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Abstract

Resistance of tumor cells to platinum anticancer agents poses a major problem in cancer

chemotherapy. One of the mechanisms associated with platinum-based drug resistance is the

enhanced capacity of the cell to carry out nucleotide excision repair (NER) on platinum-damaged

DNA. Endonucleases XPF and XPG are critical components of NER, responsible for excising the

damaged DNA strand to remove the DNA lesion. Here we investigate possible consequences of

downregulation of XPF and XPG gene expression in osteosarcoma cancer cells (U2OS) and the

impact on cellular transcription and DNA repair. We further evaluate the sensitivity of such cells

toward the platinum anticancer drugs cisplatin and oxaliplatin.
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Introduction

The preservation of genomic integrity, which is essential for proper cell function, is ensured

by multiple DNA repair pathways. One of the most efficient mechanisms for clearing helix-

distorting DNA lesions caused by UV irradiation or platinum-based antitumor agents is

nucleotide excision repair (NER). Preclinical model studies reveal that most cisplatin cross-

links formed on DNA are recognized and repaired by the mammalian NER apparatus.[1, 2]

NER is a multistep process, involving some twenty different genes. Among these genes,

ERCC1 and the seven XP* genes, XPA to XPG, play critical roles in damage recognition,

demarcation, and strand-incision around the damage site. In the NER pathway, a 24–32 nt

incised strand containing the DNA lesion is removed and the resulting gap is subsequently

filled by dNTPs, DNA polymerase, and DNA ligase using the complementary strand as

template.[3]

The endonuclease XPG cuts the DNA strand 5–6 nucleotides downstream (3′) of the DNA

damage, and the second incision of this strand, 20–22 nucleotides upstream (5′) of the DNA
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damage, is performed by the ERCC1-XPF protein complex.[4, 5] Either the presence of XPG

or the 3′-incision made by XPG is a prerequisite for the 5′-incision activity of XPF.[6]

Although these two endonucleases are independently recruited to pre-incision complexes,

the proper assembly of all the factors seems to be required for dual incision at the lesion and

progression through the NER pathway.[7, 8]

Osteosarcoma is a cancerous bone tumor, usually presenting in adolescence. Although ideal

combinations remain to be determined, combination therapy including cisplatin is typically

used for treatment.[9] Oxaliplatin has also been evaluated in clinical trials involving

osteosarcoma patients.[10] Platinum chemotherapy can produce significant side-effects and

is subject to drug resistance. Previous work has shown platinum-based drug resistance to be

complex and multifactorial, with no single factor being able to fully explain the

phenomenon. In vitro studies suggest that impaired cellular drug uptake, increased

detoxification, increased tolerance of platinum-DNA damage, reduced apoptosis, and

increased efflux of platinum from cells to be plausible causes. In addition, platinum adducts

may be more rapidly repaired in resistant tumors; increased DNA repair is supposedly one

of the major causes of drug resistance.[11]

The major platinum-DNA adducts (~90%) are intrastrand cross-links involving adjacent

purines. Interstrand cross-links (ICLs) represent minor lesions (<5%).[12, 13] Intrastrand

adducts can be repaired by NER, whereas ICLs are not recognized by this machinery[14] and

are instead removed by ICL repair. The latter process is less well understood, but it is known

that ERCC1-XPF plays an important role here, too.[15–17]

The clinical benefit from platinum-based chemotherapy can be high if the tumor cells

express low levels of NER proteins.[18] For example, testicular cancer, which has low levels

of ERCC1-XPF, is generally responsive to cisplatin.[19] Conversely, increased levels of XPA

mRNA are correlated with resistance in ovarian cancer.[20] Moreover, XPG is a biomarker

of ovarian cancer prognosis in platinum chemotherapy.[21]

At the cellular level, sensitivity to cisplatin is inversely correlated with NER

capability.[22, 23] Testicular tumor cells, which are highly sensitive to cisplatin, are repair-

deficient because of low levels of XPA and ERCC1-XPF.[24] Overexpression of NER

factors is associated with cisplatin resistance, and the resistance phenotype of ovarian cancer

A2780/C200 cells is due, in part, to enhanced repair as a result of upregulation of ERCC1-

XPF endonuclease.[22]

Downregulation of NER factors such as XPA can sensitize cells to cisplatin.[19] The

suppression of the ERCC1-XPF complex by RNA interference significantly decreased

cellular viability in the presence of cisplatin, which correlates well with the decrease in

DNA repair capacity.[25]

Pt-DNA adducts can inhibit transcription by impeding the passage of RNA polymerase

II[26–28] and influencing upstream processes such as apoptosis in cancer cells.[12, 29, 30]

