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Summary

Morphogens are secreted signalling molecules that are expressed in restricted

groups of cells within the developing tissue. From there, they are secreted and

travel throughout the target field and form concentration gradients. These

concentration profiles endow receiving cells with positional information. A number

of experiments in Drosophila demonstrated that the morphogen Decapentaplegic

(Dpp) forms activity gradients by inducing the expression of several target genes

above distinct concentration thresholds at different distances from the source.

This way, Dpp contributes to developmental fates in the target field such as the

Drosophila wing disc.

Although the tissue distribution as well as the actual shape and size of the Dpp

morphogen concentration gradient has been visualized, the cell biological

mechanisms through which the morphogen forms and maintains a gradient are

still a subject of debate. Two hypotheses as to the dominant mechanism of

movement have been proposed that can account for Dpp spreading throughout

the Drosophila wing imaginal target tissue: extracellular diffusion and planar

transcytosis, i. e. endocytosis and resecretion of the ligand that is thereby

transported through the cells.

Here, I present data indicating that implications of a theoretical analysis of Dpp

spreading, where Dpp transport through the target tissue is solely based on

extracellular diffusion taking into account receptor binding and subsequent

internalization, are inconsistent with experimental results. By performing

Fluorescence Recovery After Photobleaching (FRAP) experiments, I

demonstrate a key role of Dynamin-mediated endocytosis for Dpp gradient

formation. In addition, I show that most of GFP-Dpp traffics through endocytic

compartments at the receiving epithelial cells, probably recycled through apical

recycling endosomes (ARE). Finally, a Dpp recycling assay based on subcellular

photouncage of ligand is presented to address specifically the Dpp recycling

event at the receiving cells.
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Introduction 1

1 Introduction

1.1 Positional information and pattern formation by morphogens

Our hands have five different fingers which are arranged in a particular order.

This may seem quite trivial but the achievement of this arrangement during

embryogenesis is an intriguing question in developmental biology. How do

equivalent cells know where they are located within a tissue so that they form in

a reliable manner the appropriate structure for their position?

At the onset of development, all cells are equipotent. During embryogenesis, they

diversify as they proliferate to build up the final shape. To differentiate properly, it

has been suggested that morphogens, secreted signalling molecules, tell cells

about their positional information, i. e. their specific position within the tissue in a

developing system. Once knowing their respective positional information, they

contribute to the final spatial pattern in the entire organism (Wolpert, 1969). A

morphogen is a “form-generating” molecule that is involved in the differentiation

of cells by providing positional information encoded by its final concentration

pattern within the developing tissue (Turing, 1952). The hypothesis of positional

information (Wolpert, 1969) proposes that a morphogen is produced and

secreted from a local group of cells and spreads through the target field to make

a concentration gradient. This gradient endows the cells with their respective

positional information. The information about the distance of the receiving cells

from the morphogen-producing cells is encoded by the pattern of morphogen

concentration. Above different threshold concentrations a distinct set of target

genes is activated.

Secreted signalling molecules should fulfil three criteria to function as a

morphogen:

I) To be distributed in a concentration gradient emanating from a restricted

spatial source,
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II) to act directly and at long distance to regulate expression of target genes,

and

III) to specify distinct spatial domains of gene expression above different

thresholds of concentration (Fig.1).

Fig. 1: Positional information by morphogen gradients
A morphogen (M) is released (left) into a field of undifferentiated cells to form a
concentration gradient. Cells read the gradient by expressing different target genes above
discrete concentration thresholds (target gene X above high concentration c1, target gene
Y above medium concentration c2 and target gene Z above low concentration c3). The
positional information is further processed to acquire fates that allow them to become
blue, white and red.

Studies in Drosophila and vertebrates have identified members of the Hedgehog

(Hh), Wingless (Wg), and TGF-β families of signalling molecules as morphogens.

However, Wg seems not to be a classical morphogen, since the gradient does

not activate directly different genes above different concentration thresholds, but

rather maintains distinct gene expressions in a concentration-dependent manner

(Martinez Arias, 2003).
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Morphogens in the TGF-β family comprise Activin, bone morphogenetic protein 4

(BMP4), and Squint, which pattern the Xenopus and zebrafish dorsal/ventral

(D/V) axis and regulate embryonic development (Chen and Shier, 2001; Dosch et

al., 1997; Gurdon et al., 1994). Another example is Sonic Hedgehog (Shh) – a

vertebrate member of the Hh family – that has been shown to function as a

morphogen during the development of the chicken neural tube. It emanates from

the notochord generating a ventral-dorsal activity gradient along the axis of the

neural tube to promote directly the specification of interneurons and motor

neurons (Briscoe et al., 2001; Ericson et al., 1997). Shh is also expressed in the

posterior part of the developing vertebrate limb bud, from which it spreads to

specify anterior/posterior (A/P) patterning of the limb bud (Riddle et al., 1993;

Yang et al., 1997). It remains to be shown whether Shh can act directly at long

distance.

In Drosophila development, one TGF-β molecule acting as a morphogen is the

Decapentaplegic (Dpp) ligand, which contributes to the pattern of the dorsal

ectoderm in the early embryo (Ferguson and Anderson, 1992a, 1992b; Ray et

al., 2001; Wharton et al., 1993). Together with the morphogens Hh and Wg, Dpp

also dictates the cell fate of the entire developing Drosophila wing (Basler and

Struhl, 1994; Ingham and Fietz, 1995; Lecuit et al., 1996; Nellen et al., 1996;

Neumann and Cohen, 1996; Zecca et al., 1995; Zecca et al., 1996).

1.2 Morphogens in Drosophila wing development

The Drosophila adult epidermis develops from distinct sets of epidermal cells,

known as imaginal discs (Held, 2002). During embryogenesis, they are set aside

from the larval epidermis and arise as pockets in the embryonic ectoderm. In the

larva they grow fast until the pupal stage during which they evaginate to form the

body wall and the appendages. In Drosophila larvae 19 larval imaginal discs can

be distinguished by characteristic shape, size and pattern: 9 pairs for the head

and the thorax, and a medial one for the genitalia. Besides them, the abdominal
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epidermis of the adult fly derives from primordial cells called histoblast nests

(Fig. 2). Unlike discs, they do not grow during larval stage and are integrated in

the differentiated abdominal epidermis of the larva.

Fig. 2: Imaginal discs and their cuticular derivatives (modified from Held, 2002)
Approximate placement of the discs (1-10) and their products in the adult fly.
h (histoblast nests)

An extensively studied model system for identifying and analyzing morphogens

and their function during development has been the wing imaginal disc. Like the

other discs, it is a flattened, two-sided sac comprising a columnar cell epithelium

and an overlying squamous cell layer, the peripodial epithelium (Held, 2002) (see

also Fig. 7C, page 14). The characteristic distribution of the wing imaginal disc

cuticular derivatives allows drawing a fate map of the wing disc: the wing pouch

gives rise to the final wing blade, which is surrounded by a region which makes

the hinge and pleura of the adult body and separates the wing from the most

proximal region, the notum (Bryant, 1975). Topologically, the wing imaginal disc

can be subdivided into anterior (A) and posterior (P) compartments along the

anterior/posterior (A/P) axis, which do not mix with each other. In addition, the

wing imaginal disc can be divided into dorsal (D) and ventral (V) compartments

along the dorso/ventral (D/V) axis (Fig. 3).
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Fig. 3: Fate map of the wing imaginal disc (modified from Held, 2002)
The wing pouch as well as the adult wing is darkly shaded, the Notum (N) is medium
shaded and the hinge with the pleura is lightly shaded. The thick dashed line marks the
anterior/posterior (A/P) compartment boundary. During evagination the wing pouch
expands and folds along the dorso/ventral (D/V) line. The thick black lines in the wing
pouch are prevein zones (1-5).

The identity of the cells located in the P compartment is imprinted by the selector

gene engrailed (en) (Simmonds et al., 1995; Tabata et al., 1995). Under the

control of Engrailed, Hh is expressed in cells of the P compartment (Tabata and

Kornberg, 1994) and upregulates or activates several target genes in nearby

cells over a range of 10 cells into the A compartment, including patched (ptc),

and the morphogen dpp (Maschat et al., 1998; Strigini and Cohen, 1997;

Vervoort et al., 1999; Wang and Holmgren, 1999). In addition, Hh activates

engrailed (en) at the late 3rd larvae instar only (Blair, 1992; Tabata and Kornberg,

1994; Guillén et al., 1995; Sanicola et al., 1995).

Dpp, which is expressed in an anterior cell stripe adjacent to the A/P

compartment boundary, functions in turn as a morphogen that controls the fate

beyond the central part. It is secreted from the central domain and induces in

both compartments several target genes including spalt (sal), optomotor-blind
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(omb) and vestigial (vg) (Kim et al., 1995; Kim et al., 1996; Lecuit et al., 1996;

Nellen et al., 1996).

In an analogous way to Engrailed, the protein Apterous imprints the cells in the

dorsal compartment (Diaz-Benjumea and Cohen, 1993), inducing expression of

the gene fringe (Irvine and Wieschaus, 1994). The latter activates the Notch

receptor pathway at the D/V border (Kim et al., 1995), which results there in the

induction of Wg (Doherty et al., 1996; Neumann and Cohen, 1996). Wg

presumably maintains the differential expression of target genes (Martinez Arias,

2003), including achaete (ac), Distalless (Dll) and vg (Cubas et al., 1991; Diaz-

Benjumea and Cohen, 1995; Kim et al., 1995; Neumann and Cohen, 1997;

Skeath and Carroll, 1992; Zecca et al., 1996) (Fig. 4).

Fig. 4: Morphogen activity gradients in the wing imaginal disc (modified from Held, 2002)
The wing pouch is enlarged from the wing imaginal disc as an oval. The solid lines
indicate the anterior/posterior (A/P) and the dorso/ventral (D/V) compartment boundaries.
The blue, green and brown areas show the activity gradient extents of the morphogens
Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg). Outer bars mark the
expression domains of the target genes.
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1.3 Dpp signalling in Drosophila

Based on the analysis of phenotypes of several alleles of the dpp gene (Spencer

et al., 1982), Decapentaplegic has been shown to be involved in the

development of at least 15 (Greek: decapente-) of the 19 imaginal discs. By

Northern and cDNA analysis of the dpp locus, five differently spliced dpp

transcripts were found (St Johnston et al., 1990), which encode a single open

reading frame (ORF) (Newfeld et al., 1997). Dpp belongs to the TGF-β

superfamily (reviewed in Massagué, 1998) and is closely related to the BMP2/4

subfamily (75 % amino acid sequence identity) (Sampath et al., 1993). Like other

members of this family, Dpp is translated as a precursor and is cleaved into a C-

terminal part which signals intercellularly, and a N-terminal part that is released

and dimerizes (Gelbart, 1989; Panganiban et al., 1990). The proteolytic cleavage

occurs at two sites, and is mediated by the metaloprotease furin (Cui et al., 1998;

Cui et al., 2001). Apart from Dpp, at least six other TGF-β secreted ligand

members have been identified in Drosophila:

- dActivin (Kutty et al., 1998),

- dActivin2 or ALP23B (Activin like protein at 23B) (Faucheux et al., 2001),

- Glass bottom boat 60A (Gbb 60A) (Doctor et al., 1992; Wharton et al.,

1991),

- Maverick (Nguyen et al., 2000),

- Myoglianin (Lo and Frasch, 1999), and

- Screw (Arora et al., 1994).

Among them, Screw and Gbb 60A have been shown to modulate Dpp activity in

the embryo and imaginal discs, respectively (Arora et al., 1994; Haerry et al.,

1998; Khalsa et al., 1998).

Dpp, like the other members of this family, signals through a conserved

mechanism of related serine/threonine receptor kinases. On the basis of their

structural and functional properties they are divided into two families: type I and

type II TGF-β receptors (reviewed in Raftery and Sutherland, 1999). Both

receptor types are glycoproteins with a single membrane-spanning domain. In
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Drosophila, three type I (Thick veins (Tkv), Saxophone (Sax), and Baboon

(Babo)) (Brummel et al., 1994; Nellen et al., 1994; Penton et al., 1994; Xie et al.,

1994), and two type II receptors (Punt (Put) and Wishful thinking (Wit)) have

been identified (Letsou et al., 1995; Ruberte et al., 1995; Aberle et al., 2002;

Marques et al., 2002). Among them, Tkv, Sax (Brummel at al., 1994)) and Put

appear to serve primarily as type I and type II receptors for Dpp.

Upon binding of the dimerized Dpp ligand, Put, Tkv and Sax form a

heterotetrameric receptor complex (Yamashita et al., 1994). Put then activates

Tkv and Sax by multiply phosphorylating the GS (Glycine-Serine-rich) region, a

highly conserved regulatory sequence next to the kinase domain on the

cytoplasmic part of the type I receptor (Wrana et al., 1994). Activated Tkv and

Sax phosphorylate in turn members of the receptor-regulated Smad (R-Smad)

family of transcription factors at the C-terminus. SARA (Smad Anchor for

Receptor Activation), an adaptor protein, is thought to recruit R-Smads to the

activated receptor (Tsukazaki et al., 1998; Bennett and Alphey, 2002).

Phosphorylation of R-Smad triggers oligomerization with a “common-mediator”

Smad (co-Smad), an obligate partner in the transcriptional complex. Upon

complex formation, the Smads move to the nucleus where they regulate gene

expression to elicit a diverse range of biological responses. In Drosophila, the

genes mothers against dpp (mad) and medea, encoding a R-Smad and a co-

Smad component required for Dpp signalling, were identified in genetic screens

for enhancers of partial loss of function dpp mutant phenotypes (Raftery et al.,

1995; Sekelsky et al., 1995). In addition, the DNA-binding transcription factors

Schnurri (Shn) and the coactivator Drosophila CREB-binding protein (dCBP)

have been identified as nuclear proteins that modulate their transcriptional

activity (Arora et al., 1995; Waltzer and Bienz, 1999). Upon pathway activation a

Smad/Shn complex represses Brinker (Brk) transcription, a default Dpp target

genes repressor, to finally enable expression of Dpp target genes (Pyrowolakis et

al., 2004) (Fig. 5).
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Fig. 5: Dpp signalling pathway (modified from Raftery and Sutherland, 1999)
Cooperative binding of dimerized Dpp to its type II receptor Punt (Put) and type I receptors
Tkv and Sax leads to a ligand-receptor complex and subsequent phosphorylation of the
type I receptors. Activated Tkv and Sax in turn phosphorylate the receptor-regulated Smad
(R-Smad) Mothers against Dpp (Mad) which has been recruited by dSARA (Bennett and
Alphey, 2002). Phosporylated Mad forms a transcriptional complex with the “common-
mediator” Smad (co-Smad) Medea and moves into the nucleus. There, the complex in
concert with DNA-binding partners, e. g. Shn and dCBP, binds to Brk silencer elements
(Pyrowolakis et al., 2004), releasing default target gene repression by Brk. Finally,
transcription of the target genes spalt (sal), optomotor-blind (omb) and vestigial (vg) is
enabled.

1.4 Regulating Dpp signalling in Drosophila wing development

A spatial and temporal regulation of transcription of Dpp signalling components

has been shown to be important to ensure precise control of ligand action

(reviewed in Parker et al., 2004). The signalling output can be modified at each

step in the Dpp pathway: extracellular, intracellular and nuclear.

Glypicans, that comprise a family of heparin sulphate proteoglycans (HSPGs)

tethered to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor

(reviewed in Filmus and Selleck, 2001), have been found to modulate Dpp

signalling (Jackson et al., 1997). In Drosophila, two glypican homologues were
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identified: Division abnormally delayed (Dally) and Dally-like (dly). Dally mutants

were identified due to their effects on cell division in the Drosophila eye imaginal

disc (Nakato et al., 1995). The precise action of Dally on Dpp signalling is still

unclear (Jackson et al., 1997), yet it is assumed that it acts by altering either the

local distribution of the ligand or its interaction with the receptor Tkv and Put. It is

also possible that the distribution and activity of the ligand are modulated by the

Dpp receptor Tkv itself. Dpp negatively regulates tkv expression (Lecuit and

Cohen, 1998). Subsequently, the level of tkv expression is higher at the

periphery of the wing disc, where Dpp signalling is low, and lower in the central

region, where Dpp signalling is high (Lecuit and Cohen, 1998). Increasing Tkv

level might shape the Dpp gradient itself by sequestering and internalizing local

Dpp. In addition, the distribution of Tkv may sensitize cells at the periphery of the

wing imaginal discs to lower levels of Dpp (Lecuit and Cohen, 1998).

At the cellular level, cytoplasmic proteins can compete with receptor-regulated R-

Smad for the binding to the receptor active site. Several studies have

characterized a third Smad subfamily that inhibits the signalling function of the

other two Smads (Fig. 5). In Drosophila, Daughters again dpp (Dad) has been

shown to function as a member of the inhibitor Smad (i-Smad) subgroup

(Tsuneizumi et al., 1997). It represses Dpp activity by competing with Mad for

binding to Tkv (Inoue et al., 1998), and coincident overexpression of Dad rescues

overgrowth to wild-type caused by excess of Mad (Tsuneizumi et al., 1997). In

addition, Dpp signalling is modulated by Smad ubiquitin regulatory factors

(Smurfs), E3-ubiquitin ligases that selectively target the receptors and Smad

proteins for degradation (Zhu et al., 1999). In Drosophila, loss of dSmurf leads to

an increase in Dpp signalling (Podos et al., 2001).

A critical step in Dpp signalling is the nuclear translocation of the R-Smad/co-

Smad complex to activate distinct target genes. In the context of nuclear Smad

activity in Drosophila, the transcriptional release of repression has been

analyzed. Dpp signalling target genes are repressed in the absence of ligand by

the repressor Brinker (Brk) (Jazwinska et al., 1999a). Brk functions as a default

active repressor of Dpp responsive target genes (Kirkpatrick et al., 2001). Thus,
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brk mutant somatic clones express Dpp target genes in a cell-autonomous

manner, indicating that Brk functions to keep these genes silent (Jazwinska et

al., 1999a; Minami et al., 1999). Furthermore, mutants of brk turn on target genes

in the absence of Dpp signalling (mad or tkv mutant), suggesting that Dpp inhibits

brk transcription directly to overcome Brk repression on target genes (Campbell

and Tomlinson, 1999; Jazwinska et al., 1999a; Jazwinska et al., 1999b).

Consistent with this, the brk transcription level forms a gradient that overlaps and

opposes Dpp activity levels (Campbell and Tomlinson, 1999; Jazwinska et al.,

1999a) (Fig. 6).

Fig. 6: Regulating Dpp signalling (modified from Raftery and Sutherland, 1999)
The glypican Dally is thought to alter either the local distribution of Dpp or its interaction
with the receptor Tkv and Put, thereby enhancing Dpp signalling. In a negative feedback
loop, Dpp signalling activates the transcription of the inhibitory Smad (i-Smad) Daughters
against dpp (Dad), which represses Dpp signalling. dSmurf negatively regulates the
cellular response to Dpp signalling by selectively targeting the receptors and Smad
proteins for degradation. Brk functions as a default active repressor, resulting in the
suppression of Dpp target genes expression.
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1.5 Dpp: a long-range morphogen in Drosophila wing development

Evidence showing that Dpp acts as a morphogen in the wing imaginal disc came

from experiments demonstrating that it acts directly on target cells in a

concentration-dependent manner (Lecuit et al., 1996; Nellen et al., 1996). Dpp is

expressed in a stripe of anterior cells along the border between the A and P

compartments (Basler and Struhl, 1994), and was thought to be secreted into

either direction within the wing pouch’s entire A/P axis (Fig. 4). Two genes, omb

and sal, were identified as targets of Dpp in the wing imaginal disc, showing

expression domains centred in the A/P compartment boundary. Consistently,

omb and sal expression domains disappear in dpp loss of function wing discs

(Posakony et al., 1990; Spencer et al., 1982). Dpp induction of omb and sal was

shown to be direct, since the same result was obtained with tkv and mad loss of

function clones (Lecuit et al., 1996; Nellen et al., 1996). In addition, the omb and

sal expression domains expanded when dpp or a constitutively active Tkv

receptor, tkvQ253D, were expressed ubiquitously or outside their normal domain.

However, only the dpp clone induced target gene expression into the surrounding

wild-type tissue. The cell-autonomous effect of ectopically expressed tkvQ253D in

inducing the target genes indicates that Dpp does not trigger a signalling relay

mechanism. Rather, it functions directly on target cells. In addition, Dpp

upregulates omb and sal expression at different concentration thresholds, since

concentric circles of target gene expression induced by ectopic expression of dpp

revealed that omb was expressed in a wider domain than sal (Nellen et al.,

1996). This result was consistent with the expression domains of omb and sal

centred in the A/P compartment boundary. These findings indicate that Dpp

functions as a morphogen in Drosophila wing development.
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1.6 Visualizing Dpp during Drosophila wing development

According to the model of positional information, a morphogen is expressed in a

restricted group of cells within the developing tissue. From there, it is secreted

and travels throughout the target field and forms a concentration gradient

(Wolpert, 1969). A number of experiments in Drosophila demonstrated that Dpp,

Hh and Wg form activity gradients by inducing the expression of several target

genes at distinct distances from their source. This way, the morphogens specify

developmental fates in the target field such as the Drosophila wing disc.

