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Abstract

We employ the time-dependent Ginzburg-Landau (TDGL) method to analyze
the time evolution of strain fields in a model for materials with martensitic
phase transformations. The free energy functional is expressed in terms of the
components of the strain tensor, and its functional derivatives with respect
to these components give their rate of change. However, the components of
the strain tensor are not independent fields; rather, they are related by the
Saint-Venant compatibility condition. This condition imposes constraints on
the variations of the strain tensor components needed to obtain the equations
of motion. Incorporating these constraints in the TDGL procedure introduces
extra terms that effectively act as long-range, anisotropic elastic interactions.
The latter govern the types of elastic textures that may emerge during a
martensitic transformation. The results from the numerical solution of these

evolution equations exhibit fine and coarse tweed, twinning, and tip-splitting.
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I. INTRODUCTION.

There is great contemporary interest in the behavior of materials which undergo marten-
sitic phase transitions, partially driven by the important distortive transformations observed
and exploited in, for example, ferroelectrics, ceramics and shape-memory alloys. We are in-
terested here in a subset of martensites, the so-called “ferroelastic martensites”. The phase
transformations in these substances involve changes in the shape of the crystalline unit cell,
partial softening with temperature of frequencies of long-wavelength acoustic phonons, and
anomalies in the temperature dependence of elastic constants, along with the formation
of lamellar, wedge-like and hierarchical structures below the transformation temperature
(Barsch and Krumhansl, 1984, 1988; Salje, 1990).

In these materials the changes in the shape of the unit cell on going from the high-
temperature (austenite) structure to the low-temperature (martensite) structure can occur in
several different ways. Thus there are different “variants” of the low-temperature structure,
and these different distortions are related to each other via an element of the symmetry group
of the high-temperature phase. Different experiments on these systems show a variety of
interesting phenomena. Many of these experiments do not directly involve or pass through
the phase transition, but depend only on the fact that there are these different variants in
the low-temperature phase. In these experiments several of the possible variants are present
simultaneously in the sample. These different variants have to accommodate to each other
to maintain the integrity of the sample. The resulting competition as the system tries to
achieve a local minimum state of the free energy produces complex patterns at the mesoscale
length scale in the mixture of the different variants. Theoretical attempts to predict these
patterns have motivated the development of new methods in the calculus of variations (see
for example Ball and James, 1992 and the references therein).

Our goal in this paper is to attempt a description of the time evolution leading to these
patterns. Our approach is to use time-dependent Landau-Ginzburg (TDGL) equations of

motion. This method requires knowledge of the free energy functional of the relevant coarse-



grained dynamical field(s). This Landau-Ginzburg (LG) functional is constructed from terms
involving small powers of both the fields and the gradients of the fields which are invariant
under the symmetry operations of the high temperature structure (the parent phase). The
functional derivatives of this free energy with respect to the fields then give their rates of
change. In the absence of noise sources, this scheme gives solutions that approach the local
minima of the LG functional, which are the possible metastable equilibrium states.

In the situation considered here, the appropriate coarse-grained fields are components
of the strain tensor, and so we employ a LG functional which depends on these tensor
components. But in applying the canonical TDGL procedure, we find it is necessary to
incorporate a new feature. In order not to over-count the number of degrees of freedom of
the system, all of the components of the strain tensor can not be independent dynamical
fields; there must be constraint equations relating them. These constraints must be taken
into account in evaluating the rates of change of the independent dynamical fields from the
GL functional, and we have been able to do that. These constraints give rise to additional
terms in the equations of motion beyond what one might have intuitively expected. These
additional terms are in many respects equivalent to having a long-range, anisotropic self-
interaction for that component of the strain whose values actually distinguish the different
low-temperature variants, that is for the order parameter of the phase transition.

In Section II we describe the origin of the constraints and how they affect the TDGL
equations, and in Section III we describe the specific model that we use. Then in Section

IV we present our results and follow that with our conclusions in Section V.