Understanding how the cell processes these Pt-DNA lesions, particularly how the lesions are

repaired, is important for elucidating resistance pathways and for developing new platinum-

based anticancer drugs that circumvent resistance mechanisms. Our objective in the current

study has been to understand relationships between downregulation of the endonucleases

XPF and XPG, the cytotoxicity of cisplatin and oxaliplatin, and repair activity in

osteosarcoma cells. To the best of our knowledge, the response of cells to cisplatin in the

context of downregulated XPG has thus far not been established. With oxaliplatin, these

relationships have not been previously investigated either in XPF- or XPG-deficient cell

lines.
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Results and Discussion

Approach and methodology

In order to evaluate the role of XPF and XPG NER proteins during the cellular response to

platinum drugs, gene knockdown was performed using RNAi. Knockdown cells are

expected to display enhanced transcription inhibition by platinum lesions and corresponding

greater sensitivity to platinum compounds because of reduced repair capability.

Transcription was monitored using a platinated reporter probe, and cellular sensitivity was

investigated with the MTT assay. These experiments were carried out using cells that were

either deficient in XPF and XPG or had normal levels of these factors. Cisplatin and

oxaliplatin were compared, because of their different spectrum of activity against cancer

cells.

Knockdown procedure

Long-lasting gene silencing of XPF and XPG in U2OS osteosarcoma cells was achieved by

short hairpin RNA (shRNA) expression from a lentivirus-based vector.

The pSicoR-GFP vector was designed according to published methods.[31–33] The shRNA-

encoding DNA was prepared from two oligonucleotides (55 and 59 nucleotides long) that

were annealed and then ligated into the vector. Because not all rationally designed shRNAs

knock down gene expression to the same degree,[32] the silencing capability of three

candidates was individually evaluated. Sequences beginning at positions 977, 1128, and

1324 from the origin of the XPF gene and 525, 1936, and 3023 from the origin of the XPG

gene were evaluated. After cloning into pSicoR-GFP, positive clones were identified by

digestion with XhoI and XbaI, which yielded 400 bp fragments, ~50 bp larger than one from

the empty vector. Sequencing was performed to verify the identity of all six plasmids.

The pSicoR-GFP plasmids containing DNA sequences coding for shRNA against XPF/XPG

and, as a control, also the empty vector (mock) were transfected into 293T/17 cells

(modified human embryonic kidney cells), along with the requisite viral packaging vectors,

for generation of lentiviral particles. GFP was expressed by the plasmids, allowing

verification of transfection by fluorescence microscopy.

The lentivirus-containing supernatant was added to U2OS cells for infection. After

transduction, GFP-expressing U2OS cells were collected by fluorescence-activated cell

sorting. These cells comprised 6–7% of cells infected with XPF_977, XPF_1128, and

XPF_1324 clones, 10–15% of cells infected with XPG_525, XPG_1936 and XPG_3023

clones, and 11% of cells infected with the U2OS_mock clone.

Validation of XPF and XPG knockdown

Semi-quantitative or relative RT-PCR (reverse transcription and polymerase chain reaction)

is commonly used to analyze knockdown at the mRNA level and provides an estimate of the

relative changes in the gene expression.[32, 34]

RNA was isolated from U2OS cells (U2OS_normal) and from GFP-sorted XPF/XPG

knockdown and mock cells. For analyzing its integrity, RNA was separated on a 1.1%

agarose gel to display the 28S and 18S ribosomal RNA (rRNA) bands. The ratio of 28S

rRNA and 18S rRNA bands was in the expected range of 1.3:1 – 2:1 (Supporting Material,

Figure S1). Yields ranged between 4 and 17 μg per 106 cells.

Purified RNA was used as a template for one-step RT-PCR, in which the reverse

transcription and amplification reactions took place in the same tube. The following controls

were used: no template (data not shown), template from untransfected cells (U2OS_normal),
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and template from cells transfected with the empty vector (U2OS_mock). The housekeeping

gene β-actin served as an endogenous reference. Amplified products were separated on a 2%

agarose gel containing ethidium bromide (EtBr) and visualized by UV light (Figure 1).

The results were quantified after normalization against the β-actin band. The percent

knockdown is expressed with reference to the empty vector control (U2OS_mock, Figure 2).

Among the three sequences used to knock down XPF, the sequence starting at position 1128

in the gene showed the highest efficiency; expression of XPF mRNA was reduced by 82%.

Among the three sequences used to knock down XPG, the sequence that started at position

1936 showed the highest efficiency; the expression levels of XPG mRNA were reduced by

94%.