In order to determine the tissue distribution as well as the actual shape and size

of the morphogen concentration gradient, several attempts were undertaken to

visualize morphogen gradients. As for Hh and Wg, antibody staining as well as

morphogen-GFP (green fluorescent protein) fusion proteins without affecting their

signalling activity have been employed (Tabata and Kornberg, 1994; Pfeiffer et

al., 2002; Strigini and Cohen, 2000; Torroja et al., 2004). In the case of Dpp, the

lack of sensitive antibodies has prevented detection of endogenous Dpp

morphogen outside the producing cells. To investigate the Dpp morphogen

gradient, a functional GFP-tagged Dpp fusion was generated (Entchev et al.,

2000; Teleman and Cohen, 2000).

As expected from a morphogen, GFP-Dpp fluorescence is also present beyond

the Dpp expressing cells with the intensity decreasing and detectable up to 40

cell diameters away from the source. In addition, GFP-Dpp appears at the

receiving cells primarily in intracellular punctuate structures confined to the apical

part of the columnar wing imaginal disc epithelium. More basolateral, GFP-Dpp

can also be found in a diffuse extracellular staining reflecting cell profiles

(Entchev et al., 2000). Furthermore, GFP-Dpp moves in all directions and hence

is detectable symmetrically around expressing GFP-Dpp clones (Entchev et al.,

2000), confirming previous results that cells ectopically expressing Dpp activate

downstream targets in all directions (Lecuit et al., 1996; Nellen et al., 1996). In a

set of experiments it was also shown that morphogen gradients form rapidly. The

temperature-sensitivity of the GAL4 system was exploited to turn on production
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of GFP-Dpp. To do so, the tissue was shifted at a defined time from 16 °C (at

which GAL4 is less efficient) to 25 °C (at which GAL4 is completely active) and

the formation of the gradient was monitored after different time points (Entchev et

al., 2000). It was demonstrated that Dpp moves at a rate of around five cell

diameters per hour until a steady-state situation was reached at about 6 - 8 hours

after onset of GFP-Dpp expression. Similar results were found using a

temperature-sensitive allele of hh to control the timing of Dpp production

(Teleman and Cohen, 2000). Hh signalling induces Dpp transcription (Basler and

Struhl, 1994) and at the restrictive temperature, the Dpp gradient disappeared

due to absence of expression. A rapid reformation of the gradient was monitored

when shifting to the permissive temperature. Furthermore, a degradation assay

revealed that GFP-Dpp is rapidly degraded and is no longer detectable after

three hours chase period (Teleman and Cohen, 2000).

Fig. 7: Visualizing Dpp in the developing wing disc (modified from Kruse at al., 2004)
A) Double staining of a developing wing disc showing the Dpp source marked by GFP
(green) and cell profiles labelled with phalloidin (red). B) GFP-Dpp localization in the wing
pouch corresponding to the white box in A. Phalloidin staining (red) labels cell profiles in
the left panel. C) Cryostat z-section of a GFP-Dpp expressing wing disc corresponding to
the white line in A. Phalloidin staining (red) labels cell profiles in the upper panel. Scale
bars: 50 µm.
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1.7 Mechanisms for morphogen gradient formation in the Drosophila wing

Although the tissue distribution as well as the actual shape and size of the

morphogen concentration gradients have been visualized, the cell biological

mechanisms through which each particular morphogen group forms and

maintains a gradient are still a subject of debate (reviewed in González-Gaitán,

2003; Vincent and Dubois, 2002). Several hypotheses as to the dominant

mechanism of movement have been proposed that can account for morphogen

spreading throughout the target tissue (reviewed in González-Gaitán, 2003;

Vincent and Dubois, 2002).

It has been suggested that gradient formation might be explained by simple

diffusion of the morphogen through the extracellular space (McDowell and et al.,

2001). During embryogenesis, cell proliferation and subsequent cell

displacement has been proposed to contribute to the spreading of morphogens

(Pfeiffer et al., 2000), but additional mechanisms must exist to transport them

from cell to cell. One possibility is that morphogens are actively transported along

cell extensions called “cytonemes” from receiving cells to the source (Ramirez-

Weber and Kornberg, 1999). Alternatively, active vesicle-mediated movement of

morphogens has been proposed that is supported by the presence of

morphogens in intracellular punctuate structures at the receiving cells. In this

context, transport of morphogen through the target tissue consisting of repeated

rounds of endocytosis and resecretion has been suggested: a process called

planar transcytosis (Entchev et al., 2000).
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1.7.1 Morphogen gradient formation by extracellular diffusion

The simplest process by which a morphogen gradient could be formed is

diffusion of the secreted ligand throughout the extracellular space of the target

tissue. To prevent saturation of the system at the steady-state situation, removal

of the morphogen and subsequent degradation is also required (Fig. 8).

Implantations of Activin-coated beads in Xenopus seem to provide evidence that

gradient formation indeed might occur due to extracellular diffusion (reviewed in

Gurdon et al., 1998). Activin gradient formation occurs over a distance of 200 µm

in approximately three hours. During gradient formation, internalization seems

not to be essential for transport since Activin distribution is not affected in the

absence of endocytosis at 4 °C (McDowell et al., 2001). This implies that Activin

movement might occur by passive diffusion through the extracellular space.

However, the shape of the gradient seems to be affected by the TGF-β receptor

levels indicating that morphogen movement involves ligand/receptor interaction.

Proteoglycans can also affect morphogen gradient formation. They are thought to

modulate morphogen signalling by concentrating the ligand on the cell surface

and facilitating its interaction with the receptor (see chapter 1.4). Besides this,

they could sequester morphogens and hinder their diffusion, or could protect

them from degradation thereby facilitating their diffusion through the extracellular

space (reviewed in Nybakken and Perrimon, 2002; Selleck, 2000). The

movement of the morphogen depends also on its intrinsic biochemical properties.

The morphogen Hh is subject to post-translational modifications by two

covalently bound lipid moieties: cholesterol at the C-terminal domain and

palmitoyl acid at the N-terminal domain of the mature Hh protein (Porter et al.,

1996; Chamoun et al., 2001). Therefore, Hh is likely to be tethered to the plasma

membrane. Perhaps as a consequence of this, the Hh gradient range is much

shorter than the 40 cell diameters spanning Dpp gradient, extending only to four

cells in the developing Drosophila wing. It is however still controversial whether

cholesterol modification limits or expands the Hh gradient range. In

mesenchymal cells of the mouse limb, cholesterol modification is essential for
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long-range Hh movement (Lewis et al., 2001), whereas in epithelial cells of the

Drosophila imaginal wing disc non-cholesterol modified Hh can spread further

away from its source. In principle, these interactions could prevent passive

diffusion of morphogens through the extracellular space. This possibility has led

to the suggestion that morphogen transport could be mediated by mechanisms

involving a system of vesicular transport.

Fig. 8: Mechanisms for morphogen gradient formation (modified from Dudu at al., 2004)
A) Gradient formation by simple diffusion of morphogens (red) through the extracellular
space. B) Gradient formation by restricted diffusion of morphogens (red) by endocytosis
and subsequent degradation. Note that extracellular diffusion can also occur along the
basolateral side of the wing epithelium. N (nucleus).

1.7.2 Morphogen gradient formation by active transport through the tissue

Cytonemes

The discovery that cells at the periphery of wing imaginal discs extend actin-

based long projections, called cytonemes, towards the A/P compartment

boundary where Dpp is expressed, suggested that these processes might play a
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role in morphogen transport (Ramirez-Weber and Kornberg, 1999). Their

formation requires FGF and has been detected in vivo as well as in cell culture.

In addition, they form rapidly (more than 15 µm per minute), and allow cells far

away from the source to make direct contact with cells expressing morphogens.

Although they still require functional analysis, cytonemes could transport

morphogens from the source to the receiving cells (Fig. 9).

Fig. 9: Mechanism for morphogen gradient formation (modified from Dudu at al., 2004)
Gradient formation by long cellular projections (cytonemes) that reach out toward the
localized morphogen production source. N (nucleus).

Planar transcytosis

Another mechanism to explain morphogen transport throughout the target tissue

is that the ligands spread by consecutive rounds of endocytosis and resecretion:

a process called planar transcytosis (Entchev et al., 2000). The proposal that

intracellular Dpp trafficking accounts for its long-range spreading emerged from

experiments in which endocytosis was impaired in a distinct patch of cells: the

„shibire rescue assay“ and the „shibire shadow assay“ (Entchev et al., 2000). In

the “shibire rescue assay”, endocytosis was blocked in the target tissue by using

a thermosensitive Dynamin mutation shibire (shi ts1) (Chen et al., 1991), whereas

the source was rescued by expressing a Dynamin transgene. In this condition,

Dpp is not internalized in the target cells and its range is restricted to the first

4 – 5 cell rows adjacent to the source. In the “shibire shadow assay”, a patch of

shibire mutant cells, which cannot perform endocytosis, confronted long-range
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Dpp spreading from the production source. In this situation, Dpp fails to move

across the clone and forms a shadow of no or less Dpp distal to the clone. Since

Dpp moves rapidly and in all directions, the shadow is transient and finally filled

from the sides of the clone. These results suggested that internalization is

required for Dpp propagation. In addition, the Dpp receptor is also necessary for

Dpp internalization and long-range movement. A patch of cells mutant for tkv

(tkv8) did not internalize Dpp. As a consequence Dpp accumulated in the

extracellular space around the mutant cells. However, accumulation of Dpp was

restricted to the mutant cells facing the Dpp producing source. This indicates that

Dpp is not able to move further into the patch of tkv mutant cells, implying a

process where Dpp propagation throughout the target tissue requires Dynamin-

dependent, receptor-mediated endocytosis (Fig. 10).

Fig. 10: Experiments addressing Dynamin-dependent, receptor-mediated endocytosis
during Dpp propagation (modified from González-Gaitán, 2003)

A) Long-range Dpp gradient (red) that appears in the extracellular space as well as
internalized in receiving cells. B) “Shibire rescue assay”: endocytosis is blocked in the
receiving tissue by using a thermosensitive Dynamin mutation shibire (shi 

ts1
), whereas

the source is rescued by expressing a Dynamin transgene (Dyn
+
). Dpp is not internalized

in the target cells and its range is restricted to cells adjacent to the source. C) “Shibire
shadow assay”: a patch of shibire mutant cells that cannot perform endocytosis confront
long-range Dpp spreading from the production source. Dpp fails to move across the clone
and forms a shadow distal to the clone. D) Tkv mutant cells: A patch of cells mutant for tkv
do not internalize Dpp. Hence, the ligand accumulates in the extracellular space around
the mutant cells facing the Dpp producing source.
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Based on the proposed model, trafficking of Dpp at the receiving cells involves a

number of intermediate compartments. Internalized ligands are targeted to the

early endosome, where they are sorted either to degradation in the late

endosome and lysosome, or recycled back to the plasma membrane through the

recycling endosome. Each particular step is controlled by a small GTPase of the

Rab (Ras related in the brain) family (reviewed in Zerial and McBride, 2001).

Rab proteins with their downstream effectors have been shown to coordinate the

tethering/docking of vesicles to their target compartment, leading to membrane

fusion. They are also involved in vesicle budding and in the interaction of vesicles

with cytoskeletal elements. Like other GTPases, Rab proteins are regulated as

molecular switches that shuttle between GTP- and GDP-bound conformations.

The GTP-bound form is considered the “active” form. The conformation changes

are restricted to the membrane compartments where they are localized. There,

Rab proteins seem not to intermix on the plane of the membrane, but occupy

rather restricted membrane domains (Sonnichsen et al., 2000; DeRenzis et al.,

2002). Early endosomes appear mainly composed of Rab5 and Rab4 domains.

Recycling endosomes are enriched in Rab11 and Rab4 domains (Sonnichsen et

al., 2000). Late endosomes are specified by the presence of Rab7 (reviewed in

Feng et al., 1995).

A series of experiments in mammalian cells have assigned the different Rab

proteins to individual trafficking steps: Rab5 controls the step from the plasma

membrane to the early endosome, Rab4/Rab11 regulates the recycling route

from the early/recycling endosome to the plasma membrane, and Rab7 controls

transport between early and late endosomes (reviewed in Novick and Zerial,

1997).

In Drosophila, these regulatory factors are highly conserved in amino acid

sequence (above 75 % identity). Consistent with the role of planar transcytosis in

Dpp gradient formation, their mutant phenotypes indicated an indispensable role

of endosomal dynamics in the Dpp signalling range. In the “Rab mutant assay”,

mutants of Rab5 or Rab7 were expressed in the receiving cells. When

endocytosis was impaired by expressing dominant negative Rab5 or degradation
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was enhanced by expressing dominant gain of function Rab7, the signalling

range was reduced. Conversely, an enhanced endocytosis by overexpressing

Rab5 led to an expansion of the signalling range (Entchev et al., 2000). This data

supports the idea that Dpp dispersal is mediated by endocytosis and resecretion

of the ligand in the receiving cells (Fig. 11). However, the Dpp re-secretion event

itself has not yet been directly monitored.

Fig. 11: Dpp spreading by planar transcytosis in the developing Drosophila wing
(modified from Dudu et al., 2004)

Dpp (red) is expressed and released from in the producing cells into the extracellular
space. It does not move far away by simple extracellular diffusion and is internalized in the
receiving cells by receptor-mediated endocytosis involving Dynamin (Dyn). Here it
accumulates in endosomes and is degraded or recycled back to the plasma membrane.
The steps through the endocytic compartments are controlled by Rab proteins. In this
way, Dpp spreads through the tissue forming a stable concentration gradient.

In contrast to the role of planar transcytosis in the Dpp gradient formation in the

Drosophila wing disc, Wg gradient formation does not seem to require endocytic

trafficking (Strigini and Cohen, 2000). Wg is present in endocytic compartments

and in the extracellular space. It also moves rather rapidly (around 15 cells in 30

minutes) and in all directions. In contrast to Dpp in the “shibire shadow assay”,

Wg is present in endosomal punctuate structures in wild type cells behind the

shi ts1 clone, indicating that Wg can move across the shi ts1 mutant territory and is

internalized by the adjacent wild type cells. Based on this result, it has been

argued that planar transcytosis is not the mechanism of Wg trafficking in wing

discs (Strigini and Cohen, 2000).
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However, these experimental results were obtained in a steady-state situation.

For those settings, no shadows with less or no Wg can be formed at the distal

side of the shi ts1 clone, since Wg molecules have already invaded this region

from the sides substituting for previously present Wg. Taken together, to address

appropriately the role of endocytosis during Wg spreading, a Wg propagation

front should be facing a shi ts1 clone as performed for Dpp in the “shibire shadow

assay”.

Recently, it has been shown that, like Hh, Wg is palmitoylated (Willert et al.,

2003), suggesting that it is tightly associated to the plasma membrane.

Furthermore, Wg is present in the same endocytic compartments as

“argosomes”, membrane exovesicles or lipid particles that can disperse over long

distances in the wing epithelium (Greco et al., 2001). Based on these results, an

alternative possibility has been suggested that such lipid carriers transport Wg

through the receiving tissue. However, it needs to be addressed whether

argosomes are trafficking by diffusion or planar transcytosis.

1.8 Mathematical models and Dpp gradient formation by restricted diffusion

Early quantitative studies based on mathematical models tried to distinguish

which particular mechanism accounts for ligand dispersal (Crick, 1970). It has

been argued that diffusion alone suffices for a morphogen to be propagated over

several hundred micrometers during a period of several hours. The graded profile

of the diffusible ligand would then provide receiving cells with their respective

positional information. However, gradient formation must include binding of

diffusing morphogen to its membrane receptors, which was not taken into

account in early theoretical models (Crick, 1970). Consequently, ligand transport

depends on complex non-linear kinetics, including kinetics of receptor

binding/release and the kinetics of trafficking of ligands and receptors (Gierer,

1981; Gierer and Meinhardt, 1972; Koch and Meinhardt, 1994; Turing, 1952).

Such theoretical models have argued that morphogen movement does not take
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place by diffusion only (Kerszberg and Wolpert, 1998). Morphogens are instead

transported by a mechanism in which receptor-bound ligand on one receiving cell

is released to receptors of the neighbouring cells: a mechanism called “bucket

brigade”. In addition, ligand trafficking in cells has been analyzed hypothetically

and a possible role of transcytosis to enhance transport efficiency has been

proposed (Chu et al., 1996; Lauffenburger and Linderman, 1993).

However, models of morphogen gradients must be designed with a high degree

of reliability to ensure precise activation profiles. They should provide a

reproducible distribution of morphogens in the case of e. g. changing production

rates. Lately, a theoretical model discussing free diffusion has highlighted the

importance of receptor-regulated degradation of free morphogen in establishing

robustness and precision in Wg and Hh gradient formation (Eldar et al., 2003). It

needs to be addressed whether planar transcytosis can also provide robustness

in Dpp gradient formation (Bollenbach et al., submitted).

A recent mathematical analysis of Dpp spreading suggested though that diffusion

alone suffices to form morphogen gradients (Lander et al., 2002). Morphogen

transport was based on restricted extracellular diffusion using a model that takes

into account free diffusion and receptor binding followed by endocytosis. This

“diffusion, binding and trafficking” (DBT) model could generate ligand profiles that

are consistent with observed gradients. Moreover, it has been argued that the

model could generate results observed in the “shibire shadow assay” (Lander et

al., 2002). To accomplish this, a block of endocytosis should induce a higher

level of surface receptors and thereby should titrate out the pool of spreading

free Dpp, hindering ligand transport (Fig. 12). Consistent with experimental

results, this scenario generated a transient shadow. Results of these reaction

diffusion equations in a one-dimensional geometry suggested that this

description suffices to capture key features of this experiment.



Introduction 24

Fig. 12: The DBT model on Dpp movement in the “shibire shadow assay” (modified from
González-Gaitán, 2003)

The DBT model assumes that endocytosis block would cause the accumulation of surface
receptors (thick black line outlining cell profiles) at the shibire mutant cells thereby
trapping Dpp (red) on its travel to form the gradient. As a consequence, the amount of
extracellular Dpp at the clone would increase by a factor of 40, resulting in the formation
of a shadow behind the mutant territory.

1.9 The DBT and the DBTS model of Dpp gradient formation

The DBT model assumes that transport is exclusively because of extracellular

diffusion and takes into account binding to and release from the surface

receptors. Neglecting the folding of the wing disc in the three-dimensional space,

the transport of Dpp occurs essentially in two dimensions. Positions on this plane

are specified by x and y coordinates. The transport of Dpp in the epithelium is

characterized by the Dpp current J=(Jx,Jy). This current is a vector with

components Jx and J y, quantifying the number of Dpp molecules that are

transported per unit time across a line of unit length in x and y direction,

respectively. If transport is exclusively because of diffusion, the current is

generated by gradients (i. e. local differences) in ligand concentration. Formally,

this can be written as:
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where Do is the diffusion constant characterizing diffusion in the extracellular

space and A is the free extracellular ligand concentration.
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The concentration of free ligands varies not only because of diffusion: ligands

bind to and detach from cell surface receptors. In addition, receptors traffic

through both the biosynthetic and endocytic pathways. They appear at the

plasma membrane, are internalized into cells by endocytosis and are degraded in

the lysosomes (Fig. 13).

Fig. 13: Transport scheme in the DBT model on Dpp movement (from Kruse et al., 2004)

A) Dpp ligand (green) is secreted with the rate ν into the extracellular space, where its

transport is exclusively because of diffusion with the coefficient Do (A). B is the
concentration of ligand-bound receptors on cell surfaces, and C is the concentration of
ligand-bound receptors inside cells. In addition, D and E are the concentrations of free
receptors outside and inside cells. kon and koff rates define the binding and dissociation
constants for the ligand-receptor binding. The rates of endocytosis and exocytosis of
ligand-bound receptors are defined by kin and kout rates. The degradation rate of
internalized ligands bound to receptors is denoted by kdeg. Receptors are produced with

biosynthetic rate ω, internalized and recycled with rates kp and kq, and degraded with rate

kg. B) The same transport scheme is depicted with the biosynthetic route targeting the
receptor directly to the plasma membrane (Alberts et al., 1994). Note that the parameter
values used in the DBT model were measured for the EGF/EGF receptor system in B82
fibroblasts (Herbst et al., 1994; Lauffenburger and Linderman, 1993; Starbuck and
Lauffenburger, 1992).

Since the DBT model considers the Dpp gradient formation in a particular area of

interest (AOI), the boundary conditions have to be specified.