II. ELASTIC COMPATIBILITY

We treat the solid as an elastic continuum, for which the fundamental dynamical variable
is the displacement field u, a function of position x and time ¢. The Landau-Ginzburg (LG)

free energy that we use is a functional of the elastic strain, a symmetric tensor field,
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(1,7, k denote Cartesian components). The last term in Eq. (2.1), a nonlinear function of
the displacement field, is required to make the strain tensor vanish for displacements which
are just finite rotations. For physical situations in which both u and Vu are small it is
often omitted, an approximation known as “geometrical linearity”, and we shall make that
approximation also. The remaining terms then vanish only for displacements which are
infinitesimal rotations. For a comparison between the geometrically nonlinear and linear
theories within the context of martensitic transformations see Bhattacharya, 1993.

In d-dimensions the displacement field has d independent components at any point x,
whereas a symmetric tensor nominally has d(d + 1)/2 independent components. Because
the strain tensor is composed of derivatives of a vector field, there must be relations or
constraints among its components, so that all components can not vary in arbitrary ways.
In the approximation of “geometrical linearity” these constraints are expressed by the Saint-

Venant compatibility relation (Navier, 1864; Gurtin 1984; Baus and Lovett, 1990)
Vx(Vxe=0 (2.2)

This equation in an identity expressing equality of certain combinations of mixed partial
derivatives which arise from the form of € in Eq. (2.1).

Other authors (Kartha, Krumhansl, Sethna and Wickham, 1995; Jacobs, 1995) have
pointed out the importance of the compatibility relations. They have chosen to account for
them by calculating directly in terms of displacements and then subsequently differentiating
to obtain the strains. Here we shall incorporate the constraints directly in the equations of
motion for the strains.

Our goal here is to describe martensitic transformations for which the parent phase
(austenite) has square symmetry. The following linear combinations of the strain tensor

components directly describe simple strains in that symmetry:
1
e = NG (€11 + €22), (2.3)

4



€9 = €19, (24)

1
¢ = /3 (€11 — €22) . (2.5)

The component e; describes bulk dilatation (change in volume without change in shape), e,
describes shear distortion (change in shape without change in volume), and ¢ describes “de-
viatoric” strain (change from square to rectangular shape without change of volume). This ¢
component of the strain tensor is the order parameter for the martensitic transformation of
interest (Barsch and Krumhansl, 1988). The compatibility constraint [Eq. (2.2)], restricted

to 2D and expressed in terms of these linear combinations, reduces to one equation,

2 2 2
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Therefore only two of the three fields e, es, and ¢, are independent. We choose the bulk
volume change e; to be the dependent field and vary e, and ¢ independently. We make this
choice because the e; component describes homogeneous volume changes which are not so
important for understanding the structure which develops below the transition temperature.
Also, in 2D there is a sense in which the other two components, e; and ¢, are equivalent
to each other and therefore should be treated equivalently. This sense is that the last two
terms in Eq. (2.6) can be interchanged by rotating the coordinate system by 45°.

In 3D Eq. (2.2) would give rise to three equations relating the symmetry-adapted strain
components. Although it is possible in principle to deal with these equations, the execution
of this procedure would be difficult. Therefore for the sake of illustration and simplicity, we
proceed here with the 2D situation.

We now suppose we have a free energy functional F' which depends on these three strain
components. Since we have chosen e, and ¢ to be the independent components in order to

be consistent with the constraint Eq. (2.6), our LG equations of motion are
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The evolution of e; is determined from the solution of these equations through the constraint,

(2.7)

Eq. (2.6). Typically in LG equations, there is a kinetic coefficient multiplying the functional



derivatives on the right-hand-side. For simplicity we have assumed that the two kinetic
coefficients are the same. Then we have moved those factors to the left side of the equations
and combined them with ¢ to define a dimensionless time variable.

Typically one assumes that the LG free energy depends on the gradient of the order

parameter, that is, on V¢ in this problem. Thus it has the form

Fles,e,d] = [ daf(ei(x), e2(x), 6(x), Vo). (28)

(The notation d?z denotes a two-dimensional integral over x.) Although other authors have
taken the free energy to depend on the gradient of the other two strain components as
well (Jacobs, 1992), such dependence goes beyond the simplest LG theory. Apart from this
assumption about the dependence on the gradients of the strain components, the specific
form of the LG functional does not matter at this point.

