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Abstract

We employ the time	dependent Ginzburg	Landau �TDGL� method to analyze

the time evolution of strain 
elds in a model for materials with martensitic

phase transformations� The free energy functional is expressed in terms of the

components of the strain tensor� and its functional derivatives with respect

to these components give their rate of change� However� the components of

the strain tensor are not independent 
elds� rather� they are related by the

Saint	Venant compatibility condition� This condition imposes constraints on

the variations of the strain tensor components needed to obtain the equations

of motion� Incorporating these constraints in the TDGL procedure introduces

extra terms that e
ectively act as long	range� anisotropic elastic interactions�

The latter govern the types of elastic textures that may emerge during a

martensitic transformation� The results from the numerical solution of these

evolution equations exhibit 
ne and coarse tweed� twinning� and tip	splitting�
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I� INTRODUCTION�

There is great contemporary interest in the behavior of materials which undergo marten�

sitic phase transitions� partially driven by the important distortive transformations observed

and exploited in� for example� ferroelectrics� ceramics and shape�memory alloys� We are in�

terested here in a subset of martensites� the so�called �ferroelastic martensites�� The phase

transformations in these substances involve changes in the shape of the crystalline unit cell�

partial softening with temperature of frequencies of long�wavelength acoustic phonons� and

anomalies in the temperature dependence of elastic constants� along with the formation

of lamellar� wedge�like and hierarchical structures below the transformation temperature

�Barsch and Krumhansl� �	
�� �	

� Salje� �		
��

In these materials the changes in the shape of the unit cell on going from the high�

temperature �austenite� structure to the low�temperature �martensite� structure can occur in

several di�erent ways� Thus there are di�erent �variants� of the low�temperature structure�

and these di�erent distortions are related to each other via an element of the symmetry group

of the high�temperature phase� Di�erent experiments on these systems show a variety of

interesting phenomena� Many of these experiments do not directly involve or pass through

the phase transition� but depend only on the fact that there are these di�erent variants in

the low�temperature phase� In these experiments several of the possible variants are present

simultaneously in the sample� These di�erent variants have to accommodate to each other

to maintain the integrity of the sample� The resulting competition as the system tries to

achieve a local minimum state of the free energy produces complex patterns at the mesoscale

length scale in the mixture of the di�erent variants� Theoretical attempts to predict these

patterns have motivated the development of new methods in the calculus of variations �see

for example Ball and James� �		� and the references therein��

Our goal in this paper is to attempt a description of the time evolution leading to these

patterns� Our approach is to use time�dependent Landau�Ginzburg �TDGL� equations of

motion� This method requires knowledge of the free energy functional of the relevant coarse�
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grained dynamical �eld�s�� This Landau�Ginzburg �LG� functional is constructed from terms

involving small powers of both the �elds and the gradients of the �elds which are invariant

under the symmetry operations of the high temperature structure �the parent phase�� The

functional derivatives of this free energy with respect to the �elds then give their rates of

change� In the absence of noise sources� this scheme gives solutions that approach the local

minima of the LG functional� which are the possible metastable equilibrium states�

In the situation considered here� the appropriate coarse�grained �elds are components

of the strain tensor� and so we employ a LG functional which depends on these tensor

components� But in applying the canonical TDGL procedure� we �nd it is necessary to

incorporate a new feature� In order not to over�count the number of degrees of freedom of

the system� all of the components of the strain tensor can not be independent dynamical

�elds� there must be constraint equations relating them� These constraints must be taken

into account in evaluating the rates of change of the independent dynamical �elds from the

GL functional� and we have been able to do that� These constraints give rise to additional

terms in the equations of motion beyond what one might have intuitively expected� These

additional terms are in many respects equivalent to having a long�range� anisotropic self�

interaction for that component of the strain whose values actually distinguish the di�erent

low�temperature variants� that is for the order parameter of the phase transition�

In Section II we describe the origin of the constraints and how they a�ect the TDGL

equations� and in Section III we describe the speci�c model that we use� Then in Section