Along the boundary adjacent to the secreting cells at x=0 (‘source boundary’;

Fig. 14), cells expressing Dpp inject the morphogen into the AOI. A cell of width a

(approximately 4 µm) secretes Dpp at a constant rate, measured in Moles/s

(Fig. 13). A single cell contributes to a Dpp current into the AOI of magnitude

ν/2a along the x-direction. Here, the factor 2 takes into account that Dpp leaves
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the source in two directions (towards anterior and posterior) and only half of the

secreted ligand reaches the posterior compartment. The total current entering the

AOI is increased by a factor d/a, which is the number of contributing cells. Here,

d≈20 mm denotes the width of the stripe of secreting cells (Fig. 14). Assuming

that the Dpp source is homogeneous along the y-direction and that degradation

of ligand in secreting cells is neglected, the source boundary condition at x=0 is

thus given by:

J
x
= νd /2a2 .

At x=Lx - on the opposite side of the AOI with respect to the source (‘distal

boundary’; Fig. 14) - a current of ligand across this boundary is present which

becomes small if the ligand concentration nearby is small. Choosing 200 µm for

the width of Lx in the AOI, the current across the boundary sufficiently far from the

source is small enough to be neglected and imposed to be zero.

At the remaining boundary lines y=–Ly/2 and y= +Ly/2 of the AOI (‘side

boundaries’; Fig. 14), also ‘zero current’ conditions across the boundary lines are

imposed for Lx=200 µm. In the simplest situation, in which the whole system is

homogeneous in the y-direction and for small shi ts1 clones (up to 50 µm in both

directions), this condition is satisfied.
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Fig. 14 (previous page): Area of interest (AOI) in the DBT model (from Kruse et al., 2004)
Simplified geometry of the wing imaginal disc expressing GFP-Dpp used in the DBT model
for the calculation of the boundary conditions. Lx and Ly correspond to 200 µm.

Interestingly, careful reanalysis of the DBT model used in Lander et al. (Lander et

al., 2002) revealed that the DBT model cannot account for the observed transient

shadows experimentally observed in the “shibire shadow assay” (Kruse et

al., 2004). It rather generates permanent shadows behind the shi ts1 clone, which

are inconsistent with the experimental results (Entchev et al., 2000) (Fig. 15

and 16).

Fig. 15: Concentrations of internal-bound ligand (C) in the presence of a shibire clone
calculated in the DBT from Lander et al. and the corrected DBT (modified from
Kruse et al., 2004)

A) One-dimensional calculations of Lander et al. (Lander et al., 2002) for the DBT model.
Profiles of internal-bound ligand after 5 hours, 24 hours, and 48 hours are shown. The
endocytic block in the shi 

ts1
 clone is described by a tenfold reduction of receptor

internalization rates (kp, kin). In addition, at time t=0, the surface receptor concentration is
suddenly increased by a factor of 10 inside the clone as described in Lander et al. (Lander

et al., 2002). Furthermore, the receptor production rate ω had also to be reduced by a

factor of 10. After 5 hours the ligand concentration is reduced behind the clone as
compared with the results of the same calculation in the absence of a clone (broken line).
This corresponds to a shadow in the experiments. At 24 hours, the shadow is weak. This
is not a steady state situation because after 48 hours, an accumulation of ligand behind
the clone and depletion in the clone occur. B) Two-dimensional calculation of the DBT
model, but with correct receptor production rate (not reduced by a factor of 10) and
combined with a gradual increase of surface receptor concentration in the clone region. A
shadow builds up which increases in time and persists. Note that the one-dimensional and
two-dimensional calculations of the DBT model generate similar profiles. A,B) The clone
extends from x=25 µm to x=50 µm, The broken line corresponds to a calculation without a
clone, and the unbroken line to the calculation in the presence of a clone.
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Fig. 16: Gradients in the DBT model describing a tissue with a shi 
ts1

 clone (modified from
Kruse et al., 2004)

Dynamics of the total ligand distribution F in the DBT model in an area of interest (AOI) of
size Lx=200 mm and Ly=200 mm. The AOI contains a rectangular region, inside which the
internalization rates kp and kin are reduced by a factor of 10 after t=0. This region covers
the intervals 25 µm<x<50 µm and -25 µm<y<25 µm and describes the effects of a
temperature shift on a shi 

ts1
 clone. A) Colour-coded distribution of the total ligand

concentration F=A+B+C at t=5 hours. B) Distribution of F after 48 hours, which is close to
the steady state. C-E) Total ligand concentration F along the broken lines indicated in A,B.
Unbroken black lines are separated by 2 hours. The red line represents the distributions
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after 5 hours, the time when the observations were made in the experiments discussed in
Entchev et al. (Entchev et al., 2000); the broken lines represent the steady state
distributions. Note the accumulation of ligand in the clone by a factor of 10. Far away from
the clone, the ligand distribution resembles the distribution in absence of a clone. The
steady-state ligand concentration has a pronounced minimum behind the centre of the
clone (E). The inset in C displays the profile of total extracellular ligand A+B. Note that the
extracellular ligand accumulates in the clone by a factor of 10 after 5 hours of endocytic
block and more than 40 times in the steady state. F) Total surface receptor concentration,
B+D, in the centre of a shi 

ts1
 clone. Note the gradual increase of the surface-exposed

receptor concentration by a factor of 10.

However, a modified version of this model, the DBT model with saturating cell

surface receptor concentrations (DBTS), can generate transient shadows behind

a shi ts1 clone (Kruse et al., 2004) (Fig. 17). This model allows to describe the

extreme case where the endocytic block is complete. Under this condition the

DBT model becomes biologically meaningless, since the level of surface

receptors tends to infinity. The DBTS defines a maximal receptor density on the

cell surface Rmax, at which the surface receptor levels saturate. This allows free

variation of the internalization rates and even a set to zero. The DBTS model

assumes that the rates of delivery to the plasma membrane of the free receptor

kq, and that of the bound receptor kout are a function of the total surface receptor

levels B and D as follows:

kq = kq
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Here, the parameters kq
0

 and k
out

0  are equal to the originally introduced

externalization rates. For small surface receptor concentrations (B+D), the DBTS

model corresponds to the original DBT model. As B+D approaches Rmax, the

externalization rates kq and kout tend to zero. This corresponds to a situation in

which the externalization rates of the receptor depend on a limiting factor(s) that

can thereby be saturated, such as the trafficking machinery, cargo receptors, etc.

The profiles of total (Fig. 17B-F) and internal bound (Fig. 17A and inset in

Fig. 17D) Dpp have been obtained by a calculation of the DBTS model in two

dimensions and in the presence of a clone. Inside the clone, the internalization
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rates kp and kin have been set to zero at t=0. The profile in the y-direction behind

the clone displays a pronounced transient shadow similar to the experimental

observation (Fig. 17B,D-F), followed by a weak persistent accumulation of ligand

behind the clone (‘anti-shadow’) after long time periods (Fig. 17C-F).

In the DBTS model, the emergence of shadows in the “shibire shadow assay” is

a consequence of a rapid 20 fold increase of surface receptor concentration

inside the shi ts1 clone (Fig. 17G). This leads then to the accumulation of

extracellular Dpp at the clone by a factor of at least 20.

Fig. 17 (next page): Gradients in the DBTS model describing a tissue with a shi 
ts1

 clone
(modified from Kruse et al., 2004)

A) Ligand distributions as described in Fig. 15, but obtained for the DBTS model for
saturating surface receptors and zero internalization rates. A shadow is present at 5 hours
and has disappeared at 24 hours. There is no internal-bound ligand inside the clone. The
clone extends from x=25 µm to x=50 µm. The broken line corresponds to a calculation
without a clone, and the unbroken line to the calculation in the presence of a clone.
B,C) Colour-coded distribution like in Fig. 16 of the total ligand concentration F=A+B+C
after 5 hours of endocytic block (B), and after 48 hours, corresponding to the steady state
(C). D-F) Total ligand concentration F along the broken lines indicated in B,C. Unbroken
black lines are separated by 2 hours. The broken lines represent the steady state
distributions, the red line the distributions after 5 hours, the time when the observations
were made in the experiments discussed in Entchev et al. (Entchev et al., 2000). The inset
in D shows the concentration of internal-bound ligand, which vanishes inside the clone.
The profile of the ligand concentration behind the clone is shown in F. At 5 hours, a clear
shadow is present which vanishes and turns into a persistent anti-shadow. G) Total
surface receptor concentration, B+D, in the center of the clone. Note the rapid increase of
the surface-exposed receptor concentration by a factor of approximately 20 after 5 hours
of endocytic block.
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1.10 Aim of the thesis

During my thesis I seeked answers to four key questions:

I) Is the DBTS model sufficient to explain Dpp gradient formation?

- Does a block of endocytosis induce higher levels of surface receptors?

- Does a block of endocytosis sequester Dpp movement, while diffusing in

the extracellular space?

II) What is the role of Dynamin-mediated endocytosis in Dpp gradient

formation?

- Does block of endocytosis hinder Dpp movement in vivo?

III) Is Dpp trafficking along the endocytic pathway at the receiving cells?

- Is Dpp localized in early, late, and recycling endosomes marked by Rab

proteins?

IV) Is Dpp recycled at the receiving cells?
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2 Materials and Methods

2.1 Buffers and Solutions

1) Drosophila fly food:

   150 g agar-agar

   360 g yeast powder

   200 g soy meal

   440 g syrup

1.600 g malt

are dissolved in 16 l water and boiled. Then 30 g Nipagin

in 100 ml EtOH together with 126 ml propionic acid added.

2) PBS:

   137 mM NaCl

  2,68 mM KCl

10,14 mM Na2HPO4

  1,76 mM KH2PO4

3) S2 transfection mix:

3 µg DNA in 100 µl serum-free medium (Invitrogen) are combined

with 18 µl Cellfectin (Invitrogen) in 100 µl serum-free medium and

incubated for 20 minutes at room temperature.

4) Lysis Buffer:

  50 mM Tris

150 mM NaCl

    2 mM EDTA pH 7,4

to 50 ml one inhibitor-mix tablet (Roche) is added and solution is stored at 4 ºC
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5) Sample buffer (5x):

0,35 ml 4 x stacking gel buffer9)

0,15 ml H2O

0,16 g SDS

after incubation at 95 ºC to dissolve SDS

0,4 ml glycerol

0,1 ml mercaptoethanol

and a tiny bit of bromophenol blue are added.

Aliquots are stored at -20°C.

6) Electrode buffer:

  25 mM Tris

192 mM glycine

 0,1 % SDS, pH 8,4

7) Low Molecular Weight Calibration Kit for SDS Electrophoresis:

 250 kDa (Myosin)

 148 kDa (Phosphorylase β)

   98 kDa (BSA)

   64 kDa (Glutamic Dehydrogenase)

   50 kDa (Alcohol Dehydrogenase)

   36 kDa (Carbonic Anhydrase)

   22 kDa (Myoglobin Red)

   16 kDa (Lysozyme)

     6 kDa (Aprotinin)

8) Running gel buffer (4x):

1,5 M Tris/HCl pH 8,8

stored up to three months at 4 ºC
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9) Stacking gel buffer (4x):

0,5 M Tris/HCl pH 6,8

10) Coomassie-Brilliant-Blue solution:

0,85 g Coomassie Brilliant Blue G250 or

     1 g Coomassie Brilliant Blue R (Roth GmbH)

 450 ml CH3OH

 450 ml H2O

 100 ml CH3COOH

detection limit: around 1 µg protein

11) Destaining solution:

200 ml CH3OH

  70 ml CH3COOH

730 ml H2O

12) Blotting buffer:

  25 mM Tris

192 mM glycine

  20 % CH3OH

 0,1 % SDS pH 8,1-8,5

13) Blocking solution:

5 g milk powder are added to 100 ml TBS buffer14)

14) TBS buffer:

154 mM NaCl

  10 mM Tris pH 7,4

15) TBST buffer:

TBS buffer14) with 0,05 % Tween 20
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16) BBS (10x):

100 mM Tris

550 mM NaCl

400 mM Kcl

  70 mM MgCl2·6H2O

  50 mM CaCl2·2H2O

200 mM glucose

500 mM sucrose

diluted in water to a final volume of 1 l pH 6,95

50 ml aliquotes stored at -20°C

17) BBT:

  45 ml BBS (10x)16)

450 mg BSA

 4,5 ml Tween 20 (10 %)

diluted in water to a final volume of 450 ml

aliquots stored at –20 ºC

18) PEM:

80 mM Na-Pipes

  5 mM EGTA

  1 mM MgCl2 x 6 H2O

pH adjusted to 7,4 with HCl

19) PEMT:

PEM18) and 0,05-0,2 % Triton X100

20) Blocking solution in PEMT:

PEMT19) and 0,5 % BSA



Materials and Methods 37

21) Staining solution in PEMT:

Blocking solution in PEMT20) and 1 % NGS

22) Mowiol:

  60 g Mowiol 4-88 (Hoechst)

150 g Glycerol

150 ml H2O

300 ml 0,2 M Tris pH 8,5

23) Dextran solution:

   10 µl fluorescent Dextran 10.000 MW (Molecular Probes) (10 mg/ml)

 490 µl Shields and Sang M3 insect medium (Sigma)

24) Loading buffer:

  40 ml H2O

    6 g Ficoll

100 mg bromophenol blue

100 mg Xylene Cyanol FF

stored at room temperature

25) TAE (10x):

242,28 g Tris

    57,1 ml glacial acetic acid

     100 ml 0,5 M EDTA

diluted in water to a final volume of 1 l pH 8,0

26) TAE (1x):

100 ml TAE (10x)25) diluted with water to a final volume of 1 l stock solution

Not indicated chemicals were purchased from Fluka, Merck, Pharmacia,

Promega, Riedel de Haën, Roth and Sigma.
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2.2 Used equipment

• Waterbath: Julabo Labortechnik GmbH

• Icemachine: Ziegra

• Electrophorese chamber: Mighty Small SE 245 (BioRad)

• X-ray developing machine: Optimax (Protec)

• Heating block: Teche Dri-Block (Schütt Labortechnik)

• Table centrifuge: Biofuge fresco (Heraeus)

• Microscope: Stemi SV 11 (Zeiss)

• Schaker (37°C): ISF-1-W (Kühner)

• Thermomixer: Thermomixer compact/comfort (Eppendorf)

• UV-Transilluminator: Macro Vue UV20 (Hoefer)

• Western-Blot-apparatus: Trans-Blot SD (BioRad)

• Objective Heater System: Bioptechs

• PCR machine: GeneAmpPCR System 9700 (Perking Elmer)

• Gel documentation: GeneCAM Flexi (biostep)

• Vacuum centrifuge: Heto RC 10.22 Speedvac (Jouan)

• Fly incubator: Flyincubator I-36VL/D (Percinel Scientific)

2.3 Fly pushing

2.3.1 Maintenance of flies

Flies were kept in vials (~14 ml) containing Drosophila fly food1) at room

temperature (25 ºC) except for the mutant strain shi ts1 which was maintained at

18 ºC.
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2.3.2 Mutant strains

shi ts1,  tkv8,  dppd8,  and  dppd12 are described in Flybase

(http://flybase.bio.indiana.edu). shi ts1 is a Dynamin thermo-sensitive mutation in

the GTP binding domain (Chen et al., 1991) that rapidly blocks endocytosis when

shifted at 34 ºC (but not at 32 ºC) in developing wing cells. tkv8 is a Thick veins

receptor truncated at amino acid 144 before the transmembrane domain which

presumably represents a null mutation of tkv (Nellen at al., 1994). dppd8 and

dppd12 represent each breakpoint alleles of the decapentaplegic gene

(St Johnston et al., 1990). The wing blade is almost entirely missing in dppd8/

dppd12 animals, though some wing hinge structures are still present (Teleman

and Cohen, 2000).

2.3.3 Transgenic strains

UAS-Dynamin+ flies carry a cDNA (GH23121 in the fly genome project) coding

for the splicing variant DynaminΔ2S (Staples and Ramaswami, 1999). UAS-Tkv

and UAS-GFP-Dpp were previously described in Nellen et al., 1996, and Entchev

et al., 2000. Barry Dickson (Institute of Molecular Pathology, Vienna, Austria)

provided the UAS-GFP flies. The tub-DsRed flies carry the construct inserted into

a P element plasmid containing the promoter of the tubulinα1 gene and flanked

at its 3’ end by the 3’ UTR of the tubulinα1 gene (Basler and Struhl, 1994). UAS-

GFP-DRab5 and UAS-GFP-DRab7 were described in Entchev et al., 2000. For

the generation of UAS-GFP-DRab11, the coding sequence (LD14551 in the fly

genome project) was inserted C-terminal to EGFP and the fusion subcloned into

the polylinker of the vector pUAST. UAS-PAGFP flies carry the coding sequence

of PAGFP (Patterson and Lippincott-Schwartz, 2002) subcloned into the

polylinker of the vector pUAST. The pUAST-PAGFP-Dpp vector was generated

by cloning the coding sequence of PAGFP into the position of EGFP within the

pUAST-EGFP-Dpp vector (Entchev et al., 2000).
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2.3.4 GAL4-mediated ectopic gene expression

For the ectopic expression of various transgenic constructs in a wide variety of

cell- and tissue-specific patterns of Drosophila we used the GAL4-mediated

expression system (Brand and Perrimon, 1993). GAL4 is a transcription factor

from yeast that can activate transcription in Drosophila (Fischer et al., 1988). To

express GAL4, the GAL4 gene is integrated in sites that are under the temporal

and spatial control of various genomic enhancers. When a target gene of interest

containing GAL4-binding sites (UAS or Upstream Activator Sequence) within its

promoter is present in those cells where GAL4 is expressed, its transcription is

initiated upon binding of GAL4 to the UAS (Fig. 18). The targeted ectopic gene

expression is commonly present in the progeny of a genetic cross of a transgenic

line expressing GAL4 and a line carrying the target gene of interest downstream

from the UAS.

Fig. 18: Targeted expression using GAL4 (modified from St Johnston, 2002)

To drive expression of various transgenic constructs in the Dpp producing cells,

dpp-GAL4  was used. Hedgehog-GAL4  (hh-GAL4 ) was employed when

expression in the Dpp receiving cells of the posterior compartment was needed.

For the analysis of anti-Rab antibodies, vestigial-GAL4 (vg-GAL4) was used to

drive the expression of the different GFP-Rab fusion proteins at the dorso/ventral
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(D/V) boundary. For the analysis of Tkv antibodies, patched-GAL4 (ptc-GAL4)

was used to drive the expression of Tkv receptor anterior to the anterior/posterior

(A/P) compartment boundary.

2.3.5 Mosaic analysis

FLP-FRT mitotic recombination

In the FLP-FRT mitotic recombination, homozygotic cells are generated in

heterozygotic flies by inducing recombination between homologous

chromosomes. Using the heat-shock-induced expression of FLPase leads to the

recombination between FLPase recombination targets (FRTs) that have been

inserted into the chromosome arm carrying the mutation to analyze. With the

appropriate developmental time point and level of heat-shock, mitotic

recombination produces a patch of cells or clone of genetically altered tissue

(Fig. 19).

Fig. 19: FLP-FRT mitotic recombination (modified from St Johnston, 2002)
(m: marker, *: mutation)
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The location of such a clone can be identified by the use of genetic (e. g. tub-

DsRed) or histological markers (e. g. ΠMyc epitope marker construct followed

using anti-Myc antibody). For the analysis of the Tkv antibody, tkv8 mutant

Minute+/FRT clones (Xu and Harrison, 1994) were generated by heat shock

(30 minutes, 36 ºC) in three days old larvae (HS-Flp/+; M(2)z ΠMyc FRT40A/tkv8

FRT40A) and raised at 25 ºC to mid-third instar larvae. To induce ΠMyc

transcription larvae were heat shocked at 38 ºC for one hour followed by at least

one hour at 25 ºC to allow the translation of the ΠMyc transcript prior to fixation.

For the analysis of the cell surface Tkv receptor level in shi ts1 FRT mutant

clones, larvae of the genotype shi ts1 FRT18A/HS-NM8A FRT18A; HS-Flp/+ and

shi ts1 FRT18A/tub-DsRed FRT18A; HS-Flp/+ were used. Embryos were

collected during one day at 18 ºC, larvae were raised for one day at 18 ºC and

heat shocked (90 minutes, 38,3 ºC). Larvae were subsequently kept at 25 ºC

until third instar larval stage. Afterwards, endocytosis was blocked either for three

hours at 34 ºC followed by one hour at 38,3 ºC and one hour at 34 ºC to induce

NMyc transcription and its translation or for five hours at 34 ºC in the case of

larvae of the genotype shi ts1 FRT18A/tub-DsRed FRT18A; HS-Flp/+. Dissection

of wing discs was performed at 34 ºC.