Cisplatin/oxaliplatin sensitivity

The response of XPF/XPG knockdown cells to cisplatin and oxaliplatin was evaluated in 3–

4 separate MTT assays. The assays were performed after treatment with cisplatin or

oxaliplatin of varying concentrations for 24 h followed by an additional 48 h incubation with

fresh medium.

Most of the knockdown cells exhibited increased sensitivity to cisplatin compared to the

parental cells but comparable sensitivity to oxaliplatin (Figure 3). Overall, cisplatin and

oxaliplatin show similar IC50 values in all cells, oxaliplatin being somewhat more cytotoxic

in normal/mock cells, whereas cisplatin is more or equally cytotoxic in knockdown cells

(Table 1).

Decreased XPF/XPG mRNA levels were associated with increased sensitivity to cisplatin

and oxaliplatin. Cells with the highest knockdown efficiency showed the lowest IC50 values,

corresponding to the highest sensitivity. For both, cisplatin and oxaliplatin, the lowest IC50

values of ~2 and ~3 μM, respectively, were obtained in XPF_1128 cells. Among the XPG

knockdown cells, XPG_1936 cells were the most sensitive (~3 and ~5 μM, respectively).

With respect to normal/mock cells, cisplatin cytotoxicity increased 4.3-fold in XPF_1128

cells and 2.3-fold in XPG_1936 cells, and oxaliplatin cytotoxicity was increased 2.4-fold in

XPF_1128 cells. Only a 1.3-fold difference was observed in XPG_1936 cells. The changes

in cisplatin cytoxicity due to XPF knockdown fall within the range of data reported

previously for non-small cell lung cancer cells.[25]

An assessment of the effects of mRNA levels on cellular sensitivity to cisplatin and

oxaliplatin by a linear regression analysis revealed no correlation. One reason might be that

it is not possible under the present conditions to determine IC50 values at an accuracy that

permits quantitative comparisons. The ability of XPG knockdown to affect cisplatin and

oxaliplatin cytotoxicity was not significant by comparison to XPF knockdown.

Transcription assays

Pt-DNA cross-links are efficient inhibitors of transcription in vitro.[29, 35, 36] We recently

reported a method to study platinum lesions on plasmid DNAs transfected into live

mammalian cells based on Gaussia Luciferase (GLuc) reporter vectors.[37] The expression

of the GLuc reporter gene is unimpeded in the absence of the lesion, but is adversely

affected if the adduct is an effective transcription inhibitor. GLuc is secreted from the cell,

and the levels of expression can be readily determined by sampling the cell culture media

and quantifying enzymatic activity by bioluminescence assays using coelenterazine as a

substrate.

The effects of platinum adduct formation on transcription using globally platinated pGLuc

plasmids were investigated using this assay. Platinated transcription probes were prepared
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by reacting pGLuc with varying concentrations of cisplatin[37] or oxaliplatin in HEPES

buffer. Platination levels, expressed as the ratio of bound platinum per plasmid, were

determined by measuring the Pt content by atomic absorption spectroscopy and the DNA

concentration by UV/Vis spectroscopy. By determining GLuc expression from transfected

cells, transcription levels as a function of platination were determined.

A set of five plasmids with Pt/plasmid ratios ranging from 0 to ~35 were prepared by

incubation with cisplatin or oxaliplatin; the corresponding rb values (Pt bound per

nucleotide) ranged from 0 to ~0.005. Specifically, rf values (Pt per nucleotide in reaction) of

0, 0.0013, 0.0025, 0.0038, 0.0050, resulted in rb values 0, 0.0012, 0.0022, 0.0033, 0.0046,

corresponding to 0, 9.9, 17.9, 26.5, and 36.4 Pt adducts per plasmid for cisplatin. For

oxaliplatin, the rf values were 0, 0.010, 0.020, 0.040, 0.080, the rb values were 0, 0.00064,

0.0012, 0.0024, 0.0044, and the corresponding ratios were 0, 5.1, 9.7, 19.2, and 35.1 Pt per

plasmid.

Cells were transfected for two hours using these globally platinated plasmids, and cell media

were collected at 8, 16, 24, 32 and 44 hours after completion of transfection. GLuc activity

in cells was measured over that period using a luminometer and coelenterazine as substrate.

The intensity values were normalized against unplatinated controls and summed for the

intervals to account for total GLuc expression at a specific time point. Transcription profiles

were obtained by plotting normalized GLuc expression levels against platination levels (Pt/

plasmid ratio) at five different time points (Supporting Material, Figure S2). U2OS_mock

cells were included as a comparison in each experiment, to normalize for possible

transfection and growth condition differences from experiment to experiment.