IV we present our results and follow that with our conclusions in Section V�

II� ELASTIC COMPATIBILITY

We treat the solid as an elastic continuum� for which the fundamental dynamical variable

is the displacement �eld u� a function of position x and time t� The Landau�Ginzburg �LG�

free energy that we use is a functional of the elastic strain� a symmetric tensor �eld�
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�i� j� k denote Cartesian components�� The last term in Eq� ������ a nonlinear function of

the displacement �eld� is required to make the strain tensor vanish for displacements which

are just �nite rotations� For physical situations in which both u and ru are small it is

often omitted� an approximation known as �geometrical linearity�� and we shall make that

approximation also� The remaining terms then vanish only for displacements which are

in�nitesimal rotations� For a comparison between the geometrically nonlinear and linear

theories within the context of martensitic transformations see Bhattacharya� �		��

In d�dimensions the displacement �eld has d independent components at any point x�

whereas a symmetric tensor nominally has d�d � ���� independent components� Because

the strain tensor is composed of derivatives of a vector �eld� there must be relations or

constraints among its components� so that all components can not vary in arbitrary ways�

In the approximation of �geometrical linearity� these constraints are expressed by the Saint�

Venant compatibility relation �Navier� �
��� Gurtin �	
�� Baus and Lovett� �		
�

r� �r� �� � 
 �����

This equation in an identity expressing equality of certain combinations of mixed partial

derivatives which arise from the form of � in Eq� ������

Other authors �Kartha� Krumhansl� Sethna and Wickham� �		�� Jacobs� �		�� have

pointed out the importance of the compatibility relations� They have chosen to account for

them by calculating directly in terms of displacements and then subsequently di�erentiating

to obtain the strains� Here we shall incorporate the constraints directly in the equations of

motion for the strains�

Our goal here is to describe martensitic transformations for which the parent phase

�austenite� has square symmetry� The following linear combinations of the strain tensor

components directly describe simple strains in that symmetry�

e� �
�p
�
���� � ���� � �����
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e� � ���� �����

� �
�p
�
���� � ���� � �����

The component e� describes bulk dilatation �change in volume without change in shape�� e�

describes shear distortion �change in shape without change in volume�� and � describes �de�

viatoric� strain �change from square to rectangular shape without change of volume�� This �

component of the strain tensor is the order parameter for the martensitic transformation of

interest �Barsch and Krumhansl� �	

�� The compatibility constraint �Eq� ������� restricted

to �D and expressed in terms of these linear combinations� reduces to one equation�

r�e� �
p


��e�
�x�y

�
�

��

�x�
� ��

�y�

�
� � 
� �����

Therefore only two of the three �elds e�� e�� and �� are independent� We choose the bulk

volume change e� to be the dependent �eld and vary e� and � independently� We make this

choice because the e� component describes homogeneous volume changes which are not so

important for understanding the structure which develops below the transition temperature�

Also� in �D there is a sense in which the other two components� e� and �� are equivalent

to each other and therefore should be treated equivalently� This sense is that the last two

terms in Eq� ����� can be interchanged by rotating the coordinate system by ����

In �D Eq� ����� would give rise to three equations relating the symmetry�adapted strain

components� Although it is possible in principle to deal with these equations� the execution

of this procedure would be di�cult� Therefore for the sake of illustration and simplicity� we

proceed here with the �D situation�

We now suppose we have a free energy functional F which depends on these three strain

components� Since we have chosen e� and � to be the independent components in order to

be consistent with the constraint Eq� ������ our LG equations of motion are

�e�
�t

� � �F

�e��x�
�

��

�t
� � �F

���x�
� �����

The evolution of e� is determined from the solution of these equations through the constraint�

Eq� ������ Typically in LG equations� there is a kinetic coe�cient multiplying the functional
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derivatives on the right�hand�side� For simplicity we have assumed that the two kinetic

coe�cients are the same� Then we have moved those factors to the left side of the equations

and combined them with t to de�ne a dimensionless time variable�

Typically one assumes that the LG free energy depends on the gradient of the order

parameter� that is� on r� in this problem� Thus it has the form

F �e�� e�� �� �
Z
d�xf�e��x�� e��x�� ��x��r��� ���
�

�The notation d�x denotes a two�dimensional integral over x�� Although other authors have

taken the free energy to depend on the gradient of the other two strain components as

well �Jacobs� �		��� such dependence goes beyond the simplest LG theory� Apart from this

assumption about the dependence on the gradients of the strain components� the speci�c

form of the LG functional does not matter at this point�

According to Eq� ������ we need the functional derivatives of the LG functional F with

respect to variations in the independent �elds e� and �� Variations in these two �elds induce

variations in e� through the constraint� Eq� ������ The variation in F due to variations in

e��x� is thus

�F �
Z
d�x�

�f

�e��x��
�e��x

�� �
Z
d�x

�f

�e��x�
�e��x�� ���	�

Because the variation �e��x
�� is induced by the variation �e��x�� it is given by the functional

derivative chain rule

�e��x
�� �

Z
d�x

�e��x
��

�e��x�
�e��x�� ����
�

We substitute this result into the �rst term of Eq� ���	� and obtain

�F �
Z
d�x

�
�f

�e��x�
�
Z
d�x�

�e��x
��

�e��x�

�f

�e��x��

�
�e��x�� ������

We introduce the notation

	e�e��x
� � x� �

�e��x
��

�e��x�
������
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for this functional derivative� Then the functional derivative of the free energy with respect

to the strain component e��x� is

�F

�e��x�
�

�f

�e��x�
�
Z
d�x�	e�e��x

� � x�
�f

�e��x��
� ������

In a similar fashion� variation of the LG free energy with respect to the other independent

strain component ��x� gives

�F

���x�
�

�f

���x�
�X

i

d

dxi

�f

�
�

��

�xi

� �
Z
d�x�	e���x

� � x�
�f

�e��x��
� ������

where we introduced the notation

	e���x
� � x� �

�e��x
��

���x�
� ������

The second term on the right�hand�side of Eq� ����� arises from the dependence of the

LG free energy density on the gradient of the order parameter �eld� as is familiar in other

variational calculations�

To complete the evaluation of the free energy functional derivatives� we need the functions

in Eqs� ������ and ������� These are obtained from the constraint in Eq� ������ by taking

the functional derivatives of that equation with respect to e��x� and ��x�� We use the

relations ���x���e��x
�� � 
� which expresses the independence of these two �elds� and

���x������x� � ��x� � x�� and obtain�
��

�x�
�

��

�y�

�
	e�e��x

� � x� �
p



��

�x�y
��x� � x�� �������

��

�x�
�

��

�y�

�
	e���x

� � x� �

�
��

�x�
� ��

�y�

�
��x� � x�� ������

The solution of these two equations subject to appropriate boundary conditions gives the

needed ingredients for completing the evaluation of the functional derivatives of the LG free

energy�

For the rest of the paper we restrict the treatment to periodic boundary conditions

�PBC�� which allow a simple solution of Eqs� ������ and ������� There are of course other
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boundary conditions that are of interest in the context of martensitic transformations �Fin�

layson� �		�� and which we hope to investigate� However� solutions of Eqs� ������ and ������

are more di�cult to obtain for those cases� In this paper we study the simplest situation�

The integral in Eq� ������ is a convolution� For PBC �or integration over all space�� we

express that convolution in terms of the Fourier transforms of its factors� using the Fourier

transform convolution theorem�

�F

�e��x�
�

�f

�e��x�
�
Z d�k

��
��
eik�x �	e�e���k�

� d�f
�e��x��

�
k

� ����
�

Here the caret denotes the Fourier transform of the given function� and the notation in the

last factor is to denote the Fourier transform of the quantity in the brackets�

Similarly�

�F

���x�
�

�f

���x�
�X

i

d

dxi

�f

�
�

��

�xi

� �
Z d�k

��
��
eik�x �	e����k�

d�
�f

�e��x��

�
k

� ����	�

The Fourier transforms of Eqs� ������ and ������ are easily performed� The solutions are