2.3.6 Blockage of Endocytosis at Receiving Cells

shi ts1; UAS-Dynamin+/+; dpp-GAL4/UAS-GFP-Dpp larvae were kept at the shi ts1

permissive temperature (25 ºC or 18 ºC) to allow normal wing development until

third instar larval stage. For the comparison of Tkv receptor levels in the

endocytosis-defective receiving territory with that of the rescued secreting cells,

endocytosis was blocked for 6 hours at 34 ºC and wing discs were dissected at

34 ºC and fixed. For the in vivo analysis of GFP-Dpp dynamics in the shi ts1

mutant receiving tissue the dissected wing discs were kept at 34 ºC during the

record of time-lapse movies.
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2.3.7 PAGFP-Dpp rescue

For the demonstration of functionality of the generated transgenic constructs, the

PAGFP-Dpp fusion was expressed in a dpp mutant background and tested for

rescue. As for PAGFP-Dpp, dppd12/CyO,Act-GFP; dpp-GAL4/TM6B males were

crossed to UAS-PAGFP-Dpp/+; dppd8/CyO,Act-GFP females and the rescued

progeny of the genotype UAS-PAGFP-Dpp; dppd8/dppd12; dpp-GAL4/+ were

dissected and further analyzed.

2.4 Cell biology

2.4.1 S2 cell maintenance

The S2 cell line was derived from a primary culture of late stage (20-24 hours

old) Drosophila melanogaster embryos (Schneider, 1972). This cell line was

maintained at 25 ºC without CO2 in both serum-containing and serum-free

Schneider's medium (Invitrogen). Cells were passaged once per week.

2.4.2 S2 cell transfection

For the expression of cytosolic PAGFP and PAGFP-Dpp in Drosophila Schneider

S2 cells, they were transiently transfected with 3 µg of DNA per well in 6-well

plates using Cellfectin (Invitrogen). Prior to transfection cells were washed with

PBS2) and put on wells with 800 µl serum-free medium and the transfection mix3).

After four hours of incubation, cells were washed with PBS2) and wells were filled

with 2 ml serum-containing Schneider's medium each. 48 hours after transfection

cells were submitted to further analysis.



Materials and Methods 44

2.5 Biochemistry

2.5.1 Preparation of cell extracts from Drosophila third instar larvae

For the analysis of the Tkv antibody, cell extracts from Drosophila third instar

larvae were prepared for SDS-PAGE and subject to Western Blot analysis. All

subsequent operations were performed at 4 ºC. 100 larvae were combined with

1 ml of Lysis buffer4) and disrupted with several passages though a 1 ml douncer

(Wheaton). Once the embryos were homogenized, the homogenate was

transferred to a tube and centrifuged for five minutes at 1.000 g in a Biofuge

fresco centrifuge (Heraeus). The debris and the nuclei are then pelleted down.

The supernatant, but not the white lipid coating from the walls of the tube, was

transferred into a new tube and centrifuged for one hour at 100.000 g in a TLA55

rotor (Beckman). The pellet (p100) represents the membrane fraction and the

supernatant (s100) the cytosolic fraction. Both fractions were solved in the same

amount of Lysis buffer4) and the proteins precipitated (Wessel and Flügge, 1984).

0,1 ml of the respective fraction was merged to 0,4 ml of methanol, mixed and

centrifuged in a Biofuge fresco centrifuge (Heraeus) at 9.000 g for 10 seconds.

The step was repeated after adding 0,1 ml of chloroform. Finally 0,3 ml of water

was mixed vigorously to the solution and centrifuged at 9.000 g for five minutes.

The clear aqueous phase on top was removed carefully and 0,3 ml of methanol

was added to the lower phase and interphase comprising the enriched proteins.

Centrifuging for five minutes at 9.000 g subsequently pelleted them down. The

supernatant was decanted, the protein pellet resuspended in Lysis buffer4) and

ready for use or storage at -20 ºC.

2.5.2 Determining protein concentration by the Bradford dye-binding method

The protein concentration of the various Drosophila third instar larvae extracts

(see section 2.5.1) were determined by the Bradford dye-binding method
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(Bradford, 1976). The method is based on the binding of the dye Coomassie-

Brilliant-Blue G-250 to proteins in acid solution that results in a shift of the

absorption maximum from 465 nm to 595 nm. 100 µl of the sample was diluted in

PBS2) and combined with 100 µl of diluted dye solution (Roth GmbH) (1:2,5 in

water). After five minutes of incubation at room temperature the absorption was

measured at 595 nm and compared to a pure dye solution. The concentration of

the sample was determined on the basis of a BSA (Bovine Serum Albumin)-

calibration curve (cBSA= 5–35 mg/ml in PBS2)).

2.5.3 SDS-PAGE (SDS-Polyacrylamide gel electrophoresis)

For the separation of purified proteins we used the SDS-PAGE (Laemmli, 1970).

Sodium dodecyl sulphate (SDS) is an anionic detergent which denatures proteins

by "wrapping around" the polypeptide backbone conferring a negative charge to

the polypeptide in proportion to its length, i. e. equal charge or charge densities

per unit length. In denaturing SDS-PAGE separations therefore, migration is

determined not by intrinsic electrical charge of the polypeptide, but by molecular

weight. A discontinuous system was employed that was composed of a resolving

or separating (lower) gel and a stacking (upper) gel. The gels are cast with

different porosities, pH and ionic strength to sharpen greatly the bands of the

proteins to be separated. The gel was made of a 5 % stacking gel and usually a

12,5 % separating gel. Prior to loading on the SDS-PAGE gel, sample-buffer

(5x)5) was added and the mixture was denaturated for five minutes at 95 ºC. The

electrophoresis was performed at room temperature in electrode buffer6) at

70 mA for one hour. As molecular weight calibration 5 µl low molecular weight

(LMW)-marker7) run parallel to the samples.

The gels were prepared as follows:
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Components Separating gel

12,5 % [µl]

Stacking gel

5 % [µl]

water 3.160 2.600

running gel buffer (4x)
8) 1.875

stacking gel buffer (4x)
9) 880

Acrylamide solution (40 %) 2.345 500

10 % SDS 75 20

10 % APS 37,5 20

TEMED 7,5 10

Table 1: SDS-PAGE preparation

2.5.4 Coomassie-Brilliant-Blue colouring of proteins

Protein bands on SDS-PAGE gels were visualized by colouring them with

Coomassie-Brilliant-Blue solution10). After SDS-PAGE, the gels were submerged

for 10 minutes in Coomassie-Brilliant-Blue solution10), then rinsed several times

in destaining solution11) to remove excess dye that was not bound on proteins.

After this procedure, proteins were visible as blue bands.

2.5.5 Western Blot

Western Blot is a method to transfer by electrophoresis proteins from a

polyacrylamide matrix to a membrane. Antibodies combined with enhanced

chemiluminescence enzyme substrates can then detect those immobilized

proteins. As Western Blot system we used a semi-dry apparatus (BioRad). It

consists of two flat electrode plates that enclose a Blot sandwich of several filter

papers, the gel and a polyvinylidine difluoride (PVDF) membrane. Prior to blotting

the hydrophobic PVDF membrane was activated with 100 % methanol for a few

seconds followed by a wash in water. In parallel, the filter papers were soaked

with blotting buffer12). The wet filter papers, the gel and the activated membrane
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were stacked up in a specific order facing the anode electrode plate (see

Fig. 20).

Fig. 20: Semi-Dry-Blott assembly

The transfer was performed at constant current of 1 mA/cm2 for two hours.

During electrophoresis, the negative charged proteins migrate towards the

anode. After blotting, the membrane was dipped in Ponceau-S solution (Sigma)

and washed once in water to verify the efficiency of transfer by detecting the red

marked protein bands. In addition, the gel was stained with Coomassie-Brilliant-

Blue solution10) to detect remaining proteins not transferred during this process.

The PVDF membrane was then submerged with blocking solution13) overnight

at 4 °C.

2.5.6 Immunodetection of a Western Blot

The detection of membrane-bound proteins was carried out with an enhanced-

chemiluminescence (ECL) detection kit (Amersham Life Science) using Rabbit

anti-Tkv (intracellular), 1:1.000; Rabbit anti-GST, 1:5.000. Membranes were

incubated in Blocking solution13) overnight at 4 °C. Afterwards the membranes

were incubated with the primary antibody in Blocking solution13) for one hour.

Subsequent membrane washes with TBST buffer15) were followed by incubation

with the horseradish peroxidase (HRP)-coupled secondary antibody in Blocking

solution13) for one hour. After repeated washes with TBST buffer15), the detection

took place with the ECL detection kit (Amersham Life Science). The technique is

Cathode

Filter Paper

Gel
Membrane

Filter Paper

Anode
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designed around the peroxidase-coupled secondary antibody and the substrate

luminol. In the presence of hydrogen peroxide, HRP catalyzes the oxidation of

diacylhydrazides like luminol. An activated intermediate reaction product is

formed, which decays to the ground state by emitting light. This emission was

visualized by placing an X-ray film (Biomax ML, Kodak) onto the membrane. For

repeated detections with different primary antibodies the membrane was

submerged briefly in 100 % methanol, washed in TBST-buffer15) and blocked

again with Blocking solution13).

2.6 Histology and Imaging

2.6.1 Antibodies

Rabbit anti-Tkv antibody was generated against two peptides corresponding to

parts of the intracellular kinase domain (H2N-SQQLDPKQFEEFKRAC-CONH2

and H2N- GFRPPIPSRWQEDDVC-CONH2). Rabbit luminal anti–Tkv antibody

was generated against two peptides corresponding to the luminal side of the Tkv

peptide sequence outside the ligand binding cleft (H2N-YEEERTYGCMPPEDNG-

CONH2 and H2N-KEDFCNRDLYPTYTP-CONH2). Rabbit anti–Drosophila

Rab5/7/11 antibodies were generated against peptides corresponding to the C-

terminal parts of the respective proteins (H2N-TSIRPTGTETNRPTNN-CONH2 for

Rab5; H2N-CKVDLDNRQVSTRRAQ-CONH2 and H2N-CTLGSQNNRPGNPDN-

CONH2 for Rab7; H2N-CQKQIRDPPEGDVIRPS-CONH2 for Rab11).

The immune sera were affinity chromatography purified using the corresponding

peptides coupled to CNBr-activated Sepharose 4B (Amersham Biosciences).

The specificity of the antibodies was tested by preincubating the purified antibody

with 100 µg/ml of the respective peptide (or 500 µg/ml when performing the

extracellular immunostaining protocol (see section 2.6.2)) for 30 minutes at room

temperature and performing subsequently an antibody staining on Tkv

overexpressing or Rab5/7/11GFP expressing discs. No fluorescent signal was
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detected under these conditions, while preincubation with a control peptide did

not affect the staining.

2.6.2 Immunostaining

Immunostainings were performed using Mouse anti-Myc (CalBiochem), 1:25

dilution; Rabbit anti-Tkv (intracellular and luminal), 1:1.250; Goat anti-GFP,

1:100; Rabbit anti-Rab5, 1:50; Rabbit anti-Rab7/11, 1:250; Mouse anti-Golgi,

1:100 (CalBiochem); Mouse anti-Fasciclin III (7G10, Hybridoma Bank), 1:1.000;

Rabbit anti-pMad (Tanimoto et al., 2000), 1:2.000. Alexa 488-, Alexa 546-

(Molecular Probes) and Cy5-(Dianova) coupled secondary antibodies were used

at a dilution of 1:500. The anti-Tkv, the anti-Rab7/11 as well as the secondary

antibodies were preadsorbed against fixed Drosophila embryos prior to

immunostaining. Preadsorbtion was performed by incubating the antibody diluted

1:10 in BBT17) with 400 µl of fixed embryos overnight at 4 ºC.

Intracellular immunostaining

Drosophila third instar larvae were collected in glass dishes coated with Repel-

Silane ES (Amersham Pharmacia Biotech) to avoid adhesion of the sample.

Dissection of wing imaginal discs was performed in PEM18) by inverting the

larvae cuticle with the attached imaginal discs being exposed to the solutions.

They were subsequently fixed in 4 % paraformaldehyde (PFA) in PEM18) and

permeabilized in 4 % PFA in PEMT19) for 40 minutes each. The dissected wing

discs were washed twice with PEMT19) for 10 minutes, interrupted by a wash with

50 mM NH4Cl in PEM18) for 10 minutes to remove as well as to quench free

aldehydes. The tissue was then incubated in blocking solution in PEMT20)

overnight at 4 ºC. After blocking, the samples were incubated with primary

antibodies diluted in staining solution in PEMT21) for two hours at room

temperature. Unbound primary antibody was removed by three washes with

PEMT19). Subsequent incubation with the appropriate secondary antibody diluted
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in staining solution in PEMT21) for two hours was followed by washes with

PEMT19) and PEM18), respectively. Finally, the wing imaginal discs were removed

from the cuticle and mounted in Mowiol22).

Extracellular immunostaining

Extracellular GFP-Dpp and cell surface exposed Tkv were detected by incubating

the dissected wing imaginal discs prior to fixation (Strigini and Cohen, 2000) with

Goat anti-GFP antibody, 1:10 dilution, and Rabbit anti-Tkv (raised against the

luminal domain of Tkv), 1:10 dilution, respectively. The Drosophila third instar

larvae were dissected in insect medium M3 (Sigma) and incubated with the

primary antibody diluted in Cl8 medium on ice for two hours. The samples were

then washed three times with Cl8 medium to remove unbound antibody, fixed in

4 % PFA in PEM18) and permeabilized in 4 % PFA in PEMT19) for 40 minutes

each. Subsequent procedure was according to the intracellular immunostaining

(without blocking and primary antibody incubation). Fewer GFP-Dpp signal was

found upon extracellular immunostaining due to the different staining procedure.

In both immunostaining procedures fluorescent phalloidin (Molecular Probes)

counterstaining was sometimes performed after the secondary antibody step to

monitor cell profiles.

2.6.3 Dextran uptake

Fluid phase endocytosis assays with fluorescent Dextran 10.000 MW (Molecular

Probes) were performed to distinguish early as well as late endocytic

compartments in wing imaginal discs. Dissection of wing discs was performed

less than five minutes in Cl8 medium. The samples were then transferred to a

glass dish with 100 µl Dextran solution23) and incubated for 10 minutes at room

temperature (25 ºC) to mark early endocytic compartments. The Dextran pulse

was then stopped with three washes of chilled Cl8 medium in the same dish on

ice and concluded with fixation in 4 % PFA in PEM18). In a pulse-chase assay, a
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chase of 40 to 60 minutes in 100 µl Cl8 medium followed the medium washes to

mark late endocytic compartments prior to fixation in 4 % PFA in PEM18). Finally,

the wing imaginal discs were removed from the cuticle and mounted in Mowiol22).

2.6.4 Cryosectioning

Cryostat z-sections at Cryo-Star HM 560 (Microm) were performed with PFA-

fixed developing wing discs incubated in 30 % sucrose solution in PBS2) after

immunostaining (see section 2.6.2) for at least twelve hours at 4 ºC and mounted

with Tissue-Tek (Sakura).

2.6.5 Preparing samples for in vivo imaging

Wing imaginal discs were dissected in Cl8 medium. Meanwhile a chamber was

prepared by cutting out a frame from a double-side adhesive tape on a glass

slide. The chamber was filled with Cl8 medium and the lypophilic dye FM 4-64

(Molecular Probes) at a dilution of 1:1.000 was added. Upon intercalation into the

membranes the lypophilic emits a strong fluorescent signal above 560 nm when

excited with 488 nm light, thereby marking cell boundaries in vivo. The isolated

wing imaginal discs were then transferred into the chamber and pushed gentle

on the glass slide to stay attached during movie record. Finally, a coverslip was

put on the chamber and sealed with nail polish.

2.6.6 Fluoresence Recovery After Photobleaching (FRAP)

Fluorescence Recovery After Photobleaching (FRAP) experiments were

performed on LSM510 laser scanning confocal microscope (Carl Zeiss, Jena,

Germany) with a 40x/1.3 numerical aperture (NA) Plan-Apochromat oil objective.

GFP was excited with the 488 nm line of Argon laser and GFP emission was
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monitored between 505-530 nm. During record, the samples were maintained at

25 ºC or at 34 ºC with an Objective Heater System (Bioptechs). In the GFP-Dpp

receiving tissue a stripe of ~10 µm in width was bleached for approximately

30 seconds using the 488 nm laser line at 100 % laser power. Discs were

monitored with low levels of 488 nm light (~3 % laser power) to avoid bleaching

of GFP signal. Time-lapses were composed of two minutes intervals for

approximately one hour. Longer time frames were not possible due to tissue

collapse. For quantitation, the average fluorescent intensity of a region of interest

in the bleached area was monitored using Zeiss software. Background

fluorescence was measured in a random field outside the GFP-Dpp receiving

tissue. The background-substracted fluorescence intensity normalized to the pre-

bleach value was calculated. For the recovery kinetics, a fitting curve was

calculated using the nonlinear least-squares Marquardt-Levenberg algorithm as

implemented in gnuplot 3.7 for each experimental FRAP curve of normalized

fluorescence intensity over time in seconds (Axelrod et al., 1976). The one-

dimensional diffusion equation was solved assuming a homogeneous initial

distribution inside and outside of the bleached area with a step like transition at

its boundary. The resulting fitting curve for the averaged fluorescence in the

region of interest was as follows:

f (t)∝1− 2
Dt

πω 2
e

−ω 2

4Dt −1
 

 
  

 

 
  + erf

ω

2 Dt

 

 
 

 

 
 

 

 
 
 

 

 
 
 
+ c

k = 0

where erf denotes the error function, ∫
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, D is the diffusion

coefficient, k is the degradation rate (which is set to zero), ω is the width of the

photobleached stripe, and c is an additional fit parameter necessary to account

for the fact that there is some remaining fluorescence after bleaching. The

resulting values for D correspond to apparent or effective diffusion coefficients

(D’), assuming that the FRAP recovery of GFP-Dpp is due to a “random walk” of

the ligand. Note that the estimate is independent of the transport machinery
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underlying the random walk. In other words, it does not distinguish between

extracellular diffusion, intracellular movement, receptor binding, etc.

2.6.7 Photoactivation

Photoactivation of PAGFP-Dpp and cytosolic PAGFP expressed in Drosophila

wing imaginal discs was performed either on a Zeiss LSM510 laser scanning

confocal microscope (Carl Zeiss, Jena, Germany) or on a two-photon

Radiance2100 MP laser scanning microscope system (Carl Zeiss CellScience

Ltd., Jena, Germany). Photoactivation on the confocal microscope was

performed with high levels (~0.6 mW) of 405 nm laser light through a 40x Plan

Neofluar 1.3 NA objective. Photoactivation on the two-photon microscope was

performed with a femtosecond pulsed 825 nm laser. In this case, a 60x Plan

Apochromat 1.2 NA objective was used. For the recovery kinetics of PAGFP-Dpp

in the not activated circled region, a fitting curve was calculated for the

experimental curve of normalized fluorescence intensity over time in seconds.

Since the shape of the region differs comparing to the FRAP experiments with

GFP-Dpp (i. e. a stripe versus a circle, respectively), the one-dimensional

diffusion equation was solved assuming Gaussian initial distribution in the not

activated area. The fitting curve for averaged fluorescence in the region of

interest was as follow:
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where D is the diffusion coefficient, k is the degradation rate (which is set to

zero), and R is the radius of the not photoactivated region. The resulting values

for D again correspond to apparent or effective diffusion coefficients (D’).
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2.7 Molecular Biology

2.7.1 Polymerase chain reaction (PCR)

The polymerase chain reaction (PCR) provided an effective method to amplify

DNA sequences used for cloning the transgenic constructs used in this work. The

PCR leads to an exponential amplification of DNA, since the newly synthesized

strands are also used as templates. With the use of a thermostable DNA

polymerase this chain reaction can be run off without break. The automatization

of this procedure is realized in a thermocycler. The components included in each

reaction were:

Components Amount

10 x reaction buffer (Stratagene) 5,0 µl

dNTPs [10 mM] 2,0 µl

upper primer [20 µM] 5,0 µl

lower primer [20 µM] 5,0 µl

Water 22,5 µl

Taq DNA polymerase (Stratagene) 0,5 µl

Template DNA [1 ng/µl] 10,0 µl

Table 2: PCR reaction mix

The programme used for the PCR was following:

PCR programme Stages Duration and Temperature

Denaturation Preheating 5 min at 94 ºC

Cycles of amplification Denaturation

Primer annealing

Primer extension

1 min at 94 ºC

1 min at around 60 ºC

1 min/kb at 72 ºC

Terminal extension Primer annealing 10 min at 72 ºC

Closing Cool off 4 ºC

Table 3: PCR programme
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After amplification, the DNA was examined by agarose gel electrophoresis.

2.7.2 Gel-Electrophoresis of DNA

The amplified cDNA was – diluted in loading buffer24) – separated by

electrophoresis in 0,7 % (w/v) agarose gel (PeqGold) in TAE (1x)26) at a constant

voltage of 100 V. The separated DNA bands were visualized by adding ethidium

bromide (3.8-Diamino-5-ethyle-6-phenylphenanthridiumbromide) to the gel (final

concentration of approximately 0,5 µg/ml). The dye intercalates into the stacked

base pairs of DNA exhibiting fluorescence at 590 nm when excited with UV light.