The recovery rates of transcription from probes having low platination levels (Pt/plasmid ≤
10) were comparable in all cells irrespective of knockdown except for XPG_1936, which

showed a strong inhibition, probably due to very efficient XPG knockdown in this cell line

(94%). After only 8 h, the expression levels were similar for all cells (mock and

knockdown). Upon additional sampling, the difference in transcription inhibition between

mock and knockdown cells became clearer: The reporter activity of cisplatin and oxaliplatin

treated plasmids was reduced in XPF knockdown cells at similar levels for all three clones,

showing the strongest inhibition in XPF_1128 cells. Among the XPG knockdown cells,

transcription of platinated reporters was most significantly inhibited in the XPG_1936 cells

(Supporting Material, Figure S2).

A globally platinated vector with ~26 Pt atoms per plasmid for cisplatin and ~19 for

oxaliplatin displayed the highest discrimination between knockdown and U2OS_mock cells,

scoring recovery rates. To provide a better comparison for the two platinum drugs, plasmids

containing similar Pt/DNA values (18 vs. 19 Pt/DNA) were selected, and the results are

plotted in Figure 4. Transcription recovery as a function of time following transfection is

shown for XPF_1128 and XPG_1936, the cells with best knockdown. When comparing

cisplatin and oxaliplatin damaged plasmids, oxaliplatin adducts are clearly more effective at

inhibiting transcription. After only 8 h the transcription levels were significantly higher in

the case of cisplatin (10% of unplatinated control), whereas they were still suppressed in the

case of oxaliplatin (0% of unplatinated control). Furthermore, the recovery of transcription

of cisplatin treated plasmids is somewhat faster than that of oxaliplatin treated plasmids in

U2OS_mock cells.

Linear regression of the transcription levels at different time-points (Figure 4) provided a

tool for comparing transcription recovery rates between knockdown and mock cells. The

findings are summarized in Table 2 and the ratios of recovery rates are depicted in Figure 5.
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For XPF knockdown cells, 50–80% of the transcription capability remained compared to

that for U2OS_mock cells. In XPG knockdown cells, however, only 20–30% remained,

representing a loss of up to 80% of the transcription capability. These high residual

transcription levels in repair deficient cells cannot be explained by incomplete knockdown,

because a knockdown of >70% is considered to be significant,[38] and we obtained >80%.

Instead, residual transcription levels in repair deficient cells might result from bypass of

damage by translesion synthesis or another repair mechanism.

As can be concluded from the ratios of slopes in Figure 5, transcription recovery of

cisplatin-treated plasmids in XPF_1128 cells was ~1.2 times slower when compared to

U2OS_mock cells. For oxaliplatin, it was ~2 times slower, revealing a greater impact of

XPF knockdown for the latter platinum drug. These results are consistent with our previous

report that intrastrand cross-links formed by cisplatin and oxaliplatin inhibit transcription by

up to two times better in XPF-deficient than-proficient cells, with oxaliplatin being the

stronger inhibitor.[37] In XPG knockdown cells, we find that oxaliplatin and cisplatin treated

plasmids do not differ within the measured error range. For cisplatin, the recovery of

transcription was 3–4 times slower in XPG_1936 cells with respect to U2OS_mock cells; for

oxaliplatin it was 4–5 times slower.

Correlations between observations and comparisons with prior findings

The efficiency of removal of DNA adducts of cisplatin and its analogues by NER is a key

determinant of cytotoxicity.[39] Inhibition of the activity of endonucleases involved in NER,

XPF and XPG, increases cisplatin sensitivity in osteosarcoma cells. This conclusion,

however, does not hold true for oxaliplatin. Similarly, XPA levels and Pt-DNA adduct repair

are correlated with cisplatin, but not oxaliplatin, cytotoxicity in colon cancer cells.[40] When

the two drugs are compared, oxaliplatin is more efficient at inhibiting transcription than

cisplatin in normal and knockdown cells. This finding is in accord with previous work

showing that, at equal adduct levels, oxaliplatin is more efficient than cisplatin at inhibiting

DNA chain elongation.[41] Conversely, the observed cytotoxicity of oxaliplatin is lower than

that of cisplatin in osteosarcoma knockdown cells, despite its stronger transcription

inhibition. Together these findings indicate that the overall sensitivity of the tested cell lines

to platinum drugs is multifactorial, and the contribution of NER to cell sensitivity is difficult

to determine quantitatively. Cell death does not necessarily correlate with inhibition of DNA

synthesis, because several DNA polymerases can synthesize past platinated-DNA

lesions.[42] Details are discussed below.