�	e�e��k� � �	e�e���k� �
p

kxky

k�x � k�y
� ����
�

�	e���k� � �	e����k� �
k�x � k�y
k�x � k�y

� ������

When Eqs� ����
� and ������ are substituted into Eqs� ����
� and ����	�� we have evalu�

ated the functional derivatives of the LG functional to the extent that is possible without

specifying its form more precisely�

III� THE MODEL AND EQUATIONS OF MOTION

We take the following form for the LG free energy density of Eq� ���
��

f �
�

�
A�e

�

�
�

�

�
A�e

�

�
�

�

�
� �r��� � fb���� �����

where the �bulk� part of the free energy density contributed by the order parameter is

fb��� � �� � ���� � ����� � ��� � P�� �����






Here P is a stress� and � is a dimensionless temperature� The stress P could be externally

imposed or it could be induced by defects within the crystal� The �rst two terms of Eq�

����� describe linear elasticity for the e� and e� components of the strain� The �bulk�

term fb describes the nonlinear self�interactions of the order parameter� For P � 
� fb

is a symmetric function with one� two� or three minima� depending on the value of the

dimensionless temperature � �see Fig� ��� For � 
 
� � � 
 is a local maximum� with

the value fb�� � 
� � 
� and there are two symmetric minima with negative values� For


 
 � 
 �� � � 
 is a minimum �still with fb�� � 
� � 
�� and there are two other

symmetric minima for which the function is negative� At � � �� fb has three degenerate

minima with value fb � 
� this temperature is the �rst�order phase transition point� When

� 
 � 
 ���� � � 
 remains a minimum� and there are two �symmetric� minima at which

the function is positive� Finally� for ��� 
 � � the minimum at � � 
 is the only extremum�

The e�ect of having P �� 
 is to tilt fb so that the extrema at non�negative � values are no

longer degenerate� The determination of the equilibrium state at several temperatures using

Monte Carlo simulations by Kartha et al� employed this same functional form as Eqs� �����

and ����� with a � that depended on the local composition �Kartha� Krumhansl� Sethna�

and Wickham� �		���

Because of the simple form of this LG function� the derivatives appearing in Eqs� ����
�

and ����	� are

�f

�ei�x�
� Aiei�x�� i � �� �� �����

With this form� the Fourier transform of �f��e��x� needed for Eqs� ����
� and ����	� is just

�e��k�� This factor is the strain component that was chosen to be dependent on the other

two components through the constraint� Eq� ������ We Fourier transform that equation to

obtain �e��k� in terms of the Fourier components of the other strain components and use

that equation to eliminate �e��k� from Eqs� ����
� and ����	��

By substituting these results into Eq� ������ we obtain our �nal equations of motion�

�e��x� t�

�t
� �A�e��x� t�

	



� A�

Z d�k

��
��
eik�x

�� 
�kxky�
�

�k�x � k�y�
�
�e��k� t� �

p

kxky�k

�

x � k�y�

�k�x � k�y�
�

���k� t�

	
 � �����

���x� t�

�t
� ��r���

�
���� 
�� � ���

�
� A�

Z d�k

��
��
eik�x

��p
kxky�k
�

x � k�y�

�k�x � k�y�
�

�e��k� t� �
�k�x � k�y�

�

�k�x � k�y�
�

���k� t�

	
 � �����

We solved these equations by a Runge�Kutta method� The form of the equations requires

transforming between con�guration and wavevector space on each timestep� Periodic spatial

boundary conditions were employed �as mentioned previously�� Various initial conditions

were utilized and are illustrated in the next section� The runs displayed in the next section

are for spatial discretizations of ������� grid points� We checked the adequacy of this spatial

discretization by performing a small number of runs on a �
�
 � �
�
 grid� The only real

di�erence we found is that the needle tips which appear with some of the initial conditions

are somewhat clearer in the higher resolution case� We similarly checked the adequacy of

our time step and again found no signi�cant changes in the results� Finally� we mention

that an additional feature in the program is that it is possible to have di�erent values of the

temperature parameter � in di�erent spatial sub�areas within the computational cell�

IV� RESULTS

In this section we describe results from our numerical solution of Eqs� ����� and ������

These results are presented in pictures showing the spatial dependence of the order parameter

� at di�erent times� The solution of the equations of motion of course gives the evolution

of all components of the strain tensor� but the pictures here show only the most important

component� �� These pictures are snapshots taken from movies which are more illustrative

but can not be included in this paper �Kerr� �		���

On these �gures� the value of � at each lattice site is encoded by a color scheme which is

shown in the panel at the bottom of the �gure� Blue indicates negative values near � � ���
describing one variant of martensite� red indicates values near � � ��� describing the other
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variant� and white is � � 
� describing austenite� These � values for the di�erent phases

and variants are those shown in Fig� ��

Figures � � � are from one simulation run� Figure � shows the initial conditions� which

are uniformly random over an interval around � � 
� Comparing the range of colors in the

�gure to the range in the panel at the bottom of the �gure� one sees that the interval is small

compared to the interval between martensite variants� A feature of this simulation� visible

in the subsequent �gures� is that the left and right halves of the system are at di�erent

temperatures� The left half is held at � � ���� i�e� the temperature parameter of the local

potential has a value such that V���� has only one minimum� That part of the system will

tend to remain in the austenite phase� The local potential on the right�half of the system

has � 
 �� so that the degenerate martensite con�gurations are the preferred structures�

The random initial conditions used for this simulation can be thought of as starting from an

in�nite initial temperature� in the sense that every possible value of the order parameter is

equally probable� Thus this run is a quench of the system from a very high temperature to a

particular spatially inhomogeneous state with lower temperature� This very nonequilibrium

process is quite distinct from the more usual procedure of slow quasi�equilibrium cooling of

a system�

The subsequent �gures show that structure begins to evolve immediately after the

quench� Most of this structure occurs in the �cooler� right�half of the system� However�

one sees that the structures which evolve in the right�half penetrate into the �hotter� left�

half of the crystal� This penetration e�ect demonstrates the elastic continuity across the

interface arising from the compatibility requirement and illustrates the long range nature

of the compatibility�induced interaction� The structure in Fig� � is similar to structure in

some experimental micrographs made by transmission electron microscopy �Robertson and

Wayman� �	
�� Schryvers and Tanner� �		
� Tanner� Schryvers� and Shapiro �		
� that

show a mottled structure known as �tweed� �see Semenovskaya and Khachaturyan� �		��

Bratkovsky et al�� �		�� Kartha et al�� �		�� and the references therein�� Since the coherent

structures in this �gure are comparatively small� this structure is ��ne tweed�� Subsequent
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evolution� shown in Fig� �� produces larger structures� which could be labeled �coarse tweed��

This coarsening of the tweed structures as the system is cooled toward T� is consistent with

experiment �Sugiyama� �	
��� Also in this �gure� some twin bands have also evolved� each

of which is made up of one variant of martensite� At this stage there are two sets of twins�

oriented along the ���� and ����� directions� In subsequent evolution� one of these sets wins

over the other� so in Fig� � the twin set running parallel to the ���� direction occupies a

substantially smaller volume of the system� The small �grain� then eventually disappears