2.7.3 TOPO® cloning and transformation of chemical competent cells

For cloning of various transgenic constructs we used the TOPO®cloning

technology (Invitrogen) to insert PCR products into the pCR®II-TOPO®cloning

vector. This vector includes various restriction sites flanking the PCR product

insertion site for easy removal of insert, kanamycin and ampicillin resistance

genes for selection in E.coli. The vector is provided linearized and covalently

bound to topoisomerase I at the 3’ phosphate at each end. The resulting

topoisomerase I-activated vector readily accepts PCR products with compatible

overhangs lacking 5’ phosphates. To do so, topoisomerase I recognizes and

covalently binds the 3’ thymine on the pentameric sequence 5’-(C/T)CCTT-3’ at

the 3’ phosphate. It cleaves one strand of the DNA, allowing the DNA to unwind.

The enzyme then relegates the DNA ends and is released. 1 µl of PCR product

and 3 µl water were combined with 1 µl TOPO®cloning vector. After five minutes,

the mixture was placed on ice and prepared for transformation.
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2.7.4 Transformation

For transformation, TOP10 One Shot™ chemically competent E.coli cells

(Invitrogen) were used. 5 µl of the ligation was directly added to 50 µl of

competent cells previously thawed and incubated for 30 minutes on ice. The vials

were then incubated for 30 seconds in a 42 ºC temperated waterbath and again

placed on ice. After two minutes 250 µl of warmed LB medium was added and

the mixture incubated at 37 ºC for one hour. The transformed cells were

subsequently plated on LB plates containing 50 µg/µl ampicillin and kanamycin,

respectively. Transformation was tested by clone selection followed by plasmid

isolation (Quiagen Plasmid Mini/Maxi Kit) and DNA sequencing.

2.7.5 Subcloning into the pUAST/Caspertubulin vector

Various inserts present in the TOPO®cloning vector were then subcloned into the

pUAST (Phelps and Brand, 1998) and CaSpeR vector (Pirrotta, 1988),

respectively. To cut out the sequence of interest and the final vector, usually 1 µg

of DNA was mixed with the corresponding restriction endonucleases

(approximately 5 units) combined with the appropriate buffers in 15 µl reaction

mixtures. Restriction took place at 37 ºC for one hour. The excised insert and the

cut final vector were then separated by gel electrophoresis (see Section 2.7.2)

and the corresponding DNA bands were cut out and transferred to 0,5 ml tubes

filled at the bottom with a few (autoclaved) aquarium filter fibers covering a small

hole. The tubes were then placed in 1,5 ml tubes and the DNA eluted by

centrifuging those double tubes in the Biofuge fresco centrifuge (Heraeus) at

maximum speed for 2 minutes. The obtained insert and the appropriate cut

pUAST or CaSpeR vector were directly ligated respecting the 3 fold molar

excess of insert combined with the T4 DNA ligase and the buffer (NEB Quick

Ligation Kit) in a 10 µl reaction mixture at room temperature for 5 minutes. For
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transformation, TOP10 One Shot™ chemically competent E.coli cells were used

(see section 2.7.4).

2.7.6 Preparing DNA for injection

For the injection of the various transgenic constructs into Drosophila white

embryos, impurity-free DNA was mixed with a helper plasmid encoding for a

transposase to allow genomic integration of DNA of interest. 20 µg cloned DNA

was diluted in 300 µl water, combined with 300 µl rotiphenol (Roth GmbH), mixed

and centrifuged in the Biofuge fresco centrifuge (Heraeus) at 10.000 rpm for

2 minutes. The resulting upper phase was mixed with 300 µl phenol-chlorophorm

(Roth) and subject to the same centrifugation step. Purification was again

performed with 300 µl chlorophorm (Roth) instead. The upper phase comprising

the purified DNA was precipitated by adding 750 µl 100 % ethanol and 30 µl 3M

sodium acetate and pelleted by centrifuging in the Biofuge fresco centrifuge

(Heraeus) at maximum speed for 15 minutes. After decanting the supernatant,

the pellet was washed in 500 µl 70 % ethanol to remove left salts and centrifuged

at maximum speed for 15 minutes. The resulting pellet was dried in a vacuum

centrifuge (Jouan) for 5 minutes and resuspended in 30 µl water. Finally 6 µg of

purified construct and 2 µg of helper were combined in a volume filled with water

up to 200 µl. DNA was again precipitated by adding 500 µl 100 % ethanol and

20 µl 3M sodium acetate and pelleted by centrifuging in the Biofuge fresco

centrifuge (Heraeus) at maximum speed for 15 minutes. Subsequent washes

with 300 µl 70 % ethanol followed drying in the vacuum centrifuge. Finally, the

pellet was resuspended in 20 µl water, centrifuged briefly and used for injection.
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3 Results

3.1 Testing experimentally the DBTS model of Dpp gradient formation

3.1.1 Establishing antibodies and staining procedures detecting levels of total

and cell surface receptor Tkv and extracellular Dpp

The theoretical analysis of Kruse et al. (Kruse et al., 2004) suggested that

diffusion suffices to explain Dpp spreading throughout the target tissue. In the

DBTS model, the Dpp transport is based on extracellular diffusion taking into

account receptor binding and subsequent internalization. It is suggested that this

“diffusion, receptor binding and trafficking with surface receptor saturation”

(DBTS) model can generate ligand profiles consistent with observed gradients.

Moreover, the mathematical model results in transient shadows of no or less Dpp

as observed experimentally in the “shibire shadow assay” (Kruse et al., 2004). To

accomplish this, it was assumed that a block of endocytosis induces a higher

level of surface receptors and thereby titrates out Dpp while diffusing in the

extracellular space, hindering ligand transport (Lecuit and Cohen, 1998).

First the cell surface receptor concentration was considered. The crucial

precondition for forming a shadow in the DBTS model is a rapid accumulation of

surface receptors in the shi ts1 clone by a factor of 20 (Kruse et al., 2004). In

order to compare this with the actual surface receptor levels in the clone, an

antibody that specifically recognizes the Dpp receptor, Tkv, was generated.

Confirming previous results (Teleman and Cohen, 2000), the receptor

accumulates predominantly at the cell surface, although some intracellular

vesicular structures can also be observed (Fig. 21A). The level of the Tkv protein

parallels the accumulation of the Tkv transcript, which is distributed in a graded

fashion complementary to the Dpp gradient (Lecuit and Cohen, 1998) (Fig. 21A).

We performed three assays to address the specificity of the Tkv antibody: (1)

The antibody detects overexpression levels of Tkv (above 5 fold as monitored by
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RT-PCR (not shown)), induced by the GAL4 system using a ptc-GAL4 driver

(Fig. 21B), (2) the antibody is titrated out by incubating with the peptide used to

raise the antibody prior to immunostaining (Fig. 21C) (see Materials and

Methods), and (3) does not stain cells lacking Tkv in mutant tkv8 mosaics

(Fig. 21D).

Fig. 21: Detecting total Thick veins in Drosophila wing disc
A) Wild-type third instar wing disc stained with anti-Tkv antibody. Thick veins
predominantly outlines the cells and forms a gradient inversed with respect to the Dpp
gradient. The Tkv counter-gradient has a shallow slope and might not be very apparent in
some cases, depending on the imaging conditions. B,C) Tkv immunostainings of third
instar wing discs expressing UAS-Tkv under the ptc-GAL4 driver using anti-Tkv (B) or anti-
Tkv blocked by its corresponding peptide antigen (C). Note that the anti-Tkv antibody
detects overexpression levels of Tkv induced by the GAL4 system whereas it is abolished
when performing a protocol where prior to immunostaining the antibody was incubated
with its corresponding target polypeptide. Other polypeptides did not have any effect (see
Materials and Methods). Fold in the wing pouch is caused by Tkv overexpression. D)

Double labelling showing tkv
8
 clones marked by the absence of ΠMyc (red) and Tkv

immunostaining (green). Genotype: HS-Flp/+; M(2)z ΠMyc FRT40A/tkv
8
 FRT40A. The anti-

Tkv antibody does not stain cells lacking Tkv in mutant mosaics present in the notum of a
third instar wing disc. Bars correspond to 10 µm.

In addition, it detects a corresponding band of 63 kDa in Western Blot

experiments from developing larvae (Fig. 22). In agreement with the disc

immunostaining, the band is nearly absent when performing a protocol where
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prior to detection the antibody was incubated with its corresponding target

polypeptide (Fig. 22).

Fig. 22: Detecting total Thick veins in Western Blot
Western Blot of wild-type third instar larvae extract stained with anti-Tkv antibody. The
antibody detects a band of approximately 63 kDa (left lane). The Thick veins
corresponding band is nearly absent when the antibody was incubated with its target
polypeptide prior to detection (right lane).

To visualize only the Tkv pool associated to the cell surface, an antibody directed

against the luminal domain of Tkv (see Materials and Methods) was raised and

the “extracellular immunostaining” protocol was performed on wing imaginal

discs (Strigini and Cohen, 2000). During this staining procedure the tissue is

incubated with the antibody at 4 °C prior to fixation. In the absence of

endocytosis, the applied antibody has only access to the cell surface-exposed

Tkv. In contrast to total Tkv, the level of the cell surface receptor is only

decreased in a thin stripe of cells located anterior to the A/P boundary (Fig. 23A).

As with the other Tkv antibody, the antibody staining in this condition can robustly

detect overexpression of the receptor, induced by the GAL4 system using a hh-

GAL4 driver (Fig. 23B), and is titrated out by incubating it, prior to

immunostaining, with the peptide used to raise the antibody (see Materials and

Methods) (Fig. 23C).
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Fig. 23: Detecting cell surface Thick veins
A) Wild-type third instar wing disc showing immunostaining of cell surface exposed Tkv
using the Tkv luminal antibody and the extracellular immunostaining protocol. The level of
surface Thick veins is decreased within a narrow stripe of cells located anterior to the
anterior-posterior compartment boundary. B,C) Immunostaining of cell surface exposed
Tkv of third instar wing discs expressing UAS-Tkv under the hh-GAL4 driver; using
luminal anti-Tkv (B) or luminal anti-Tkv antibody blocked by its corresponding peptide
antigen (C). Note that the luminal anti-Tkv antibody detects overexpression levels of cell
surface exposed Tkv induced by the GAL4 system, whereas it is abolished when
incubated with its corresponding target polypeptide. Bars correspond to 10 µm.

According to the DBTS model, the accumulation of surface receptors at the shi ts1

clone sequesters free diffusing Dpp on its travel to form the gradient. As a

consequence, the amount of extracellular Dpp at the clone would increase by a

factor of approximately 20, resulting in the formation of a shadow behind the

mutant territory (Kruse et al., 2004). Performing the extracellular immunostaining

protocol with an antibody detecting GFP extracellular GFP-Dpp could be

monitored (Fig. 24). Extracellular GFP-Dpp staining outlines the cell profiles and

does not detect intracellular GFP-Dpp neither in the producing cells nor at the

receiving tissue (Fig. 24B). Like total GFP-Dpp, steady-state extracellular GFP-

Dpp is distributed in a long-range gradient at the target tissue. However, the

fluorescence intensity profiles are less steep than total Dpp (Fig. 24C and 24D),

indicating that intracellular Dpp accounts primarily for the visible GFP-Dpp

gradient in the receiving territory.
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Fig. 24: Detecting extracellular GFP-Dpp
A,B) Double labelling showing GFP-Dpp distribution (green), total (A) or extracellular (C)
GFP immunostaining (red) and overlays. C,D) Fluorescence intensity profiles of GFP-Dpp
(green) and total (C) or extracellular (D) GFP immunostaining (red) in representative discs.
Genotype in A-D: dpp-GAL4/UAS-GFP-Dpp. Bars in A and B correspond to 10 µm.

3.1.2 The DBTS model is inconsistent with the observed receptor

concentrations in shi ts1 clones

Capitalizing on the generated antibodies and staining conditions, the results of

the DBTS model in the presence of a shi ts1
 clone were tested experimentally.

First the levels of surface Tkv were analyzed in shi ts1 mutant clones when

endocytosis is blocked. Fig. 25 shows that in the shi ts1 mutant cells after five

hours at the restrictive temperature of 34 °C (the experimental conditions that

generated the GFP-Dpp shadows in the “shibire shadow assay”), the levels of

total Tkv are not significantly altered. In particular, receptors associated to the

cell membranes are not changed. This result indicates that when endocytosis is
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blocked during five hours, surface receptor levels do not change tenfold or more

as predicted by the DBTS model (see Fig. 17G, page 31).

Fig. 25: Total Thick veins localization in shi 
ts1

 clones
Double labelling showing shi 

ts1
 clones after five hours at the restrictive temperature (see

Materials and Methods) marked by the absence of Nmyc (red), and Tkv immunostaining
(green). Genotype shi 

ts1
 FRT18A/HS-NM8A FRT18A; HS-Flp/+. Note that the levels of Tkv

outlining the cells are not significantly changed within the mutant mosaics. White line
outlines the mutant clone. Bars correspond to 10 µm.

To confirm that the Tkv pool associated to the cell profiles correspond to Tkv on

the cell surface, the antibody directed against the luminal domain of Tkv (see

Materials and Methods) was used with the extracellular immunostaining protocol

(Strigini and Cohen, 2000). Fig. 26 shows that the levels of surface-exposed Tkv

are not increased upon five hours of endocytic block in the shi ts1 mutant clones.
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Fig. 26: Cell surface Thick veins levels in shi 
ts1

 clones
A,B) Double labelling showing shi 

ts1
 clones after five hours at the restrictive temperature

marked by the absence of DsRed (red) and immunostaining of surface exposed Tkv using
the Tkv luminal antibody and the extracellular immunostaining protocol (green; see
Materials and Methods). Genotype: shi 

ts1
 FRT18A/tub-DsRed FRT18A; HSFlp/+. Note that

the levels of surface exposed Tkv are not increased within the shi 
ts1

 mutant clones. White
line outlines the mutant clone. Bars correspond to 50 µm.

Taken together, the observed shadow can therefore not result from a mechanism

based on a high surface Tkv receptor concentration as proposed in the DBTS

models (Kruse et al., 2004).

3.1.3 The DBTS model is inconsistent with the observed receptor

concentrations in the “shibire rescue assay”

The “shibire rescue assay” permits to monitor how blocking endocytosis in the

receiving cells influences the formation of the Dpp gradient on the levels of

intracellular and extracellular ligand (Entchev et al., 2000). In this assay, the

receiving cells cannot perform endocytosis at the restrictive temperature (34 °C)

in a shi ts1 mutant animal, whereas the secreting cells are rescued by expressing

a Dynamin+ transgene and can thus perform endocytosis normally (see Materials

and Methods). At the permissive temperature (25 °C), a GFP-Dpp gradient is

present in the target tissue. After a temperature shift to the restrictive
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temperature, endocytosis is blocked at the receiving territory. Upon six hours of

endocytic block, internalized GFP-Dpp has vanished and no gradient can be

observed (Entchev et al., 2000).

To study whether block of endocytosis at the receiving tissue affects Tkv levels,

the cell surface receptor levels were analyzed in the “shibire rescue assay” after

endocytic block was performed. The corresponding heterozygous sibling larvae

were taken as control. As for total Tkv, no significant increase in the total

receptor levels could be uncovered neither between the shibire rescue disc and

the control disc nor between the wild-type source and the receiving tissue

(Fig. 27).

Fig. 27: Total Thick veins levels in the “shibire rescue assay”
A,B) Double labelling showing GFP-Dpp (green) and immunostaining of Tkv (red) from a
shi 

ts1
; UAS-Dynamin

+
/+; dpp-GAL4/UASGFP-Dpp larva (A), or from a heterozygous shi 

ts1
/+

sibling (B) incubated at 34 °C for six hours. Note a downregulation of Tkv levels of
unknown significance abutting the A/P boundary. C) Intensity profiles of Tkv
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immunostaining in representative discs. Red trace, Tkv in a heterozygous shi 
ts1

/+ sibling.
Blue trace, Tkv in a hemizygous shi 

ts1
 sibling. D) Cell surface receptor distributions

corresponding to the situation in the ‘shibire rescue’ experiment calculated in the DBTS
model containing a region –10 µm<x<0 µm describing secreting cells. Total surface
receptor concentration B+D. Broken lines indicate the concentrations at t=0 given by the
steady-state value obtained for parameter values describing a wild-type tissue. The
endocytosis block is modeled by setting the receptor internalization rates to zero for
x>0 µm. The red lines show the concentration after six hours, the time at which the
experimental observations are made. The calculations are performed in one dimension
with an AOI of size Lx=200 µm. Note that in contrast to the DBTS model, Tkv levels at the
cell surface do not change at the receiving tissue when endocytosis is abolished for six
hours. However, the DBTS model does also not result in increased levels of total Tkv at
the receiving territory (1,2 fold) corresponding to the situation in the ‘shibire rescue’
experiment. Broken lines in A and B delimit the Dynamin

+
 rescued source. Bars

correspond to 10 µm.

In addition, the levels of surface Tkv were not increased in the mutant cells as

determined by extracellular immunostaining (Strigini and Cohen, 2000) using the

antibody raised against the luminal domain of Tkv (Fig. 28).
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Fig. 28 (previous page): Cell surface Thick veins levels in the “shibire rescue assay”
A,B) Double labelling showing GFP-Dpp (green) and immunostaining of cell surface
exposed Tkv using the Tkv luminal antibody and the extracellular immunostaining
protocol (red) from a shi 

ts1
; UAS-Dynamin

+
/+; dpp-GAL4/UAS-GFP-Dpp larva (A), or from a

heterozygous shi 
ts1

/+ sibling (B) incubated at 34 °C for six hours. C) Intensity profiles of
cell surface exposed Tkv immunostaining in representative discs. Red trace, Tkv in a
heterozygous shi 

ts1
/+ sibling. Blue trace, Tkv in a hemizygous shi 

ts1
sibling. D) Cel l

surface receptor distributions corresponding to the situation in the ‘shibire rescue’
experiment calculated in the DBTS model containing a region –10 µm<x<0 µm describing
secreting cells (see Fig. 27). Unlike the DBTS model, surface Tkv levels do not significantly
change in the receiving tissue when endocytosis is abolished for six hours. Broken lines
in A and B delimit the Dynamin

+
 rescued source. Bars correspond to 10 µm.

Comparing the obtained experimental data with the DBTS model leads therefore

to the conclusion that high surface receptor levels cannot account for the

shadows in the “shibire shadow assay”.

3.1.4 The DBTS model is inconsistent with observed extracellular ligand

concentrations in the “shibire rescue assay”

The extracellular GFP-Dpp levels were also investigated in the “shibire rescue

assay”. Here, the DBTS model generates a discontinuity of the levels of

extracellular ligand by a factor of approximately 20 across the shits1 mutant

boundary (Kruse et al., 2004) (Fig. 29D). To monitor the extracellular ligand

levels, GFP immunostaining was performed in the “shibire rescue” disc after six

hours at the restrictive temperature (34 °C). The corresponding heterozygous

sibling larvae were again taken as control. In contrast to the model, amount of

extracellular Dpp decreases at the receiving cells and the range of the

extracellular gradient is reduced after six hours of block of endocytosis (Fig. 29).

This indicates that a block of endocytosis does not lead to the sequestration of

Dpp in the mutant territory.
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Fig. 29: Extracellular GFP-Dpp levels in the “shibire rescue assay”
A,B) Double labelling showing GFP-Dpp (green) and immunostaining of extracellular GFP-
Dpp (red) from a shi 

ts1
; UAS-Dynamin

+
/+; dpp-GAL4/UAS-GFP-Dpp larva (A) or from a

heterozygous shi 
ts1

/+ sibling (B) incubated at 34 °C for six hours. Note that the range of
extracellular GFP-Dpp in the hemizygous wing disc is reduced after six hours of block at
the restrictive temperature. (C) Intensity profiles of extracellular GFP immunostaining in
representative discs. Red trace, GFP in a heterozygous sibling. Blue trace, GFP in a
hemizygous sibling. Green box, secreting cells. D) Total extracellular ligand concentration
A+B, corresponding to the situation in the ‘shibire rescue’ experiment calculated in the
DBTS model containing a region –10 µm<x<0 µm describing secreting cells (see Fig. 25).
Unlike the DBTS model, extracellular GFP-Dpp drops significantly in the receiving tissue
when endocytosis is abolished. Broken lines in A and B delimit the Dynamin

+
 rescued

source. Bars correspond to 10 µm.

Taken together, neither the surface receptor levels were elevated in conditions

where endocytosis was abolished nor a massive accumulation of extracellular

GFP-Dpp could be observed under this situation. The comparison of

experimental data and theory therefore leads to the conclusion that high surface
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receptor levels and massive accumulation of extracellular GFP-Dpp cannot be

the reason for the shadows in the “shibire shadow assay”.