According to Eq. (2.7), we need the functional derivatives of the LG functional F' with
respect to variations in the independent fields e; and ¢. Variations in these two fields induce
variations in e; through the constraint, Eq. (2.6). The variation in F' due to variations in

es(x) is thus

OF = /de/ae?‘(fX,) 561(){’) —|—/d2xa€2{X) 562(X). (29)

Because the variation de;(x') is induced by the variation dey(x), it is given by the functional

derivative chain rule

Ser (x /d2 01X 5., (x). (2.10)
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We substitute this result into the first term of Eq. (2.9) and obtain
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We introduce the notation

deq (x)

Xeies (XI - X) = 562(X) (2'12)




for this functional derivative. Then the functional derivative of the free energy with respect

to the strain component e(x) is

OF
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In a similar fashion, variation of the LG free energy with respect to the other independent

strain component ¢(x) gives
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where we introduced the notation
, der(x’
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The second term on the right-hand-side of Eq. (2.14 arises from the dependence of the
LG free energy density on the gradient of the order parameter field, as is familiar in other
variational calculations.

To complete the evaluation of the free energy functional derivatives, we need the functions
in Egs. (2.12) and (2.15). These are obtained from the constraint in Eq. (2.6), by taking
the functional derivatives of that equation with respect to ex(x) and ¢(x). We use the
relations d¢(x)/dey(x’) = 0, which expresses the independence of these two fields, and

do(x')/0¢(x) = 6(x" — x), and obtain
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The solution of these two equations subject to appropriate boundary conditions gives the
needed ingredients for completing the evaluation of the functional derivatives of the LG free
energy.

For the rest of the paper we restrict the treatment to periodic boundary conditions

(PBC), which allow a simple solution of Eqs. (2.16) and (2.17). There are of course other



boundary conditions that are of interest in the context of martensitic transformations (Fin-
layson, 1997) and which we hope to investigate. However, solutions of Eqs. (2.16) and (2.17)
are more difficult to obtain for those cases. In this paper we study the simplest situation.
The integral in Eq. (2.13) is a convolution. For PBC (or integration over all space), we
express that convolution in terms of the Fourier transforms of its factors, using the Fourier

transform convolution theorem:
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Here the caret denotes the Fourier transform of the given function, and the notation in the

last factor is to denote the Fourier transform of the quantity in the brackets.

Similarly,
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The Fourier transforms of Eqgs. (2.16) and (2.17) are easily performed. The solutions are

_ Bk,
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When Egs. (2.20) and (2.21) are substituted into Eqs. (2.18) and (2.19), we have evalu-
ated the functional derivatives of the LG functional to the extent that is possible without

specifying its form more precisely.

III. THE MODEL AND EQUATIONS OF MOTION

We take the following form for the LG free energy density of Eq. (2.8):
1, 5, 1. 5 1 9
f =341+ S Aseh + 58 (V) + il0). (3.1
where the “bulk” part of the free energy density contributed by the order parameter is

fol@) = (1 — 1)¢* + ¢*(¢* — 1) — Po. (3.2)
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Here P is a stress, and 7 is a dimensionless temperature. The stress P could be externally
imposed or it could be induced by defects within the crystal. The first two terms of Eq.
(3.1) describe linear elasticity for the e; and e components of the strain. The “bulk”
term f;, describes the nonlinear self-interactions of the order parameter. For P = 0, f,
is a symmetric function with one, two, or three minima, depending on the value of the
dimensionless temperature 7 (see Fig. 1). For 7 < 0, ¢ = 0 is a local maximum, with
the value f,(¢ = 0) = 0, and there are two symmetric minima with negative values. For
0 <7 <1, ¢ = 0is a minimum [still with f,(¢ = 0) = 0], and there are two other
symmetric minima for which the function is negative. At 7 = 1, f, has three degenerate
minima with value f, = 0; this temperature is the first-order phase transition point. When
1 <7 <4/3, $ =0 remains a minimum, and there are two (symmetric) minima at which
the function is positive. Finally, for 4/3 < 7, the minimum at ¢ = 0 is the only extremum.
The effect of having P # 0 is to tilt f, so that the extrema at non-negative ¢ values are no
longer degenerate. The determination of the equilibrium state at several temperatures using
Monte Carlo simulations by Kartha et al. employed this same functional form as Egs. (3.1)
and (3.2) with a 7 that depended on the local composition (Kartha, Krumhansl, Sethna,
and Wickham, 1995).