The expression levels of NER machinery components have previously been compared to

cisplatin sensitivity of human cancer cells as measured by mRNA levels.[43–45] The mRNA

levels and repair capacity of cells lines lacking genes involved in NER (ERCC1, XPA, XPB,

XPC, XPD, XPF, XPG) were examined in a panel of different cancer cell lines. The repair

activity correlated neither with cisplatin cytotoxicity nor mRNA expression.[43] In A549

cells, however, a correlation of relative of XPA mRNA expression, transcription activity,

and cisplatin cytotoxicity was noted,[45] indicating that the relationship between expression

of NER factors and cisplatin cytotoxicity could be cell-type specific.

Several possible mechanisms have been suggested to explain why oxaliplatin is more

cytotoxic despite its kinetically slower DNA binding properties, but none was able to fully

explain the findings. Oxaliplatin does not generate a greater proportion of highly lethal

lesions, like interstrand or DNA-protein cross-links. It is therefore unable to compensate for

its lower inherent DNA reactivity in such a manner.[41] Oxaliplatin-DNA adducts are not

more difficult to repair than those of cisplatin, which excludes another possible explanation

for the greater cytotoxicity of the former.[46] It is important to note that these latter studies

were carried out using HeLa cell-free extracts, which might explain the discrepancy between
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their findings and our results, which were obtained using live cancer cells of a different

origin and displayed better repair of oxaliplatin lesions. A similar situation was observed in

testis cells that were shown to be active in NER in living cells,[47] but have low NER

capacity in cell-free extracts.[24]

Considering only transcription, the role of NER factors is more readily analyzed. Several

prior studies have addressed the question of whether there is a defined temporal order in

which the two DNA strand incisions take place.[39] In our experiments, XPG knockdown

had a significant effect on the recovery of transcription from platinated plasmids, whereas

the consequences of XPF knockdown were less pronounced. Given that either the presence

of XPG or a 3′-incision by XPG is a prerequisite for the 5′-incision by ERCC1-XPF to take

place, this result is expected. Moreover, 3′-incision by XPG can occur in the absence of

ERCC1-XPF,[6] rendering XPG more important for successful NER.

In order to understand the observed overall repair of Pt lesions and the resulting cytotoxicity,

consideration must be given to the nature of individual adducts. The major cisplatin and

oxaliplatin lesions are 1,2-intrastrand cross-links involving adjacent d(ApG) and d(GpG)

sequences (up to 80%). In addition, there are ~10% 1,3-intrastrand cross-links, and another

2–3% of the products are ICLs or the result of monofunctional binding to guanine.[12, 13]

1,3-Intrastrand cross-links are excellent NER substrates, whereas the major, but less

distorting, 1,2-intrastrand cross-links are less well repaired by in part due to shielding by

proteins like HMG-domain proteins. These proteins have a higher affinity for cisplatin than

oxaliplatin lesions.[48] It therefore is likely that cisplatin adducts are more easily protected

from repair and that oxaliplatin-treated plasmids recover their ability to support transcription

more rapidly. The ratios of transcription recovery rates in knockdown versus mock cells

were lower for oxaliplatin (Table 2) representing better discrimination and a larger impact of

knockdown on transcription recovery.

To explain differences in the cytotoxicity of platinum-DNA adducts, processes that bypass

intrastrand cross-links might also play a role. Key polymerases involved in translesion

synthesis (TLS) are pol ζ and pol ζ [49–51] Oxaliplatin-GG adducts are more efficiently

bypassed than cisplatin-GG adducts with the aid of these polymerases.[52] TLS, together

with the lower affinity of HMG-domain proteins for oxaliplatin lesions, may help to explain

the faster recovery of transcription in oxaliplatin damaged DNA following cell division.

Also, the unexpectedly small changes in cytotoxicity due to knockdown of repair factors

might arise from the better ability of cells to bypass oxaliplatin lesions.

Cisplatin forms more lethal ICLs when compared to oxaliplatin,[41] but these adducts are not

recognized by the NER machinery. In addition to its role in NER, ERCC1-XPF is involved

in repairing ICLs by unhooking and homologous recombination.[44] For example, ERCC1-

XPF is the rate-limiting factor responsible for both impaired ICL repair and cisplatin

hypersensitivity in testis cancer cells.[47] When XPF is knocked down, the repair of not only

intrastrand but also interstrand lesions is affected, and higher sensitivity is to be expected.

This property could be demonstrated by enhancement of cisplatin cytotoxicity in XPF

knockdown cells. The impact of XPF knockdown on oxaliplatin cytotoxicity is low,

however, firstly because oxaliplatin forms fewer ICLs and secondly because of the probable

involvement of translesion bypass, as described above. Knockdown of XPG, which does not

play a role in ICL repair, does not have a great impact on either cisplatin or oxaliplatin

cytotoxicity despite its very high knockdown.
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Conclusion

Knockdown of two NER factors, the endonucleases XPF and XPG, by RNA interference

decreased the repair efficiency of cisplatin- and oxaliplatin-damaged DNA in osteosarcoma

cells (U2OS) by up to fivefold. The NER pathway is an important determinant of the

cytotoxicity of platinum drugs, as revealed by high sensitivity of those cells lacking XPF

and XPG.