3.2 Testing experimentally the role of Dynamin-mediated endocytosis in Dpp

gradient formation - Determining the effective diffusion coefficient of

GFP-Dpp

To study directly the role of Dynamin-mediated endocytosis in Dpp gradient

formation, the dynamics of GFP-Dpp movement in wing imaginal discs were

analyzed in vivo. To do this, Fluorescence Recovery After Photobleaching

(FRAP) experiments were performed (see Materials and Methods) (Axelrod et

al., 1976; Koppel et al., 1976). The irreversible photobleaching of fluorescent

molecules within a restricted region of a cell or tissue allows measuring two-

dimensional lateral mobility of the molecule of interest (Lippincott-Schwartz et al.,

2001; Reits et al., 2001). In particular, movement of GFP-Dpp was monitored in

conditions where endocytosis at the receiving cells was either normal or blocked

(“shibire rescue assay”). Third instar larval imaginal discs expressing GFP-Dpp at

the domain of endogenous Dpp were used. Adjacent to the GFP-Dpp source, a

narrow stripe of 10 µm (i. e. 3 - 4 receiving cells wide) was photobleached using

a 488 nm laser. After photobleaching, the time course of the fluorescence

recovery within this region was monitored by confocal time-lapse microscopy

(see Materials and Methods as well as listed in the Appendix). The obtained

FRAP recovery curves were quantitatively evaluated using a one-dimensional

diffusion equation. The equation was solved assuming a homogeneous initial

distribution inside and outside of the bleached area with a step like transition at

its boundary. The resulting fitting curve for the averaged fluorescence in the

region of interest was as follows:
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where erf denotes the error function, ∫
−

=

x

y dye
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2
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erf(x)
π

, D is the diffusion

coefficient, k is the degradation rate, ω is the width of the photobleached stripe,

and c is an additional fit parameter necessary to account for the fact that there is

some remaining fluorescence after bleaching. The resulting apparent or effective

diffusion coefficient (D’) represents the driving force of the FRAP recovery of

GFP-Dpp comprising free ligand diffusion as well as directed motion or binding

events (Soumpasis, 1983).

First GFP-Dpp expressing wing imaginal discs at 25 °C were considered

(Fig. 30). The region of interest next to the GFP-Dpp secreting cells was rapidly

bleached using a high-intensity 488 nm laser pulse for approximately 30

seconds. Less than 20 % of the initial averaged fluorescence within the region

remained after photobleaching. GFP-Dpp from the neighbouring areas moved

subsequently into the bleached area. Recovered GFP-Dpp appears first as a

diffuse fluorescent signal and later as bright fluorescent punctate structures. The

kinetics of GFP-Dpp recovery correspond to a diffusion coefficient of

D’= 0,0107 µm2/s ± 0,003 (n=4). The obtained value is approximately 1.000 fold

lower than predicted for a molecule the size and shape of Dpp in solution

(Groppe et al., 1998), probably reflecting Dpp binding to the receptor, transient

interaction with the extracellular matrix, and cytoskeleton mediated movement.

Fig. 30 (next page): FRAP of GFP-Dpp at 25 °C
Third instar wing imaginal disc pouch projection (out of six individual sections)
expressing GFP-Dpp (green) from a dpp-GAL4/UAS-GFP-Dpp larva. The GFP-Dpp gradient
was imaged before (A), and 0 (B), 10 (C), 20 (D), 30 (E), 40 (F), and 50 min (G) after
photobleaching of GFP-Dpp in a narrow stripe of 10 µm width. H) The recovery of the
fluorescent signal was measured by confocal time-lapse microscopy and the fitting curves
of the normalized fluorescence (n.f.) values over time in seconds (s) were plotted (see
Materials and Methods). For quantitation of recovery kinetics, four independent FRAP
time-lapse movies were analyzed. The resulting effective diffusion coefficient was
D’= 0,0107 µm

2
/s ± 0,003 (n=4). Bars correspond to 10 µm.
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Next the recovery kinetics of a “shibire rescue” wing imaginal disc at the

restrictive temperature (34 °C for at least 10 minutes before photobleaching)

were determined (Fig. 31). Under this condition, the receiving cells cannot

perform endocytosis in a shi ts1 mutant animal, whereas the secreting cells are

rescued by expressing a Dynamin+ transgene and can thus perform endocytosis

normally (see Materials and Methods).
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Fig. 31:  FRAP of GFP-Dpp in a “shibire rescue” wing disc at 34 °C
Third instar wing imaginal disc pouch projection (out of six individual sections)
expressing GFP-Dpp (green) from a shi 

ts1
; UAS-Dynamin

+
/+; dpp-GAL4/UAS-GFP-Dpp

larva. The GFP-Dpp gradient was imaged before (A), and 0 (B), 10 (C), 20 (D), 30 (E), 40 (F),
and 50 min (G) after photobleaching of GFP-Dpp in a narrow stripe of 10 µm width. H) The
recovery of the fluorescent signal was measured by time-lapse microscopy and the curves
of the normalized fluorescence in % to the pre-bleached fluorescence values were plotted
over time in seconds (s) (see Materials and Methods). Five independent FRAP movies
showed similar absence of recovery. Bars correspond to 10 µm.

After photobleaching, the time course of the fluorescence recovery within this

region was monitored with low levels of 488 nm light and essentially no recovery

could be observed when endocytosis was blocked in the bleached region

(Fig. 31). The resulting FRAP curves revealed diffusion coefficients close to zero.
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As controls, the recovery kinetics of GFP-Dpp at 34 °C as well as “shibire rescue”

wing imaginal discs at the permissive temperature (25 °C) were determined

(Fig. 32 and 33).

Fig. 32: FRAP of GFP-Dpp at 34 °C
Third instar wing imaginal disc pouch projection (out of six individual sections)
expressing GFP-Dpp (green) from a dpp-GAL4/UAS-GFP-Dpp larva. The GFP-Dpp gradient
was imaged before (A), and 0 (B), 10 (C), 20 (D), 30 (E), 40 (F), and 50 min (G) after
photobleaching of GFP-Dpp in a narrow stripe of 10 µm width. H) The recovery of the
fluorescent signal was measured by confocal time-lapse microscopy and the fitting curves
of the normalized fluorescence (n.f.) values over time in seconds (s) were plotted (see
Materials and Methods). For quantitation of recovery kinetics, three independent FRAP
time-lapse movies were analyzed. The resulting effective diffusion coefficient was
D’= 0,0078 µm

2
/s ± 0,002 (n=3). Bars correspond to 10 µm.
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Fig. 33: FRAP of GFP-Dpp in a “shibire rescue” wing disc at 25 °C
Third instar wing imaginal disc pouch projection (out of six individual sections)
expressing GFP-Dpp (green) from a shi 

ts1
; UAS-Dynamin

+
/+; dpp-GAL4/UAS-GFP-Dpp

larva. The GFP-Dpp gradient was imaged before (A), and 0 (B), 10 (C), 20 (D), 30 (E), 40 (F),
and 50 min (G) after photobleaching of GFP-Dpp in a narrow stripe of 10 µm width. H) For
quantitation of recovery kinetics, three independent FRAP time-lapse movies were
analyzed. The resulting effective diffusion coefficient was D’= 0,0063 µm

2
/s ± 0,0014 (n=3).

Bars correspond to 10 µm.

The recovery kinetics of GFP-Dpp at 34 °C are in the range of the GFP-Dpp ones

at 25 °C (D’= 0,0078 µm2/s ± 0,002 (n=3)), implying that under this experimental

conditions ligand movement is still normal in wild-type receiving cells performing

endocytosis. Furthermore, “shibire rescue” wing imaginal discs at the permissive

temperature (25 °C) exhibit similar values for the effective diffusion coefficient
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(D’= 0,0063 µm2/s ± 0,0014 (n=3)), indicating that the chosen experimental

conditions are appropriate to study the dynamics of GFP-Dpp under conditions

where endocytosis is abolished in the receiving territory. Interestingly, similar

recovery kinetics were obtained when FRAP experiments were performed in

“shibire rescue” wing imaginal discs at 32 °C (D’= 0,0061 µm2/s ± 0,004 (n=3))

(Fig. 34), indicating that endocytosis is not blocked at this temperature.

Fig. 34: FRAP of GFP-Dpp in a “shibire rescue” wing disc at 32 °C
Third instar wing imaginal disc pouch projection (out of six individual sections)
expressing GFP-Dpp (green) from a shi 

ts1
; UAS-Dynamin

+
/+; dpp-GAL4/UAS-GFP-Dpp

larva. The GFP-Dpp gradient was imaged before (A), and 0 (B), 10 (C), 20 (D), 30 (E), 40 (F),
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and 50 min (G) after photobleaching of GFP-Dpp in a narrow stripe of 10 µm width. H) For
quantitation of recovery kinetics, three independent FRAP time-lapse movies were
analyzed. The resulting effective diffusion coefficient was D’= 0,0061 µm

2
/s ± 0,004 (n=3).

Bars correspond to 10 µm.

Finally, a temperature-shift experiment was performed, where “shibire rescue”

wing imaginal discs were imaged at 34 °C before and immediately after

photobleaching. Following the dynamics of GFP-Dpp for approximately

10 minutes at the restrictive temperature, the wing imaginal disc was then cooled

down gradually to 25 °C. These experimental conditions would allow monitoring

fluorescence recovery of the bleached area after release of the temperature

based endocytosis block at the receiving tissue. Indeed, after cooling down the

tissue, slow recovery of GFP signal was recorded in the bleached area (Fig. 34).

After approximately 10 minutes of gradual temperature decrease unbleached

GFP-Dpp ligands from the neighbouring areas moved into the bleached area first

as diffuse fluorescent signal and later as bright fluorescent punctate structures

(Fig. 35). However, two additional experiments resulted in variable recovery

kinetics. This is probably caused by the fact that the temperature control during

the downshift was not reliable. Further work at the technical level will be

necessary to validate the obtained result.

Fig. 35 (next page): FRAP of GFP-Dpp in a “shibire rescue” wing disc at 34 °C followed by
a gradual decrease to 25 °C

Third instar wing imaginal disc pouch projection out of six individual sections expressing
GFP-Dpp (green) from a shi 

ts1
; UAS-Dynamin

+
/+; dpp-GAL4/UAS-GFP-Dpp larva. The GFP-

Dpp gradient was imaged before (upper panel), immediately, 10 min, 20 min, 30 min,

40 min, and 50 min after photobleaching of GFP-Dpp in a narrow stripe of 10 µm width.
Release of temperature block occurred after 10 min of photobleaching. Note that a gradual
increase of normalized fluorescence (n.f.) over time in seconds (s) can be observed after
approximately 10 min of gradual temperature drop. Bars correspond to 10 µm.
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Taken together, the FRAP experiments demonstrate that a blockage of

endocytosis by the Dynamin mutant shibire occurs very fast, approximately

10 minutes are sufficient to impair endocytosis. In addition, FRAP recovery

kinetics reveal that blockage of endocytosis at the receiving territory stops GFP-

Dpp movement: neither diffuse fluorescent signal nor bright fluorescent punctate

structures are present in the bleached Dynamin mutant shibire tissue. This

suggests that endocytosis is essential for Dpp propagation throughout the target

tissue to form a long-range gradient.
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Unlike the “shibire rescue assay”, where endocytosis is blocked for six hours to

monitor how blocking endocytosis in the receiving cells influences the formation

of the Dpp gradient on the levels of intracellular and extracellular ligand (Entchev

et al., 2000), the FRAP experiment allows to analyze the effect of blocking

endocytosis on Dpp movement directly. In addition, a long endocytic block makes

it difficult to interpret the obtained results, since during this time period the

steady-state distribution of the ligand, the receptor, members of the extracellular

matrix, and cytoskeleton-mediated movement could be changed. In my case,

FRAP analysis of “shibire rescue” discs revealed that block of endocytosis after a

short time of only 10 minutes led to the rapid impairment of Dpp movement.

The FRAP recovery kinetics indicate that Dynamin-mediated endocytosis plays a

key role in Dpp gradient formation. This changes the working hypothesis that

both transport mechanisms, extracellular diffusion and planar transcytosis,

contribute equally to the spreading of the morphogen throughout the tissue.

However, more experiments need to be done to validate the conclusion that

endocytic trafficking through the receiving cells is the major mechanism for Dpp

gradient formation.

3.3 Characterizing Dpp trafficking along the endocytic pathway

3.3.1 Establishing antibodies to detect Rab proteins

Based on the presented results, the key role of endocytosis during Dpp

movement suggests that Dpp trafficking through the endocytic pathway is

essential for long-range gradient formation. Trafficking of Dpp at the receiving

cells would involve a number of intermediate compartments controlled by Rab

proteins (reviewed in Zerial and McBride, 2001). In this context, previous studies

provided evidence that Rab proteins play a critical role in the Dpp signalling

range (Entchev et al., 2000). In the “Rab mutant assay”, mutants of Rab5 or

Rab7 were expressed in the receiving cells. When endocytosis was impaired by
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expressing dominant negative Rab5 or degradation was enhanced by expressing

dominant gain of function Rab7, the signalling range was reduced. Conversely,

an enhanced endocytosis by overexpressing Rab5 led to an expansion of the

signalling range (Entchev et al., 2000). This data led to the conclusion that Dpp

transport involves Rab5- and Rab7-positive compartments. However, Dpp

transport through Rab-positive endosomes has not yet been directly monitored.

To study the transport of Dpp through endosomes in wing imaginal discs,

antibodies were generated that detect endogenous Rab5-, Rab7-, and Rab11

protein levels controlling early, late, and recycling endosomal trafficking (Fig. 36).

In addition, in vivo internalization assays were developed that allow monitoring

the kinetics of cargo trafficking along the different endocytic compartments (see

Materials and Methods).

First the affinity-purified antibodies were characterized. In a set of experiments

the specificity of the different Rab antibodies were tested: (1) the antibodies

detect overexpression levels of Rab5GFP, Rab7GFP, and Rab11GFP, induced

by the GAL4 system using a vg-GAL4 driver (Fig. 36A, 36C, and 36E), (2) and

are titrated out by incubating them, prior to immunostaining, with the particular

peptide used to raise the different antibodies (Fig. 36B, 36D, and 36F) (see

Materials and Methods).
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Fig. 36 (previous page): Detecting Rab5/Rab7/Rab11 in Drosophila wing disc
A-F) Rab immunostainings of third instar wing discs. A,B) Rab5 staining of wing discs
expressing UAS-Rab5GFP under the vg-GAL4 driver using anti-Rab5 (A) or anti-Rab5
blocked by its corresponding peptide antigen (B). C,D) Rab7 staining of wing discs
expressing UAS-Rab7GFP under the vg-GAL4 driver using anti-Rab7 (C) or anti-Rab7
blocked by its corresponding peptide antigen (D). E,F) Rab11 staining of wing discs
expressing UAS-Rab11GFP under the vg-GAL4 driver using anti-Rab11 (E) or anti-Rab5
blocked by its corresponding peptide antigen (F). G-I) z-sections of wing discs expressing
UAS-Rab5GFP (G), UAS-Rab7GFP (H), and UAS-Ra11GFP (I) under the vg-GAL4. Note that
the different anti-Rab antibodies detect expression levels of RabGFPs induced by the
GAL4 system as well as endogenous levels in the wild-type territory, whereas they are
abolished when performing a protocol where prior to immunostaining the antibodies were
incubated with their corresponding target polypeptide. Other polypeptides did not have
any effect (see Materials and Methods). Bars correspond to 10 µm.

All Rab immunostainings in the developing wing cells reveal punctate patterns of

endogenous Rab5, Rab7, and Rab11 in the wild-type territory (Fig. 36). These

structures correspond to sorting, recycling, and late endosomes to which Rab5,

Rab11 and Rab7 mainly associate in steady-state conditions as previously

described in mammalian cell culture (Bucci et al., 1992; Stenmark et al., 1994;

Chavrier et al., 1990; Feng et al., 1995; Ullrich et al., 1996). Whereas Rab5 and

Rab7 positive compartments are localized throughout the apico-basal axis of the

wing epithelium (Rab5 compartments are more enriched at the apical and basal

part) (Fig. 36G and 36H), Rab11 positive compartments accumulate mainly

apically (Fig. 36I). Consistently, in mammalian epithelial cells Rab11 is

associated to a subapical compartment (SAC) or apical recycling endosome

(ARE) which has been proposed to mediate the recycling and transcytosis of

endocytic cargo in epithelial cells (reviewed in Hoekstra et al., 2004). Like in

mammalian cells, the recycling endosome labelled by Rab11 is associated to the

Golgi apparatus (Urbe et al., 1993; Ullrich et al., 1996). In contrast, the early

endosome marked by Rab5 and the late endosome enriched by Rab7 are not in

close proximity to the Golgi compartment (Fig. 37).
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Fig. 37: Rab11 is associated with the Golgi apparatus in Drosophila wing disc
A,B, and C) Double labelling of wild-type third instar wing discs showing Golgi
immunostaining (green) and Rab immunostaining (red) using anti-Rab5 (A), anti-Rab7 (B)
or anti-Rab11 antibody (C). The Golgi membranes were stained with a Golgi-specific
antibody that recognizes a 120 kDa integral Golgi membrane protein, colocalizing with

rabbit anti Drosophila β-COP antibodies by fluorescence microscopy in Drosophila S2

cells (Stanley et al., 1997). Note that Rab5 and Rab7 endosomes poorly colocalize with
Golgi (less than 5 % (n=3)), whereas Rab11 positive compartments are in close proximity
to Golgi membranes (33 % ± 6 (n=3). Bars correspond to 10 µm.
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3.3.2 Establishing an in vivo internalization assay

In order to understand the role of endocytic trafficking during signalling mediated

by Dpp, the endocytic compartments were further characterized by an in vivo

internalization assay. Developing fluid phase endocytosis assays using Dextran

coupled to various dyes in pulse-chase experiments allowed monitoring the

kinetics of fluid phase trafficking through the endocytic compartments during the

signalling event (see Materials and Methods) (Berlin and Oliver, 1980; Ohkuma

and Poole, 1978). Two distinct endocytic compartments could be distinguished in

vivo and after fixation in combination with Rab5 and Rab7 immunostaining: an

early and a late endocytic compartment (Fig. 38). After 10 minutes of Dextran

pulse, the soluble marker is present in punctate structures (Fig. 38A),

representing early endosomes containing Rab5 (Fig. 38B). After subsequent

chase for 60 minutes at room temperature, Dextran reaches late vesicles that are

distinct from early endocytic compartments (Fig. 38A). A subpopulation of those

vesicles contains Rab7 (Fig. 38E). Hence, the soluble marker Dextran follows the

endocytic pathway to early endosomes and then to late endocytic compartments.

Fig. 38 (next page): Distinguishing between distinct early and late endocytic
compartments in Drosophila wing disc

A) Double labelling to visualize early endocytic compartments in a wild-type third instar
wing disc where Texas Red Dextran accumulates after 10 minutes incubation (red). Double
labelling to visualize late endocytic compartments in a wild-type third instar wing disc
where Fluorescein Dextran accumulates after 10 minutes incubation and 60 minutes chase
(green). Note that there is poor colocalization (less than 5 % (n=3)) of Texas Red Dextran
with Fluorescein Dextran (merge in the right panel).
B,C) Double labelling in a wild-type third instar wing disc to visualize early endocytic
compartments where Texas Red Dextran accumulates after 10 minutes incubation (green)
in combination with Rab immunostaining (red) using anti-Rab5 (B) or anti-Rab7 (C). Note
that colocalization of Rab5 with Dextran can be observed in 95 % ± 3 (n=3) of the punctate
structures, whereas Rab7 endosomes poorly colocalize with Dextran (less than 5 % (n=3)).
D,E) Double labelling in a wild-type third instar wing disc visualizing late endocytic
compartments where Texas Red Dextran accumulates after 10 minutes incubation and
60 minutes chase (green) in combination with Rab immunostaining (red) using anti-
Rab5 (D) or anti-Rab7 (E). Note that colocalization of Rab7 with Dextran can be observed in
80 % ± 10 (n=3) of the punctate structures, whereas Rab5 endosomes poorly colocalize
with Dextran (less than 5 % (n=3)). Bars correspond to 10 µm.
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3.3.3 GFP-Dpp is localized in endosomal structures at the receiving cells

Capitalizing on the developed endocytic markers, the distribution of GFP-Dpp at

the receiving cells was analyzed. Since more than 90 % of GFP-Dpp appears at

the receiving cells primarily in punctuate structures confined to the apical part of

the columnar wing imaginal disc epithelium (Entchev et al., 2000), apical GFP-

Dpp was monitored in combination with the different subpopulations of

endosomes marked by Rab immunostaining. In the most apical part of the

epithelial cells, the ligand is present in Rab11 endosomes, representing

subapical compartments (SAC) or apical recycling endosomes (ARE). In

addition, GFP-Dpp accumulates in early and late endosomes visualized by Rab5

and Rab7 immunostaining, respectively (Fig. 39).