Because of the simple form of this LG function, the derivatives appearing in Egs. (2.18)
and (2.19) are

of
de; (x)

With this form, the Fourier transform of 0f/0e;(x) needed for Egs. (2.18) and (2.19) is just

é1(k). This factor is the strain component that was chosen to be dependent on the other
two components through the constraint, Eq. (2.6). We Fourier transform that equation to
obtain é;(k) in terms of the Fourier components of the other strain components and use
that equation to eliminate é,(k) from Eqgs. (2.18) and (2.19).

By substituting these results into Eq. (2.7), we obtain our final equations of motion:

dey(x,t)

T = —A2€2 (X, t)
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We solved these equations by a Runge-Kutta method. The form of the equations requires
transforming between configuration and wavevector space on each timestep. Periodic spatial
boundary conditions were employed (as mentioned previously). Various initial conditions
were utilized and are illustrated in the next section. The runs displayed in the next section
are for spatial discretizations of 256 x 256 grid points. We checked the adequacy of this spatial
discretization by performing a small number of runs on a 2048 x 2048 grid. The only real
difference we found is that the needle tips which appear with some of the initial conditions
are somewhat clearer in the higher resolution case. We similarly checked the adequacy of
our time step and again found no significant changes in the results. Finally, we mention
that an additional feature in the program is that it is possible to have different values of the

temperature parameter 7 in different spatial sub-areas within the computational cell.

IV. RESULTS

In this section we describe results from our numerical solution of Eqs. (3.4) and (3.5).
These results are presented in pictures showing the spatial dependence of the order parameter
¢ at different times. The solution of the equations of motion of course gives the evolution
of all components of the strain tensor, but the pictures here show only the most important
component, ¢. These pictures are snapshots taken from movies which are more illustrative
but can not be included in this paper (Kerr, 1997).

On these figures, the value of ¢ at each lattice site is encoded by a color scheme which is
shown in the panel at the bottom of the figure. Blue indicates negative values near ¢ ~ —1,

describing one variant of martensite, red indicates values near ¢ ~ +1, describing the other
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variant, and white is ¢ = 0, describing austenite. These ¢ values for the different phases
and variants are those shown in Fig. 1.

Figures 2 - 5 are from one simulation run. Figure 2 shows the initial conditions, which
are uniformly random over an interval around ¢ = 0. Comparing the range of colors in the
figure to the range in the panel at the bottom of the figure, one sees that the interval is small
compared to the interval between martensite variants. A feature of this simulation, visible
in the subsequent figures, is that the left and right halves of the system are at different
temperatures. The left half is held at 7 > 4/3, i.e. the temperature parameter of the local
potential has a value such that V;(¢) has only one minimum. That part of the system will
tend to remain in the austenite phase. The local potential on the right-half of the system
has 7 < 1, so that the degenerate martensite configurations are the preferred structures.
The random initial conditions used for this simulation can be thought of as starting from an
infinite initial temperature, in the sense that every possible value of the order parameter is
equally probable. Thus this run is a quench of the system from a very high temperature to a
particular spatially inhomogeneous state with lower temperature. This very nonequilibrium
process is quite distinct from the more usual procedure of slow quasi-equilibrium cooling of
a system.

The subsequent figures show that structure begins to evolve immediately after the
quench. Most of this structure occurs in the “cooler” right-half of the system. However,
one sees that the structures which evolve in the right-half penetrate into the “hotter” left-
half of the crystal. This penetration effect demonstrates the elastic continuity across the
interface arising from the compatibility requirement and illustrates the long range nature
of the compatibility-induced interaction. The structure in Fig. 3 is similar to structure in
some experimental micrographs made by transmission electron microscopy (Robertson and
Wayman, 1983; Schryvers and Tanner, 1990; Tanner, Schryvers, and Shapiro 1990) that
show a mottled structure known as “tweed” (see Semenovskaya and Khachaturyan, 1997;
Bratkovsky et al., 1995; Kartha et al., 1995; and the references therein). Since the coherent

structures in this figure are comparatively small, this structure is “fine tweed”. Subsequent
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evolution, shown in Fig. 4, produces larger structures, which could be labeled “coarse tweed”.
This coarsening of the tweed structures as the system is cooled toward T} is consistent with
experiment (Sugiyama, 1985). Also in this figure, some twin bands have also evolved, each
of which is made up of one variant of martensite. At this stage there are two sets of twins,
oriented along the (11) and (11) directions. In subsequent evolution, one of these sets wins
over the other, so in Fig. 5 the twin set running parallel to the (11) direction occupies a
substantially smaller volume of the system. The small “grain” then eventually disappears
(not shown), leaving bands parallel only to the (11)direction.