�not shown�� leaving bands parallel only to the �����direction�

At about the center of the upper right�hand quarter of this picture� a thin sliver of

austenite �white� material is visible� This small piece of austenite disappears before the end

of this simulation run� Such small slivers of austenite frequently remain at the conclusion of

several of our simulations� However we believe that they would eventually work their way

out of the system if the simulation were run for longer times�

Figures � � 
 are from another simulation� In this simulation a narrow band along the

left side of the system is held rigidly in the austenite phase� at � � 
� This is shown by the

white band on the left in these three �gures� The temperature of the rest of the system is in

the martensite regime� The initial condition has one giant twin �wrapped around by PBC�

meeting the austenite boundary at a ��� angle� as shown in the �rst �gure� The evolution

of this system consists in re�nement of the initial twin into increasingly narrower and more

numerous twins� This evolution becomes increasingly slow at longer time� Also in this run

there are thin slivers of austenite along parts of the twin boundaries� We believe these would

disappear if the simulation were continued to much later times�

The boundary between the twinned martensite region and the austenite region �the

habit plane� in this simulation was chosen arbitrarily� We need to do this because of a

special condition that arises in �D simulations� In �D systems� twinning arises as a result

of minimizing a free energy with three minima� viz� two variants of martensite which satisfy

a generalized compatibility relation �a rank�one connection� between them and austenite

which is incompatible with the two martensite variants �Ball and James� �	
��� In �D�
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there is a rank�one connection between austenite and martensite� so there is no energetic

incentive to form twins� In this simulation we forced an interface to exist by imposing a

sharp temperature gradient�

The �nal set of �gures� Figs� 	 � ��� shows the evolution of a system at low temperature

under loading� i�e� the pressure P in the local potential is positive� This pressure biases the

minimum of fb at positive � �red color� to be favored over the one at negative � �blue color��

The initial condition is a matrix of the two di�erent variants� The short� narrow red strips

in the �rst �gure quickly grow out to meet the wider red regions� as shown in the second

�gure� Also� the long red bars widen� as seen in the third �gure� In the third �gure� the

number of red strips between the bars has doubled� compared to the starting con�guration�

the narrower set of strips appeared out of the blue regions a few timesteps before this

snapshot was taken� One more doubling of the number of these narrow strips occurs before

the evolution concludes by having essentially the whole system become red� In this last

�gure one can observe nucleation events occurring where the tips meet the long interfaces�

as more material feeds into the red region� Tip�splitting is also visible at the boundary

with the long interfaces� tip�splitting has also been observed experimentally �Shimizu and

Otsuka� �	��� Abeyaratne� Chu� and James� �		��� As observed in these experiments� our

simulations show a slight bowing just before the event of fast tip splitting�

Finally we should mention that all our simulations of isothermal evolution seem to even�

tually evolve to a state where the entire specimen is in only one variant� In other words�

we do not observe any equilibrium states consisting of a patchwork of twins as seen for

example in the experiments �Chu� �		��� Possible explanations for this include� the con�

straining e�ect of our periodic boundary conditions �the experiments of Chu are performed

under biaxial loading� and the absence of defects or compositional inhomogeneity in our

simulations�
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V� CONCLUSIONS

Our goal in this paper has been to follow the time dependence of deviatoric �rectangular�

and shear elastic strains as they evolve towards a free energy local minimum� starting from

appropriate �experimentally relevant� initial conditions� We employed the time�dependent

Ginzburg�Landau method� Here the Landau�Ginzburg free energy is expressed in terms of

the coarse�grained physical variables� and its functional derivatives with respect to those

variables give the corresponding rates of change� In our system� the relevant variables are

the local values of the components of the strain tensor�

The typical TDGL procedure must be augmented in this problem because the di�er�

ent components of the strain tensor are not independent �elds� They are constrained by

the Saint�Venant compatibility relation� We have been able to formally extend the TDGL

procedure to include these constraints in a systematic way� In situations where periodic

boundary conditions are applicable� we have explicitly carried the procedure through� It

results in long�range� anisotropic elastic terms in the TDGL equations for the independent

strain components� Appropriately incorporating other boundary conditions with these con�

straints in the TDGL formalism is an important task for future work�

The results from the numerical solution of the ensuing equations show several features

that are also seen in experiments� These include �ne and coarse tweed� appearance of

the variants of the low�temperature phase in twinned con�gurations� and tip�splitting� We

emphasize that the elastic patterns here were obtained subsequent to a nonequilibrium

quench as opposed to the �usual� cooling under equilibrium conditions�

There are several questions remaining to be answered that can be studied within this

framework� We have already mentioned the need to use di�erent boundary conditions such as

free or �xed� Another problem is to understand the e�ects of disorder on the time evolution�

Including disorder e�ects is necessary in order to further understand the nature of tweed� It

is known that values of martensitic transition temperatures are extremely sensitive to the

degree of disorder �Sugiyama� Oshima� Fujita �	
�� Sugiyama� �	
��� It therefore seems

��



highly likely that disorder is a prominent determinant of the pretransformation patterns

in these materials� Indeed� our simulations �Figures � � �� show the presence of transient

�metastable� tweed�like states of very low energy even in the absence of any disorder or com�

positional �uctuations� Introducing even a small amount of disorder can therefore pin these

states or possibly lead to a glassy evolution that is experimentally indistinguishable from

equilibrium� It has been shown �Shenoy� �		�� that including terms in the LG functional

which couple composition �uctuations to the order parameter � and performing a Gaussian

average over these �uctuations leads to fourth�order cross�gradient terms in our equations

of motion� Further numerical work is necessary to demonstrate that these terms can lead to

a more accurate understanding of the experimental phenomena�
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FIGURES

FIG� �� The bulk contribution fb��� of the LG functional� Eq� ������ for P � � and several

values of � � The decreasing sequence of � values identi
es the di
erent curves from top to bottom�

For each � the minima of this function describe the possible spatially uniform stable and metastable

states�

FIG� �� Uniformly random initial conditions for � around � � �� In this simulation the system is

held in a spatially inhomogeneous state by having di
erent values for the dimensionless temperature

� in the left and right halves of the system� This inhomogeneity is not evident in the initial

conditions but becomes so in the next 
gure�

FIG� �� An early intermediate time con
guration after quench from random initial conditions�

It is evident in this picture that the value � in fb���� Eq� ������ has di
erent values in the left and

right halves of the system� On the left� � � ��� so only the austenite phase is possible� and on the

right� � � �� so the two martensite variants are the stable structures� The random initial condition

has evolved into a �
ne tweed� con
guration�

FIG� �� A later intermediate time con
guration after quench from random initial conditions�

The smaller	scale patterns here are �coarse tweed�� they are larger scale than the �
ne� tweed of

the previous 
gure� Twin boundaries have also emerged� separating the two martensite variants�

At this time� the twins extend along both ���� directions�

FIG� �� Late time con
guration after quench from random initial conditions� The cooler half

of the system has evolved almost entirely into twins� In the evolution after this picture� the small

grain of twins running in the ���� direction disappears�

FIG� �� Initial conditions for a second simulation� There is a single large twin of the two

martensite variants occupying most of the system� In a strip along the left side� the order parameter

has the value � � �� In the subsequent evolution� this strip is held rigidly at this value� The �

value in the rest of the 
gure is negative�

�




FIG� �� Intermediate time con
guration from the large twin initial condition� The single twin

is starting to re
ne into narrower strips�

FIG� �� Late time con
guration from the large twin initial condition� The evolution has become

very slow in this con
guration�

FIG� �� Initial conditions for a third simulation� This system has an applied stress� P � ��

which favors the red martensite variant over the blue� Again� this condition is not evident in the

initial condition�

FIG� ��� Intermediate time con
guration for the stressed system� At this time the short strips

in the initial con
guration have grown and just touched the wide red regions�

FIG� ��� Late time con
guration for the stressed system� Note that the thin red strips between

the two wide red bands divide into two categories� very narrow ones appear in between each pair

of slighly wider ones� The wider ones have evolved from the short red bars in the initial state�

The narrower ones appeared just a few time steps before this picture was made� Also note the

tip	splitting where the thin strips meet the wide bands�
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