We showed that oxaliplatin displays a different pattern of cytotoxicity and transcription

inhibition than cisplatin in these repair-deficient cells. The increase in cytotoxicity after

knockdown was more prominent for cisplatin. Oxaliplatin displayed greater transcription

inhibition after knockdown but faster recovery, possibly due to involvement of translesion

bypass.

The NER factor XPG had a larger impact on transcription inhibition, probably because it is

the endonuclease that first cuts the damaged DNA. XPF knockdown might also have an

effect on ICL repair, which would render this factor more important for controlling overall

cytotoxicity.

The clones with highest knockdown efficiencies showed the strongest transcription

inhibition and greatest sensitivity, but no quantitative correlation could be established

between mRNA levels of different clones, transcription activity, and cytotoxicity. Due to the

inherent sensitivity of U2OS cells to platinum anticancer drugs, the observed effects were

within the range of only one order of magnitude. In more resistant cell lines, the effects of

XPF/XPG knockdown are expected to be more significant and might allow better

correlations.

Since repair pathways can enable tumor cells to survive DNA damage that is induced by

platinum drugs, small molecule inhibitors of DNA repair are promising therapeutics when

used in combination with those drugs. Also, a combination therapy comprising gene

knockdown and platinum drugs could potentially enhance efficacy.

Experimental Section

General methods and materials

Platinum stock solutions were prepared in PBS (cisplatin) or water (oxaliplatin) and passed

through a 0.22 μm PES (polyethersulfone) filter. Platinum concentrations were determined

by flameless atomic absorption spectroscopy on a Perkin Elmer AAnalyst 600 instrument.

The solutions were aliquotted for single use and stored at −20 °C for not longer than three

months. UV/Vis spectra were measured on a Hewlett Packard 8453 instrument.

Cell culture

Human osteosarcoma cells (U2OS) were obtained from ATCC (Manassas, VA, USA) and

maintained in DMEM containing 4.5 g/L glucose and L-glutamine, no sodium pyruvate,

10% FBS, 100 U/mL penicillin, and 100 μg/mL streptomycin (all from cellgro, Manassas,

VA, USA) at 37 °C, in a humidified atmosphere at 5% CO2.

pSicoR-GFP plasmid

The pSicoR-GFP plasmid with an shRNA cloning site was designed and generated

according to information provided by Prof. Tyler Jacks’ Lab at MIT.[31] Target sequences

located throughout the mRNA were selected, three different positions each on the XPF and

XPG genes, respectively 977, 1128, 1324 and 525, 1936, 3023, and oligonucleotides to be

inserted were designed using the PSICOLIGOMAKER 1.5 software[31] and checked for
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uniqueness in BLAST. The oligonucleotides were phosphorylated with T4 polynucleotide

kinase (NEB, Ipswich, MA, USA) and phenol extracted. The duplexes were annealed in the

presence of 100 mM KOAc, 30 mM HEPES-KOH pH 7.4 and 2 mM Mg(OAc)2 for 4 min

at 95 °C, then for 10 min at 70 °C, cooled at a rate of 1 °C/min to 4 °C, and was

subsequently stored at −20 °C. The plasmids were digested at HpaI/XhoI restriction sites in

NEB buffer 4 with BSA, phenol extracted, and the cut was confirmed on a 0.8% agarose gel.

The duplexes were ligated into the plasmids with T4 DNA ligase (NEB) for 3 h at room

temperature. The ligated products were then transformed into E. coli DH5 α cells and

purified by a miniprep column (QIAGEN, Valencia, CA, USA) according to the

manufacturer’s instructions. Cuts by the restriction enzymes XhoI and XbaI released

fragments of 400 vs. 350 bp lengths, confirming the insertion of a 50 bp duplex, as revealed

on 2% agarose gels. The DNA sequences of positive clones were verified at the MIT

Biopolymers Laboratory. The primer used for sequencing extended upstream into the U6

promoter and the stem loop (5′-TGC AGG GGA AAG AAT AGT TAG AGA C).

Transfection and transduction

Before transfection, human kidney cells (293T/17) were cultured in DMEM including 4 mM

glutamine, 10% FBS, 0.1 mM MEM non-essential amino acids, 1 mM sodium pyruvate, 100

U/mL penicillin, 100 μg/mL streptomycin, and 500 μg/mL Geneticin.