Fig. 39: GFP-Dpp is trafficking through Rab5, Rab7, and Rab11 endosomes in the
receiving cells

A,B and C) Double labelling showing GFP-Dpp (green) in combination with Rab
immunostaining (red) using anti-Rab11 (A), anti-Rab5 (B) or anti-Rab7 (C) from a dpp-
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GAL4/UAS-GFP-Dpp larva. Note that GFP-Dpp is colocalizing with Rab11 positive
compartments (22 % ± 4 (n=3)) at the most apical part of the epithelial receiving cells (see
right illustration). In addition, GFP-Dpp can be found in Rab5 (38 % ± 6 (n=3)) and Rab7
(24 % ± 3 (n=3)) positive endosomes at the apical part of the receiving cells. Bars
correspond to 10 µm.

GFP-Dpp distribution was also examined by internalized Dextran, performed

under experimental conditions where the fluid phase marker labelled either the

early (Fig. 40A) or the late endosomal compartments (Fig. 40B) (see Materials

and Methods). In agreement with the Rab immunostainings, GFP-Dpp

colocalizes with internalized Dextran marking the early as well as late

endosomes.

Fig. 40: GFP-Dpp is localized in endocytic compartments marked by Dextran uptake
A,B) Double labelling in a dpp-GAL4/UAS-GFP-Dpp third instar wing disc showing GFP-
Dpp (green) and early endocytic compartments where Texas Red Dextran (red)
accumulates after 10 minutes incubation (A) and late endocytic compartments where
Texas Red Dextran (red) accumulates after 10 minutes incubation and 60 minutes chase
(B), respectively. Note that GFP-Dpp can be found in early (40 % ± 5 (n=3)) as well as late
endocytic compartments (31 % ± 3 (n=3)) at the apical part of the epithelial receiving cells.
Bars correspond to 10 µm.
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Taken together, most of GFP-Dpp (around 80 %) traffics through endosomes

marked by different Rab antibodies and internalized fluorescent Dextran. A

significant pool of the ligand accumulates in early (38 % ± 6) and late endosomes

(24 % ± 3). Furthermore, GFP-Dpp association with Rab11 (22 % ± 4) in the

receiving cells prompts the possibility that the recycling of the ligand occurs via

apical recycling endosomes (ARE).

The fact that a minor pool of Dpp is not present in these compartments implies

that other endocytic compartments could control the trafficking of the ligand along

the endocytic pathway. Recent work in mammalian cells demonstrated that

TGF-β receptors are internalized into both caveolin- and EEA1-positive

endosomes and reside in both lipid rafts and non-rafts membrane domains

(Di Guglielmo et al., 2003). It will be interesting to analyze whether Dpp can also

traffic through a clathrin-independent pathway in wing imaginal epithelial cells.

3.4 Establishing a Dpp recycling assay

To address the recycling event of Dpp at the receiving cells, photoactivatable

GFP (PAGFP) fused to Dpp was used. The strategy was to follow once

photoactivated Dpp upon passage through an endosome at the receiving cell and

monitor its movement while trafficking from the endosome to the neighbouring

cells. In the following chapter, I demonstrate that PAGFP-Dpp can be

photoactivated when expressed in wing imaginal discs. In addition, the signalling

activity of the PAGFP-Dpp chimera was validated. Photoactivating PAGFP-Dpp

in the whole wing pouch except a small patch of cells allowed us to study the

dynamics of PAGFP-Dpp as performed in FRAP experiments for GFP-Dpp.

However, activation of a small region (i. e. several cells) in the wing pouch did

not result in detectable PAGFP-Dpp movement in the non-photoactivated cells.

More analysis needs to be done to visualize PAGFP-Dpp while moving through

the receiving cells.
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3.4.1 Generating a photoactivatable GFP-Dpp (PAGFP-Dpp) fusion

My results indicate that endocytosis is required for long-range Dpp transport. In

addition, GFP-Dpp traffics through Rab positive compartments at the receiving

cells. In particular, the ligand is associated to Rab11 enriched apical recycling

endosomes (ARE) which prompts the possibility that Dpp undergoes consecutive

rounds of internalization and resecretion through the ARE in order to spread

through the target tissue. However, the Dpp resecretion event itself has not yet

been directly monitored.

To address specifically the recycling at the receiving cells, a strategy was

followed to photouncage Dpp upon passage through an endosome at the

receiving cell and monitor its movement while trafficking from the endosome. To

do this, an approach was taken where photoactivatable GFP (PAGFP) was fused

to Dpp. Previous work reported a photoactivatable variant of the jellyfish

Aequorea victoria green fluorescent protein (PAGFP) that after intense irradiation

with 413 nm light, increases fluorescence 100 times when excited by 488 nm

light (Patterson and Lippincott-Schwartz, 2002). Photoactivation is thought to

involve a shift in the chromophore population from the neutral phenolic form to

the anionic phenolate form. These characteristics offer the possibility to explore

the protein dynamics of Dpp by tracking photoactivated ligand that is the only

visible GFP in the tissue.

First a cytosolic PAGFP was generated to analyze the characteristics of

photoactivation in S2 cells (see Materials and Methods). To study the recycling

event of Dpp in wing imaginal discs PAGFP was introduced like GFP (Entchev et

al., 2000) in the proform behind the second furin cleavage position (Cui et al.,

1998; Cui et al., 2001; Entchev et al., 2000). This way, PAGFP remains tagged at

the N-terminus of the processed secreted Dpp protein (see Materials and

Methods) (Fig. 41).
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Fig. 41: Generating PAGFP-Dpp
A) Insertion of PAGFP within the Dpp mature protein (red). PAGFP is inserted at the amino
acid position 465. The furin cleavage sequence which processes Dpp is depicted in yellow.
B) Like Dpp, PAGFP-Dpp is released after furin cleavage at the Trans-Golgi network (Cui et
al., 1998) which allows us to follow secreted Dpp after photoactivation.

3.4.2 Photoactivating PAGFP and PAGFP-Dpp in S2 cells

To analyze the characteristics of photoactivation, the rapid conversion of

photoactivatable molecules to a green fluorescent state by intense illumination,

the cytosolic PAGFP and PAGFP-Dpp were transfected in Drosophila S2 cells

(see Materials and Methods). The transfected cells were irradiated for several

seconds with 400 nm light of a 100 W Hg2+ lamp. Before photoactivation, very

little fluorescence at 488 nm excitation was seen in the cells expressing cytosolic

PAGFP or PAGFP-Dpp (Fig. 42A and 42C). Upon photoactivation with 400 nm

light, fluorescence increased at least 50 fold for cytosolic PAGFP and 20 fold for

PAGFP-Dpp under 488 nm excitation (Fig. 42B and 42D).

Fig. 42 (next page): Photoactivation and imaging in vivo of PAGFP and PAGFP-Dpp in S2
cells

A,B) Cotransfected S2 cells with cytosolic PAGFP under 488 nm excitation (left panel) and
DsRed (right panel) prior (A) and after short illumination with 400 nm light (B).
C,D) Cotransfected S2 cells with PAGFP-Dpp under 488 nm excitation (left panel) and
DsRed (right panel) prior (C) and after short illumination with 400 nm light (D). PAGFP-Dpp
is probably present in secretory vesicles in S2 cells.
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3.4.3 Visualizing PAGFP and PAGFP-Dpp in wing imaginal discs

We then tested whether cytosolic PAGFP and PAGFP-Dpp can be

photoactivated when expressed in Drosophi la  wing imaginal discs.

First cytosolic PAGFP was considered. Photoactivation was performed in fixed

tissue. After 400 nm illumination, the fluorescence increased up to at least 20 fold

for cytosolic PAGFP when excited with 488 nm light (Fig. 43). However, basal

photoactivation was already visible in the surrounding tissue which was probably

caused by exposition to daylight during dissection procedure.

Fig. 43 (next page): Photoactivation and imaging of PAGFP in a fixed wing imaginal disc
Photoactivation of cytosolic PAGFP in an act-GAL4/UAS-PAGFP third instar wing disc.
After short illumination with 400 nm light cytosolic PAGFP is visible in a restricted area
(L.P.: Periklis (Laki) Pantazis) under 488 nm excitation. Bar corresponds to 50 µm.
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Next PAGFP-Dpp was tested when expressed in wing imaginal discs (Fig. 44).

PAGFP-Dpp was driven in the endogenous Dpp expression domain using the

GAL4 gene under the spatial and temporal control of the dpp promoter (dpp-

GAL4). After photoactivation, fluorescence of PAGFP-Dpp increased in the

photoactivated region (Fig. 44B). Like GFP-Dpp, PAGFP-Dpp fluorescence

allows subdivision of the wing pouch in two domains: the bright fluorescent signal

in the secreting cells and the fluorescent PAGFP-Dpp punctate structures at the

receiving territory. Hence PAGFP is secreted from the Dpp expression domain

and spreads into the developing target tissue.

Fig. 44 (next page): Photoactivation and imaging of PAGFP-Dpp in a fixed wing imaginal
disc

A,B) Photoactivation of PAGFP-Dpp (green) in an UAS-PAGFP; dpp-GAL4/+ third instar
wing disc prior (A) and after short illumination with 400 nm light (B). Cell profiles are
labelled with phalloidin (red). Bars correspond to 50 µm.
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3.4.4 A functional PAGFP-Dpp fusion

Consistent with GFP-Dpp results, PAGFP-Dpp is secreted and can be seen in

endocytic punctate structures at the receiving cells. In addition, PAGFP-Dpp

overexpression in the endogenous domain with the dpp-GAL4 driver in a

wild-type background also causes imaginal disc overgrowth. To evaluate the

signalling activity of PAGFP-Dpp, a rescue experiment was performed in Dpp-

defective dppd8/dppd12
 mutant flies (see Materials and Methods). Expression of

PAGFP-Dpp in the endogenous Dpp domain restored near normal growth and

patterning of the wing imaginal disc in this mutant background (Fig. 45). The

PAGFP-GFP activity gradient was visualized in rescued wing discs using an

antibody that recognizes phosphorylated Mad (pMad) (Tanimoto et al., 2000).

dppd8/dppd12 wing discs have small wing primordia and express very low levels of

pMad (Fig. 45A), consistent with an absence of Dpp activity. Nuclear pMad

expression was restored in the rescued wing disc (Fig. 45B). Hence, PAGFP-

Dpp is capable of forming a long-range activity gradient in the wing imaginal disc.
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Fig. 45: Rescue of dpp
d8

/dpp
d12

 mutant wing discs by expression of PAGFP-Dpp under
dpp-GAL4 control.

A,B) wing disc without rescue (A) and with rescue by expression of PAGFP-Dpp under
dpp-GAL4 control (B). Double immunolabelling detecting the activity of the PAGFP-Dpp by
pMad (red), and photoactivated (400 nm light for several seconds in a restricted region)
PAGFP-Dpp visible under 488 nm excitation (green). Note that expression of PAGFP-Dpp
in a disc lacking endogenous Dpp (Genotype: UAS-PAGFP-Dpp/+; dpp

d8
/dpp

d12
; dpp-

GAL4/+) restores nuclear pMad expression. Dpp-dependent pMad expression can be seen
several cell diameters away from the Dpp production source. However, Dpp-independent
pMad expression can be observed outside the wing pouch in the disc lacking endogenous
Dpp. Wing imaginal disc orientation: posterior to the right. The shape of the dpp

d8
/dpp

d12

mutant wing disc is indicated with a white broken line. Bars correspond to 50 µm.

3.4.5 Dynamics of photoactivated PAGFP-Dpp

Activation of PAGFP-Dpp in a small patch of cells in the wing pouch did not result

in detectable PAGFP-Dpp movement in the non-photoactivated cells. However,

PAGFP signal in the non-photoactivated cells could only be observed in vivo

when a major part of the PAGFP-Dpp pool was activate, i. e. when almost the

whole wing pouch was activated. More analysis will be necessary to visualize a

small pool of activated PAGFP-Dpp while moving through the receiving cells.

Therefore, to determine whether PAGFP-Dpp photoactivation can be used as a

tool for measuring protein dynamics within living Drosophila wing imaginal discs,

a major pool of PAGFP-Dpp ligands was photoactivated in the receiving tissue

and the recovery in a small non-photoactivated region observed (Fig. 46 and 47).

Under low levels of 405 nm excitation, PAGFP-Dpp can be visualized in vivo as

bright fluorescent signal marking the secreting cells and as dimmer fluorescent

punctate structures at the receiving territory (Fig. 46C). Under 488 nm excitation,

PAGFP-Dpp shows no or little fluorescence that was probably caused by

exposition to daylight during dissection procedure (Fig. 46A).
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Fig. 46: In vivo imaging of PAGFP-Dpp in a living wing imaginal disc
A,C) PAGFP-Dpp in an UAS-PAGFP-Dpp; dpp-GAL4/+ third instar wing disc was imaged
with low levels of 405 nm excitation (C) and 488 nm excitation (A) before photoactivation
within the entire wing pouch except the outlined white region. B) Cell profiles are labelled
with FM4-64 (red). Note that 405 nm excitation allows visualization and therefore
localization of PAGFP-Dpp prior to its photoactivation. Bar corresponds to 30 µm.

After approximately 10 seconds of photoactivation with high levels of 405 nm

light within the whole wing pouch except the region outlined in white (Fig. 46A

and 47), the pool of PAGFP-Dpp became fluorescent under 488 nm excitation

(Fig. 47). The imaging with low levels of 488 nm light showed movement of the

photoactivated PAGFP-Dpp ligands into the not activated receiving territory,

resulting in an effective diffusion coefficient similar to the previously determined

one in FRAP experiments for GFP-Dpp at 25 °C (Fig. 47B).
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Fig. 47: Photoactivation and in vivo imaging of PAGFP-Dpp in a living wing imaginal disc
A) PAGFP-Dpp in an UAS-PAGFP-Dpp; dpp-GAL4/+ third instar wing disc was imaged with
low levels of 488 nm excitation 0, 15, 30, and 45 min after photoactivation.
B) Kinetics of recovery of photoactivated PAGFP-Dpp in the outlined receiving tissue. The
fluorescence intensity in the non-photoactivated region was measured and plotted as
normalized fluorescence (n.f.) over time in seconds (s). The effective diffusion coefficient
is approximately D’= 0,0204 µm

2
/s +/- 0,009 (see Materials and Methods). Bars correspond

to 15 µm.
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3.4.6 Subcellular photoactivation of PAGFP with a confocal laser-scanning

miscroscope (C-LSM)

To address specifically the recycling of Dpp at the target tissue, the

photoactivation of PAGFP-Dpp has to occur upon passage through endosomes

at a receiving cell. This way, the movement of photouncaged ligand can be

tracked while trafficking from the endosome. To do this, subcellular

photoactivation of a confocal laser-scanning microscope (C-LSM) was tested.

The cytosolic PAGFP was considered. Photoactivation was performed in fixed

tissue. After illumination with high levels of 405 nm light for one second the

fluorescence increased up to at least 20 fold for cytosolic PAGFP when excited

with 488 nm light (Fig. 48).

Fig. 48: Subcellular photoactivation of PAGFP in a wing imaginal disc with confocal LSM
excitation

A) PAGFP in an UAS-PAGFP; act-GAL4/+ third instar wing disc was imaged with 488 nm
excitation after photoactivation with high levels of 405 nm light with a confocal LSM within
a single cell. Cell profiles are labelled with Fasciclin III (red) immunolabelling. B) Axial view
of the photoactivated region. Whereas a confocal LSM can activate cytosolic PAGFP
within a single cell, the cross-sectional view through the wing epithelium shows that the
activation event is not restricted to the focal plane. Bar in A corresponds to 2 µm.
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The confocal LSM beam can activate cytosolic PAGFP within a single cell

(Fig. 48A). However, this excitation event is not restricted to the focal plane. The

z-section through the Drosophila wing epithelium shows that the activation beam

cannot ‘select’ an isolated slice within the tissue. A cone shaped activation profile

of cytosolic PAGFP is visible which spans over 2 µm in x direction and over

approximately 15 µm in z direction (Fig. 48B).

Taken together, the confocal LSM technique cannot activate Dpp within a

receiving cell that would allow tracking movement of photouncaged ligand while

trafficking from the endosome.

3.4.7 Subcellular photoactivation of PAGFP with a two-photon laser-scanning

microspcope (2P-LSM)

In order to achieve a spatial isolated photoactivation event, subcellular

photoactivation of a two-photon laser-scanning microscope (2P-LSM) was

investigated. Two-photon excitation is based on the probability that two low

energy photons arrive ‘simultaneously’ at a fluorophore and induce an electronic

transition comparable to a single high-energy photon at the confocal LSM

excitation (Göppert-Mayer, 1931). For example, simultaneous absorption of two

red photons can excite a molecular UV-transition. The advantage of two-photon

over standard confocal microscopy is the spatial restriction of this excitation

event (Denk et al., 1990). Photoactivation of the cytosolic PAGFP in fixed wing

imaginal discs with a 2P-LSM was considered. After excitation with low levels of

825 nm laser with a pulse duration of about 100 femtoseconds at a repetition rate

of 160 MHz, cytosolic PAGFP absorbed two long-wavelength photons

simultaneously, resulting in the increase of the fluorescence up to at least 20 fold

(Fig. 49).
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Fig. 49: Subcellular photoactivation of PAGFP in a wing imaginal disc with two-photon
LSM excitation

A) PAGFP in an UAS-PAGFP; act-GAL4/+ third instar wing disc was imaged with 488 nm
excitation after photoactivation with pulses of 825 nm light with a two-photon LSM within a
single cell. Cell profiles are labelled with Fasciclin III (red) immunolabelling. B) Axial view
of the photoactivated region. Note that a two-photon LSM can activate cytosolic PAGFP
within a single cell. In addition, the cross-sectional view through the wing epithelium
shows that the activation event is approximately restricted to the focal plane. Bar in A
corresponds to 2 µm.

The two-photon LSM beam can activate cytosolic PAGFP within a single cell

(Fig. 49A). In addition, this excitation event is limited to the focal plane. The

cross-sectional view through the Drosophila wing epithelium shows that the

activation beam can restrict the activation event to an isolated slice within the

tissue. Cytosolic PAGFP is visible in a range of 1 µm in x direction and spans

only over approximately 3 µm in z direction (Fig. 49B).

Taken together, the two-photon LSM technique can provide spatially resolved

photoactivation events within a Dpp receiving cell that would allow tracking

movement of photouncaged ligand while trafficking from the endosome.
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3.4.8 Photoactivation of PAGFP-Dpp with a two-photon laser-scanning

microscope (2P-LSM)

The photoactivation of PAGFP-Dpp was also tested with the two-photon LSM

when expressed in wing imaginal discs (Fig. 50). PAGFP-Dpp was driven in the

endogenous Dpp expression domain using the GAL4 gene under the spatial and

temporal control of the dpp promoter (dpp-GAL4). After photoactivation of fixed

tissue with high levels of 825 nm laser with a pulse duration of about

100 femtoseconds at a repetition rate of 100 MHz, fluorescence of PAGFP-Dpp

increased in the photoactivated region: bright fluorescent signal in the secreting

cells and dimmer fluorescent punctate structures at the receiving territory could

be observed (Fig. 50).
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Fig. 50 (previous page): Photoactivation of PAGFP in a wing imaginal disc with a two-
photon LSM excitation

Lateral and corresponding axial views of PAGFP-Dpp in an UAS-PAGFP-Dpp; dpp-GAL4/+
third instar wing disc that was imaged with 488 nm excitation after photoactivation with
pulses of 825 nm light with a two-photon LSM. Cell profiles are labelled with
phalloidin (red). Note that a two-photon LSM can activate PAGFP-Dpp restricted to a focal
plane at the apical part of the wing epithelium. PAGFP-Dpp is visible as bright fluorescent
signal marking the secreting cells and dimmer fluorescent punctate structures at the
receiving territory. Partial absence of phalloidin signal is due to high laser beam intensity
during photoactivation. Bar corresponds to 10 µm.

Using a two-photon excitation system combined with a sensitive confocal LSM

comprising a 405 nm laser, it remains to be shown whether activated PAGFP-

Dpp upon passage through the endosome within a receiving cell can be tracked

from one cell to the neighbouring cell: a key event in the planar transcytosis

model of Dpp propagation.
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4 Discussion

In the present work, I studied whether the DBTS model, where Dpp transport is

based on extracellular diffusion taking into account receptor binding and

subsequent internalization, can explain the spreading of Dpp through the target

tissue. I compared the implications of this model with direct measurements of the

total and cell surface receptor levels as well as the extracellular pool of ligand in

wild-type and in endocytosis-defective mosaic tissue. The current DBTS model in

which ligand transport is based on extracellular diffusion is inconsistent with the

experimental data obtained in the “shibire shadow assay” and the “shibire rescue

assay”.

