the best clinical diagnosis for the early detection and
classi�cation of dementia.

5. Conclusions

In this review, EEG has been identi�ed as an investigation
tool and potential biomarker for detecting dementia and
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classifying its severity by providing concise information
about the brain activity and how it is a�ected by AD and
VaD. It must be noted that, in some occasions, the review
has focused on �ndings related to AD. 
is is due to the
fact that the literature on AD is much larger. Although
there has been considerable research into the use of EEG
for dementia screening, this is not accepted in routine
practice yet [26–29]. Furthermore, the analyzed datasets
have o�en been small and additional studies are needed to
con�rm those promising results. However, several studies
have appreciated the EEG as a useful clinical evaluation tool
in the discrimination of AD and/or VaD and/or other types
of dementia. Highly sensitive EEG-based detection of the
progress of dementia and classi�cation of its severity are a
highly desirable screening technique in clinical practice as its
low cost and portable features make it a promising technique
that can be a reference for customizing or personalizing
optimal therapeutic programs for dementia patients.
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