At about the center of the upper right-hand quarter of this picture, a thin sliver of
austenite (white) material is visible. This small piece of austenite disappears before the end
of this simulation run. Such small slivers of austenite frequently remain at the conclusion of
several of our simulations. However we believe that they would eventually work their way
out of the system if the simulation were run for longer times.

Figures 6 - 8 are from another simulation. In this simulation a narrow band along the
left side of the system is held rigidly in the austenite phase, at ¢ = 0. This is shown by the
white band on the left in these three figures. The temperature of the rest of the system is in
the martensite regime. The initial condition has one giant twin (wrapped around by PBC)
meeting the austenite boundary at a 45° angle, as shown in the first figure. The evolution
of this system consists in refinement of the initial twin into increasingly narrower and more
numerous twins. This evolution becomes increasingly slow at longer time. Also in this run
there are thin slivers of austenite along parts of the twin boundaries. We believe these would
disappear if the simulation were continued to much later times.

The boundary between the twinned martensite region and the austenite region (the
habit plane) in this simulation was chosen arbitrarily. We need to do this because of a
special condition that arises in 2D simulations. In 3D systems, twinning arises as a result
of minimizing a free energy with three minima, viz. two variants of martensite which satisfy
a generalized compatibility relation (a rank-one connection) between them and austenite

which is incompatible with the two martensite variants (Ball and James, 1987). In 2D,
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there is a rank-one connection between austenite and martensite, so there is no energetic
incentive to form twins. In this simulation we forced an interface to exist by imposing a
sharp temperature gradient.

The final set of figures, Figs. 9 - 11, shows the evolution of a system at low temperature
under loading, i.e. the pressure P in the local potential is positive. This pressure biases the
minimum of f, at positive ¢ (red color) to be favored over the one at negative ¢ (blue color).
The initial condition is a matrix of the two different variants. The short, narrow red strips
in the first figure quickly grow out to meet the wider red regions, as shown in the second
figure. Also, the long red bars widen, as seen in the third figure. In the third figure, the
number of red strips between the bars has doubled, compared to the starting configuration;
the narrower set of strips appeared out of the blue regions a few timesteps before this
snapshot was taken. One more doubling of the number of these narrow strips occurs before
the evolution concludes by having essentially the whole system become red. In this last
figure one can observe nucleation events occurring where the tips meet the long interfaces,
as more material feeds into the red region. Tip-splitting is also visible at the boundary
with the long interfaces; tip-splitting has also been observed experimentally (Shimizu and
Otsuka, 1975; Abeyaratne, Chu, and James, 1996). As observed in these experiments, our
simulations show a slight bowing just before the event of fast tip splitting.

Finally we should mention that all our simulations of isothermal evolution seem to even-
tually evolve to a state where the entire specimen is in only one variant. In other words,
we do not observe any equilibrium states consisting of a patchwork of twins as seen for
example in the experiments (Chu, 1993). Possible explanations for this include: the con-
straining effect of our periodic boundary conditions (the experiments of Chu are performed
under biaxial loading) and the absence of defects or compositional inhomogeneity in our

simulations.
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V. CONCLUSIONS

Our goal in this paper has been to follow the time dependence of deviatoric (rectangular)
and shear elastic strains as they evolve towards a free energy local minimum, starting from
appropriate (experimentally relevant) initial conditions. We employed the time-dependent
Ginzburg-Landau method. Here the Landau-Ginzburg free energy is expressed in terms of
the coarse-grained physical variables, and its functional derivatives with respect to those
variables give the corresponding rates of change. In our system, the relevant variables are
the local values of the components of the strain tensor.

The typical TDGL procedure must be augmented in this problem because the differ-
ent components of the strain tensor are not independent fields. They are constrained by
the Saint-Venant compatibility relation. We have been able to formally extend the TDGL
procedure to include these constraints in a systematic way. In situations where periodic
boundary conditions are applicable, we have explicitly carried the procedure through. It
results in long-range, anisotropic elastic terms in the TDGL equations for the independent
strain components. Appropriately incorporating other boundary conditions with these con-
straints in the TDGL formalism is an important task for future work.