Two results lead to this conclusion. First, the DBTS model can generate transient

shadows, but only if the surface receptor levels in the shi ts1 clone increase

dramatically. As a consequence, this titrates out Dpp while diffusing through the

extracellular space, accumulating in the clone. Using receptor antibodies in the

“shibire shadow assay”, I could not detect higher levels of surface receptor in the

shi ts1 clone (see Fig. 25 and 26). Second, in the DBTS model for the “shibire

rescue assay”, the levels of both the extracellular Dpp and the surface receptors

are dramatically increased in the endocytosis-defective receiving tissue. Such an

increase was detected neither for extracellular Dpp (see Fig. 29) nor for the

surface receptor levels (see Fig. 27 and 28). Instead, extracellular Dpp entered

the receiving tissue over a distance of only 4 – 5 cells. Therefore, the DBTS

model cannot explain the experimental data, suggesting that endocytosis plays

an active role in the ligand transport beyond the regulation of receptors at the

surface.

In addition, by performing FRAP experiments I was able to demonstrate directly

that Dynamin-mediated endocytosis is required for Dpp movement through the

target tissue. Two results lead to this conclusion. First, after photobleaching a

region of interest in the receiving tissue, GFP-Dpp from the neighbouring areas

moved into the bleached area in GFP-Dpp expressing wing discs. However,
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unbleached GFP-Dpp ligands from the neighbouring areas failed to move into the

bleached area when endocytosis was abolished in “shibire rescue” discs at the

restrictive temperature (34 °C) (see Fig. 31). Second, fluorescence recovery of

GFP signal was only recorded in “shibire rescue” discs after cooling down

gradually the tissue from 34 °C to 25 °C (see Fig. 35). This indicates that

Dynamin-mediated endocytosis is essential for Dpp movement through the tissue

to form a long-range gradient.

Utilizing Rab antibodies and internalized fluorescent Dextran I was also able to

demonstrate that GFP-Dpp traffics through early, late and recycling endosomes.

In particular, GFP-Dpp association with Rab11 recycling endosomes in the

receiving cells prompts the possibility that recycling of ligand occurs via apical

recycling endosomes (ARE) (see Fig. 39A).

Finally, I established a recycling assay based on subcellular photoactivation of

ligand to address specifically the Dpp recycling event at the receiving cells (see

Fig. 49). In the future, this assay will allow us to test whether photouncaged

PAGFP-Dpp upon passage through an endosome at the receiving cell will move

to neighbouring cells at the target territory.

4.1 Why the DBTS model fails to explain Dpp propagation

In this study, I have shown that the DBTS model cannot explain the observed

ligand and receptor profiles during Dpp transport through the target tissue. The

discrepancy between the implications of the model and the experimental data

cannot be explained by the choice of a particular set of parameters, since the

assumption that a high surface receptor concentration is present inside the clone,

which is required for shadows to appear in the “shibire shadow assay”, is

independent of any choice of parameters (Kruse at al., 2004). In addition, the

parameter values were chosen to capture the typical distance over which the

ligand extends as well as the characteristic time to reach steady state as

previously demonstrated (Entchev et al. 2000).
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Yet one wonders why the model is not able to explain Dpp spreading though it

integrates many events such as ligand diffusion, receptor binding, internalization

and resecretion. This is based on the fact that the ligand transport is only due to

diffusion, i. e. ligand-receptor complexes can only be externalized at the same

position on the cell surface where they were internalized. The DBTS model

ignores the possibility that ligand could also be transported by travelling through

cells to reappear at different positions on the cell surface.

The fact that the DBTS model is not sufficient to explain observed Dpp spreading

suggests that contributions of receptor trafficking to transport ligand may indeed

play an important role. But what are then the relative contributions of both

phenomena, extracellular diffusion and intracellular trafficking, to the movement

of the ligand through the tissue? Since the parameters of the DBTS model were

chosen similar to values measured in a different cellular context, i. e. for the EGF

receptor in a cell culture system (Kruse et al., 2004), it will be first necessary to

measure directly the different dynamic parameters to address this question,

including the diffusion coefficient as well as rates of endocytosis, degradation

and recycling of Dpp in the developing wing. To estimate the diffusion coefficient,

FRAP experiments in the wing imaginal disc as performed in this study are one

approach. This will allow us to estimate the contribution of Dynamin-dependent

endocytosis during Dpp gradient formation.

4.2 Dynamin-dependent Dpp transport

In contrast to results presented in this study, recently published experiments by

Belenkaya et al. (Belenkaya et al., 2004) implied that Dynamin-mediated

endocytosis is not essential for Dpp movement. They indicated that no shadows

of extracellular GFP-Dpp could be observed in the “shibire shadow assay”. In

addition, extracellular ligand could be detected far away from the source in the

“shibire rescue assay”.
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In the “shibire shadow assay”, a wave of Dpp emanating from the source is

confronted with a shi ts1 clone at the restrictive temperature where endocytosis is

blocked. A transient shadow of GFP-Dpp was seen behind the clone (Entchev et

al., 2000) (see Fig. 5e-g). The shadows are transient because Dpp can move in

all directions and after a while the shadows are filled by Dpp coming from the

sides. Furthermore, experiments in our lab showed that such shadows could not

be observed when shi ts1 clones at the restrictive temperature were generated in

animals displaying a full, steady-state gradient (Entchev et al., 2000). Therefore

three settings are important to keep in mind when performing this experiment:

I) generate a propagation front (i. e. start the experiment at 16 °C, a

temperature at which GFP-Dpp expression is low probably due to the

thermosensitivity of the GAL4 system),

II) block completely endocytosis in the shi ts1 clones (i. e. at 34 °C or above),

and

III) monitor GFP-Dpp in the right window to see the transient shadows.

In the experiments by Belenkaya et al., the animals were kept at 18 °C before the

initiation of the shi ts1 clones (Belenkaya et al., 2004) (see Experimental

Procedures), a temperature at which GFP-Dpp forms a gradient that is very

similar to conditions at 25 °C. In this situation, no propagation front is generated.

This experimental condition is equivalent to look at GFP-Dpp in the presence of

shi ts1 clones starting from a steady state, a scenario in which no shadows were

detected either (Entchev et al., 2000). Furthermore, their “restrictive” temperature

is 32 °C (Belenkaya et al., 2004) (see Fig. 3A-D), at which endocytosis is still

taking place as demonstrated with FRAP experiments performed in “shibire

rescue” wing imaginal discs. Probably because of these two reasons no shadows

could be detected in their case.

The same holds true for the “shibire rescue assay” where the temperature

treatment was performed again at 32 °C (Belenkaya et al., 2004) (see Fig. 3F). In

this experiment, I compared the distribution of extracellular GFP-Dpp when

endocytosis was blocked (at 34 °C) at the receiving cells mutant for shi ts1 and in

heterozygous sibling control animals submitted to the same treatment. In a
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situation in which the production of Dpp from the source is the same, I quantified

the range of extracellular GFP-Dpp in the shi ts1 mutant target tissue versus the

range in the heterozygous sibling control tissue. The range was dramatically

reduced in the shi ts1 mutant territory (see Fig. 29). From this result, I concluded

that Dynamin-mediated endocytosis is indeed essential for the long-range

transport of the extracellular pool of Dpp.

In the report of Belenkaya et al., they looked at GFP-Dpp in a similar experiment.

But they compared the range of extracellular Dpp in “shibire rescue” animals at

32 °C (at which GAL4 is highly active thereby causing high levels of expression

of GFP-Dpp from the source) versus the same genotype at 16 °C (when GAL4 is

almost inactive implying low levels of Dpp production from the source)

(Belenkaya et al., 2004) (see Fig. 3E and 3F). Since Dpp production is very

different at these two temperatures the ranges of extracellular GFP-Dpp in the

receiving tissues are not comparable to address the effect of the mutant

condition on the spreading of the extracellular pool.

Belenkaya et al. also showed that the total pool of the Dpp receptor, Tkv,

accumulated in shi ts1 cells upon five hours of endocytic block (see Fig. 4B). This

is in contrast to my results. Prompted by the implications of the DBTS model that

a block of extracellular Dpp diffusive movement requires an increase of the pool

of surface receptors of approximately 20 fold above the normal levels, I analyzed

and quantified in my work the pool of surface receptors as well as total receptors.

I quantified these parameters in the “shibire shadow assay” and the “shibire

rescue assay” compared to wild-type. For this, I generated two new antibodies

against the cytosolic and the luminal side of the Thick veins receptor. These

reagents allowed determining the levels of the cell surface pool as well as total

pool of receptor. I checked the specificity of the antibodies as follows:

I) the detection of a 63 kDa corresponding band in Western Blot experiments

(see Fig. 22),

II) the absence of immunostaining in Tkv null mutant clones (tkv8) (see Fig.

21),
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III) the titration of antibodies by binding to peptides used to generate the

antibodies in both stainings and Western Blot (see Fig. 21, 22, and 23), and

IV) the elevated levels of staining in Tkv overexpressing developing tissue (see

Fig. 21B and 23B).

In addition, I quantified the levels of overexpression that can be detected by

quantitative RT-PCR in overexpressing animals: a factor of less than 5 (probably

around 2) can be detected in my immunostainings.

In the “shibire rescue” as well as in the “shibire shadow” animals, no elevated

levels of either surface or total receptors could be detected (see Fig. 27 and 28).

This implies that if there is an increase of surface receptors, this is lower than

5 fold. Since a 20 fold increase is necessary to account for the formation of

shadows, this implies that receptors at the surface are not the reason why shi ts1

clones cause the formation of shadows. In addition, no increase, but decrease in

the levels of extracellular GFP-Dpp could be observed in the “shibire rescue

assay” (see Fig. 29). However, new assays need to be developed to investigate

directly the effect on Dpp long-range movement when Dynamin-mediated

endocytosis is abolished.

4.3 Addressing the role of Dynamin-mediated endocytosis for Dpp

movement: using FRAP as a tool

So far, FRAP analysis have been particular employed in studying trafficking

problems related to single cells, e. g. the kinetics of peripheral membrane

proteins which are responsible for the formation of COPI vesicles (Presley et al.,

2002; Elsner et al., 2003), the mobility of proteins in the mitochondria (Partikian

et al., 1998), the lumen of the endoplasmic reticulum (ER) (Dayel et al., 1999), on

ER and Golgi membranes (Cole et al., 1996), in the cytoplasm (Seksek et al.,

1997) and in the nucleus (Phair and Misteli, 2000), as well as the shuttling of

cargo between the different compartments (Girod et al., 1999). To address

directly the role of Dynamin-mediated endocytosis for Dpp movement, the
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mobility of GFP-Dpp ligands in the wing imaginal disc were measured by analysis

of fluorescence photobleaching recovery kinetics (Axelrod et al., 1976).

However, the interpretation of FRAP curves is highly susceptible to

misinterpretation. This holds true for the determination of the diffusion coefficient

of proteins, which is hampered by the finite time needed for bleaching the region

of interest (ROI). In other words, bleaching is assumed to be instantaneous when

deriving fitting functions. Yet in my experiments the ROI was bleached in a

repetitive manner, i. e. it was scanned several times during the process to

achieve a more complete bleaching. In this case, the kinetics of GFP recovery

was slow in comparison to the bleaching process and hence it was assumed that

the effect was negligible. However, correction terms were indeed considered to

account for the fact that there was still some remaining fluorescence after

bleaching.

The FRAP experiments demonstrated that Dynamin-mediated endocytosis is

essential for Dpp movement through the target tissue. Since movement of GFP-

Dpp was absent under conditions were endocytosis was abolished (see Fig. 31),

the working hypothesis that both phenomena, extracellular diffusion and

intracellular trafficking combined with endocytosis and resecretion, equally

contribute to the Dpp current in the developing wing epithelium is rather unlikely.

Why are FRAP experiments able to dissect the contributions of both

mechanisms? The advantage of FRAP analysis of “shibire rescue” discs

compared to the “shibire rescue assay” is the direct analysis of Dpp movement

when endocytosis is blocked after a short time of only 10 minutes. The rapid

impairment of Dpp movement under this condition implies that indirect effects like

cell surface receptor upregulation that could hinder Dpp while diffusing through

the extracellular space is less likely to occur. A caveat of interpreting results

obtained in the “shibire rescue assay” is that a block of endocytosis for six hours

can cause a change of the steady state of different dynamic parameters,

including the diffusion coefficient as well as rates of degradation and recycling of

Dpp at the receiving cells.
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FRAP experiments open the possibility to further analyze Dpp trafficking within

epithelial cells of wing imaginal discs. The use of a temperature-sensitive

exocytosis defective syntaxin mutant (Littleton et al., 1998) will be one approach

to test whether Dpp movement is also affected. FRAP analysis of the recovery

kinetics of GFP tagged Hh or Wg in “shibire rescue” discs would also allow to

address directly the role of Dynamin-dependent endocytosis for the gradient

formation of both morphogens. Both secreted ligands have been proposed to

spread by extracellular diffusion and thereby could serve as negative controls for

the scenario of Dynamin-dependent Dpp transport.

The real time analysis enables also to monitor short-term effects on intracellular

Dpp movement when drugs affecting endocytic trafficking or the organization of

the microtubule and the actin cytoskeleton (e. g. wortmannin, brefeldin A or

nocodazole) are applied. FRAP analysis of GFP-Dpp in cell regions expressing

different mutants of Rab protein will also address the role of endocytic trafficking

during Dpp gradient formation.

4.4 Dpp movement along the endocytic pathway

Trafficking of Dpp at the receiving cells involves a number of intermediate

compartments controlled by Rab proteins (reviewed in Zerial and McBride, 2001).

In this study I provided evidence that most of GFP-Dpp ligand is present in Rab-

enriched endosomes as well as in fluorescent Dextran marked endocytic

compartments in Drosophila wing imaginal discs (see Fig. 39 and 40). GFP-Dpp

ligand accumulates mainly apically in endosomes, and work in our lab indicates

that the ligand is restricted to an area between the apical and the septate

junctions at the apical part of the epithelial wing cells. In addition, the Dpp

receptor Tkv is also concentrated in the same area. Therefore, the trafficking as

well as the signalling machinery is probably restricted to the junctional area of

wing epithelial cells. This would be consistent with results where the Dpp

gradient at the receiving tissue is confined to the apical part of the epithelium
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(Entchev et al., 2000). GFP-Dpp degradation then takes place in more basal

parts of the cell whereas the recycling of the ligand occurs via apical recycling

endosomes (ARE) where Rab11 is present.

However, not all GFP-Dpp is localized in this Rab-positive compartments

suggesting that the ligand moves also along other trafficking routes at the

receiving cells. In mammalian cell culture, it has been demonstrated that the

TGF-β  receptor can traffic along both the clathrin-dependent pathway

accumulating in EEA1-positive endosomes as well as along a clathrin-

independent pathway residing in caveolin-enriched endosomes (Di Guglielmo et

al., 2003). This segregation of TGF-β  receptors into distinct endocytic

compartments is supposed to regulate Smad regulation and receptor turnover. In

particular, EEA1-positive endosomes are enriched with SARA promoting TGF-β

signalling, whereas Smurfs bound receptors are present in caveosomes required

for rapid receptor turnover. So far there is no evidence of caveosome-like

structures in Drosophila, but it will be interesting to test whether Dpp-Tkv

complexes are internalized through a clathrin-independent pathway.

4.5 A Dpp recycling assay

In the process of planar transcytosis, the morphogen spreads throughout the

target tissue by consecutive rounds of endocytosis and resecretion (Entchev et

al., 2000). Whereas the role of endocytosis has been extensively addressed, Dpp

resecretion possibly through the ARE in order to spread through the target tissue

has not yet been directly monitored. In the case of Wg in Drosophila embryos, it

has been shown by in vivo imaging of a functional GFP-Wg fusion that

morphogen ligands can be secreted from the receiving cells (Pfeiffer et al.,

2002). To address the recycling at the receiving cells, a strategy was followed to

photoactivate PAGFP-Dpp upon passage through an endosome at the receiving

cell using a two-photon LSM (Denk et al., 1990) and monitor its movement while

trafficking from the endosome.
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Unlike confocal LSM, two-photon excitation occurs only at the beam focus,

resulting in spatially resolved photoactivation within a Dpp receiving cell that

allows to track the movement of photouncaged ligand while trafficking from the

endosome. The penetration depth of confocal microscopy is limited to biological

tissue-scattering lengths of approximately 100 µm (Cheong et al., 1990),

whereas two photon excitation can offer images 2 – 3 times deeper than confocal

LSM (Centonze and White, 1998). Because of the restricted excitation event,

deleterious out-of-focus absorptions, photobleaching and phototoxicity are

reduced.

Based on the established assay, it will be tested whether activated PAGFP-Dpp

can be tracked in vivo from one cell to the neighbouring. Possible caveats can be

detection problems caused by low intensity of photoactivated ligand moving from

cell to cell. To address this, several cells can be activated simultaneously to allow

monitoring occurrence of detectable PAGFP-Dpp ligand in a non-photoactivated

cell. Furthermore, this experiment offers the possibility to explore the protein

dynamics of Dpp by tracking photoactivated ligand that is the only visible GFP in

the tissue (Patterson and Lippincott-Schwartz, 2002). Parameters such as

endocytosis and recycling of Dpp in the developing wing will be addressed.
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Appendix

Abbreviations

BSA bovine serum albumin

CaCl2 calcium chloride

CH3OH methanol

CH3COOH acetic acid

CO2 carbon dioxid

DNA deoxyribonucleic acid

ECL enhanced chemiluminescence

E.coli Escherichia coli

EDTA ethylene diamine tetraacetate

EEA1 early endosomal autoantigen 1

EtOH ethanol

FLP-FRT site-specific FLP recombinase-FLP

recombination target

FRT FLPase recombination target

GDP guanosine diphosphate

GFP green fluorescent protein

GST glutathione-S-transferase

GTP guanosine triphosphate

Hg2+ mercury

HRP horseradish peroxidase

KCl potassium chloride

KDa kilo Dalton

KH2PO4 potassium hydrogen phosphate

LB medium Luria-Bertani medium

mA milliAmpère

MgCl2 magnesium chloride
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MW molecular weight

NaCl sodium chloride

Na2HPO4 sodium hydrogen phosphate

PAGFP photoactivatable green fluorescent

protein

PBS phosphate-buffered saline

PCR polymerase chain reaction

PIPES piperazine-N,N’-bis(2-ethanesulfonic

acid)

SDS sodium dodecyl sulfate

TEMED N,N,N’,N’,-tetramethylethylenediamine

TGF transforming growth factor

UV ultraviolet

V volt

W watt

Additional abbreviations are introduced and explained in the text.

Symbols of multiples (e. g. µ, n, etc.) and SI units are not listed.
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Movie description

All movies are provided in high and low resolution.

wt25/34 as well as shibirerescue25/32 (low/high)

Each movie shows a third instar wing imaginal disc pouch projection (out of six

individual sections) expressing GFP-Dpp (green) from a dpp-GAL4/UAS-GFP-

Dpp larva (wt25/34) or from a shi ts1; UAS-Dynamin+/+; dpp-GAL4/UAS-GFP-Dpp

larva (shi25/32). GFP-Dpp gradients were imaged at 25°C/34°C (for discs with a

wild-type receiving territory) or 25°C/32°C (for the “shibire rescue” discs) before,

and approximately one hour after photobleaching of GFP-Dpp in a narrow stripe

of 10 µm width (see Materials and Methods). The recovery of the fluorescent

signal was measured by confocal time-lapse microscopy (composed of two

minutes intervals). In all conditions, GFP-Dpp ligands from the neighbouring

areas move subsequently into the bleached area. Recovered GFP-Dpp appears

first as a diffuse fluorescent signal and later as bright fluorescent punctate

structures.

shibirerescue34 (low/high)

The movie shows a third instar wing imaginal disc pouch projection (out of six

individual sections) expressing GFP-Dpp (green) from a shi ts1; UAS-Dynamin+/+;

dpp-GAL4/UAS-GFP-Dpp larva. The GFP-Dpp gradient was imaged before, and

approximately one hour after photobleaching of GFP-Dpp in a narrow stripe of

10 µm width at the restrictive temperature (34°C) where was blocked at the

receiving territory (see Materials and Methods). Under this condition, no recovery

of the fluorescent signal was measured by confocal time-lapse microscopy. Five

independent FRAP movies showed similar absence of recovery.
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shibirerescue34->25 (low/high)

The movie shows a third instar wing imaginal disc pouch projection (out of six

individual sections) expressing GFP-Dpp (green) from a shi ts1; UAS-Dynamin+/+;

dpp-GAL4/UAS-GFP-Dpp larva. The GFP-Dpp gradient was imaged at 34°C

before, and for 10 minutes after photobleaching of GFP-Dpp in a narrow stripe of

10 µm width (see Materials and Methods). Following the dynamics of GFP-Dpp

for approximately 10 minutes at the restrictive temperature, the wing imaginal

disc was then cooled down gradually to 25°C. Recovery of the fluorescent signal

was measured only after the release of the temperature block.
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