Transfection and transduction were carried out according to the manual for ViraPower

Lentiviral Expression Systems (Invitrogen, Carlsbad, CA, USA). Briefly, on the day before

transfection, 293T/17 cells were plated in antibiotics-free medium in 10 cm dishes. At 90%

confluence, cells were co-transfected with 9 μg ViraPower packaging mix containing the

packaging and envelope plasmids (Invitrogen), 3 μg pSicoR-GFP plasmid for XPF and XPG

knockdown, respectively, in Opti-MEM medium with Lipofectamine 2000 (Invitrogen) to

generate recombinant replication-incompetent lentiviruses.

As a negative control, cells were transfected with the packaging and envelope plasmids but

without pSicoR-GFP plasmid and Lipofectamine 2000. As a positive control, the empty

vector was used (U2OS_mock).

The medium was replaced with fresh, antibiotics-free medium 24 h after transfection. GFP

expression was examined by fluorescence microscopy 48 h after transfection, and the

lentivirus-containing supernatant was harvested for the purpose of infecting the target cell

line. The culture medium was removed, centrifuged at 3000 rpm and 4 °C for 15 min to

pellet debris, and passed through a 0.45 μm PES syringe filter. The medium was aliquotted

into 1 ml portions and stored at −80 °C.

Transduction was carried out by adding the supernatant with viral particles containing the

different recombinants to U2OS cells at ~50% confluence in 10 cm Petri dishes using

polybrene (10 μg/mL, Millipore, Billerica, MA, USA). The virus-containing medium was

replaced with fresh medium 24 h after infection. Cells were then grown in two T-175 flasks

(~30 million cells) and GFP-expressing cells were sorted by a FACSAria cell sorter (BD,

Franklin Lakes, NJ, USA).

RNA isolation

All materials were RNase free. U2OS and knockdown cells were harvested at 90%

confluence from T-75 flasks. Total RNA was isolated and purified from 1 – 7 × 106 cells

using the RNeasy Mini Kit (QIAGEN). For homogenization, the cell lysate was passed five

times through a 20-gauge needle fitted to a syringe. 2-Mercaptoethanol was added to the

lysis buffer (1% v/v) to eliminate RNases released during cell lysis. On-column DNase

digestion was performed using the RNase-free DNase set (QIAGEN) to exclude the
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possibility of DNA interfering with the subsequent RT-PCR analysis. The RNA was eluted

from the column with two times 30 μl of RNase free water, and stored at −20 °C. For gels,

fresh water from a Biocel-MilliQ water purification system was used (Millipore).

RT-PCR

Purified RNA was used as a template for one-step RT-PCR (OneStep RT-PCR Kit with Q

solution, QIAGEN), in which the reverse transcription reaction and the amplification took

place in the same tube. The RT-PCR was carried out in a Minicycler PTC-150 instrument

(MJ Research, now Bio-Rad, Hercules, CA, USA).

In a 50 μL sample volume, 5 ng template, 1 μM XPF primers, and 0.1 μM β-actin primers,

or 1 μM XPG primers and 0.14 μM β-actin primers, were used. The steps were as follows:

reverse transcription for 30 min at 50 °C, activation of DNA polymerase for 15 min at 95

°C, 35 cycles 3-step cycling (denaturing 45 s at 94 °C, annealing 45 s at 55 °C, extension 1

min at 72 °C), final extension for 10 min at 72 °C. Subsequently, the samples were kept at 4

°C.

Primers were designed using Primer-BLAST (NCBI) with the following input sequences:

XPF mRNA (NM_005236.2), XPG mRNA (NM_000123.2), and β-actin mRNA

(NM_001101.3) The sequences were: β-actin forward: 5′-AGA GCC TCG CCT TTG CCG

AT; β-actin reverse: 5′-TCC CAG TTG GTG ACG ATG CC; XPF forward: 5′-CCA TCG

TCG GGG CAT TGA CA; XPF reverse: 5′-TCG TCT TGT GAC AGG GCT GC; XPG

forward: 5′-ATG CCC AGC AGA CAC AGC TC; XPG reverse: 5′-AGA TCT GGC GGT

CAC GAG GA.

The amplified DNA fragments were designed to yield 548 bp for XPG, 552 bp for XPF, and

292 bp for β-actin.

Cytotoxicity measurements

MTT assays were carried out in at least three independent experiments as previously

reported[53] in hexuplicate.