The results from the numerical solution of the ensuing equations show several features
that are also seen in experiments. These include fine and coarse tweed, appearance of
the variants of the low-temperature phase in twinned configurations, and tip-splitting. We
emphasize that the elastic patterns here were obtained subsequent to a nonequilibrium
quench as opposed to the (usual) cooling under equilibrium conditions.

There are several questions remaining to be answered that can be studied within this
framework. We have already mentioned the need to use different boundary conditions such as
free or fixed. Another problem is to understand the effects of disorder on the time evolution.
Including disorder effects is necessary in order to further understand the nature of tweed. It
is known that values of martensitic transition temperatures are extremely sensitive to the

degree of disorder (Sugiyama, Oshima, Fujita 1984; Sugiyama, 1985). It therefore seems
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highly likely that disorder is a prominent determinant of the pretransformation patterns
in these materials. Indeed, our simulations (Figures 2 - 5) show the presence of transient
(metastable) tweed-like states of very low energy even in the absence of any disorder or com-
positional fluctuations. Introducing even a small amount of disorder can therefore pin these
states or possibly lead to a glassy evolution that is experimentally indistinguishable from
equilibrium. It has been shown (Shenoy, 1997) that including terms in the LG functional
which couple composition fluctuations to the order parameter ¢ and performing a Gaussian
average over these fluctuations leads to fourth-order cross-gradient terms in our equations
of motion. Further numerical work is necessary to demonstrate that these terms can lead to

a more accurate understanding of the experimental phenomena.
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FIGURES
FIG. 1. The bulk contribution fj(¢) of the LG functional, Eq. (3.2), for P = 0 and several

values of 7. The decreasing sequence of 7 values identifies the different curves from top to bottom.
For each 7 the minima, of this function describe the possible spatially uniform stable and metastable

states.

FIG. 2. Uniformly random initial conditions for ¢ around ¢ = 0. In this simulation the system is
held in a spatially inhomogeneous state by having different values for the dimensionless temperature
7 in the left and right halves of the system. This inhomogeneity is not evident in the initial

conditions but becomes so in the next figure.

FIG. 3. An early intermediate time configuration after quench from random initial conditions.
It is evident in this picture that the value 7 in f;(¢), Eq. (3.2), has different values in the left and
right halves of the system. On the left, 7 > 4/3 so only the austenite phase is possible, and on the
right, 7 < 0, so the two martensite variants are the stable structures. The random initial condition

has evolved into a “fine tweed” configuration.

FIG. 4. A later intermediate time configuration after quench from random initial conditions.
The smaller-scale patterns here are “coarse tweed”; they are larger scale than the “fine” tweed of
the previous figure. Twin boundaries have also emerged, separating the two martensite variants.

At this time, the twins extend along both £45° directions.

FIG. 5. Late time configuration after quench from random initial conditions. The cooler half
of the system has evolved almost entirely into twins. In the evolution after this picture, the small

grain of twins running in the +45° direction disappears.

FIG. 6. Initial conditions for a second simulation. There is a single large twin of the two
martensite variants occupying most of the system. In a strip along the left side, the order parameter
has the value ¢ = 0. In the subsequent evolution, this strip is held rigidly at this value. The 7

value in the rest of the figure is negative.
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FIG. 7. Intermediate time configuration from the large twin initial condition. The single twin

is starting to refine into narrower strips.

FIG. 8. Late time configuration from the large twin initial condition. The evolution has become

very slow in this configuration.

FIG. 9. Initial conditions for a third simulation. This system has an applied stress, P > 0,
which favors the red martensite variant over the blue. Again, this condition is not evident in the

initial condition.

FIG. 10. Intermediate time configuration for the stressed system. At this time the short strips

in the initial configuration have grown and just touched the wide red regions.

FIG. 11. Late time configuration for the stressed system. Note that the thin red strips between
the two wide red bands divide into two categories: very narrow ones appear in between each pair
of slighly wider ones. The wider ones have evolved from the short red bars in the initial state.
The narrower ones appeared just a few time steps before this picture was made. Also note the

tip-splitting where the thin strips meet the wide bands.
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