Parental U2OS and knockdown cells were plated in flat-bottomed 96-well plates starting

with column 2 and ending with column 11 (1,500 cells/well). The plates were incubated at

37 °C for 2 days such that cells were in the exponential phase of growth for drug addition. A

serial four-fold dilution of the cytotoxic drug in growth medium was prepared to give nine

concentrations with 8 mL each (6 mL medium + 2 mL drug dilution, 0.0015 – 100 μM). The

medium was removed from all wells, and the drug was added in the several dilutions, in

column 2 only medium. The plates were incubated for 24 h. At the end of the drug-exposure

period the medium was removed from all wells, 200 μL of fresh medium was added, and the

plates were incubated for an additional 48 h. The plates were fed with 200 μL of MTT

solution (5 mg/mL MTT in PBS) that was filtered through a 0.22 μm PES filter, then diluted

1:5 with medium and incubated for 4 h in a humidified atmosphere at 37 °C and 5% CO2.

The medium was removed from the wells and the purple MTT-formazan crystals were

dissolved by addition of 200 μL DMSO/glycine buffer pH 10.5 (8:1). Since the absorption

spectrum of MTT-formazan is pH-dependent, and the pH varies with the cell density in the

well, the pH in all wells was shifted to 10.5 where the spectrum shows only a single peak at

570 nm.[53] The absorbance was measured at this maximum, and the mean absorbance

reading from the wells without drug was used as the control (100% viability). IC50 values

were determined by interpolation.
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Preparation of globally platinated plasmids

pGLuc plasmid was derived from the commercially available pCMV-GLuc vector as

previously described.[37, 54]

pGLuc plasmid (125 μg/mL, 46 nM) was treated with cisplatin (0, 0.5, 1.0, 1.5, 2.0 μM) in

buffer (50 mM Na-HEPES pH 7.4) or oxaliplatin (0, 3.6, 7.3, 14.5, 29.0 μM) in buffer (25

mM Na-HEPES pH 7.4, 10 mM NaCl) for 16 h at 37 °C. The reaction mixtures were

dialyzed (MWCO 3.5 kDa) against TE buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA)

overnight at 4 °C with four changes of buffer solution. The rb values (bound Pt/nucleotide)

were determined by UV/Vis and atomic absorption spectroscopy.

Transient transfection of cells for transcription assays

Transcription assays were carried out by transient transfection of the plasmids into U2OS

and knockdown cells and subsequent measurement of the levels of luciferase reporter gene

expression.[37] Briefly, cells were plated in 96-well plates at 2,500 cells/well and incubated

for 48 h. At ~30% confluence, cells were transfected with 50 ng of platinated plasmids using

25 μL Opti-MEM and 0.125 μL Lipofectamine 2000, and subsequently 50 μL of antibiotics-

free DMEM including 10% FBS. After 2 h, the cells were washed with medium and 100 μL

of fresh medium was added. The experiment was carried out in quadruplicate.

GLuc luminometry assay

GLuc assay solution contained 10 μM colelenterazine (NanoLight Technologies, Pinetop,

AZ, USA), made from a 2.5 mM stock in acidified methanol (100 mM HCl), in buffer of the

following composition: 10 mM Tris-HCl pH 7.8, 1 mM EDTA, 0.6 M NaCl.

The transcription assay was carried out in a manner similar to that previously described.[37]

Briefly, GLuc activity was monitored with a luminescence plate reader (Synergy 2, BioTek,

Winooski, VT, USA). Volumes of 10 μL medium were transferred into white 96-well plates

at different time points (8, 16, 24, 32, 44 h), and 25 μL GLuc assay solution was added by

the automatic injector of the instrument. The fitting of luminescence data in Figure 4 was

performed with Origin 8.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

A 2% agarose gel (0.5 μg/mL EtBr) of amplified DNA from RT-PCR of RNA isolated from

cells after XPF (left) and XPG (right) knockdown. 1×TBE was used for the gel and running

buffer. The gel was run at 100 V for 120 min.
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Figure 2.

Semi-quantitative analysis of the agarose gel from Figure 1 showing the knockdown

efficiency of XPF and XPG mRNA, respectively. Relative levels of gene expression

inhibition ranged from 50 to 94% when compared to mRNA expression in U2OS_mock

cells.
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Figure 3.

IC50 values for cisplatin and oxaliplatin in U2OS cells and in XPF and XPG knockdown

cells.
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Figure 4.

Time-dependent transcription recovery of pGLuc plasmids containing 18 Pt/DNA (cisplatin

– A, B) and 19 Pt/DNA (oxaliplatin – C, D) in U2OS_mock and XPF/XPG knockdown

cells.
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Figure 5.

Ratio of slopes for time-dependent transcription recovery of pGLuc plasmids containing 18

Pt/DNA (cisplatin) and 19 Pt/DNA (oxaliplatin) obtained from U2OS_mock cells vs.

knockdown cells, cf. Table 2. Error bars are obtained from linear regression and error

propagation by division.
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