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Aging is an inevitable biological process characterized by a progressive decline in

physiological function and increased susceptibility to disease. The detrimental effects

of aging are observed in all tissues, the brain being the most important one due to its

main role in the homeostasis of the organism. As our knowledge about the underlying

mechanisms of brain aging increases, potential approaches to preserve brain function

rise significantly. Accumulating evidence suggests that loss of genomic maintenance

may contribute to aging, especially in the central nervous system (CNS) owing to

its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent

antioxidant properties and play important roles in maintaining normal reproductive

and non-reproductive functions. They exert neuroprotective actions and their loss

during aging and natural or surgical menopause is associated with mitochondrial

dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased

risk of age-related disorders. Moreover, loss of sex hormones has been suggested

to promote an accelerated aging phenotype eventually leading to the development of

brain hypometabolism, a feature often observed in menopausal women and prodromal

Alzheimer’s disease (AD). Although data on the relation between sex hormones and

DNA repair mechanisms in the brain is still limited, various investigations have linked sex

hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging

and neuroprotective mechanisms, which are currently an area of intense study, together

with the effect they may have on the DNA repair capacity in the brain.
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INTRODUCTION

The world’s population is aging. Life expectancy at birth has increased by 6 years worldwide in
the last 3 decades, and in 2050 the proportion of old adults over 60 years is estimated to reach
22% worldwide. Such an increase has a direct consequence: a rise in the incidence of age-related
diseases, in particular neurodegeneration. According to different organizations like the World
Health Organization (WHO), neurodegenerative disorders are, together with cardiovascular
diseases, the main causes of death in western countries. More than 20% of adults aged 60 and
over develop neurological disorders, dementia being the most common one. WHO estimates that
around 47 million people suffer from this disorder, with nearly 10 million new cases every year.
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Thus, it is estimated that the total number of people with
dementia will increase to near 75 million in 2030 and 132 million
by 2050 worldwide. Alzheimer’s disease (AD) is the most
common cause of dementia, contributing to 60%–70% of cases.
Although a relationship between the development of cognitive
impairment and life-style-related risk factors, such as obesity,
tobacco and alcohol use has been reported, age is still the
strongest risk factor for dementia and other neurodegenerative
disorders (World Health Statistics, 2017).

Despite aging globally affects both male and female animals
from all species, including humans, various studies have stressed
that sex differences exist. Thus, females have longer life
expectancies than males in mammals, and that is also the case
for women vs. men in most developed countries (Promislow,
1991; Schroots et al., 1999). Since such higher life expectancy
is not exclusive for humans, it cannot be attributed only to
socioeconomical factors but rather reflects specific biological
characteristics of both sexes. Similarly, the incidence of various
age-related neurodegenerative diseases shows a sex-dependency.
Thus, Parkinson’s disease (PD) has a higher prevalence and
earlier onset in males compared to females (Gillies et al.,
2014). Likewise, men over the age of 40 have smaller volumes
in different brain areas, including the hippocampus (Coffey
et al., 1998; Jack et al., 2015) and worse memory performance
than age-matched women (Jack et al., 2015). On the other
hand, post-menopausal women have a higher prevalence of AD
than men, as well as a faster cognition decline after disease
onset (Li and Singh, 2014; Zagni et al., 2016). The factors
promoting the longer lifespan in women vs. men as well as
sex dimorphisms in brain aging and neurodegenerative diseases
are not fully understood. The positive effects of estrogen on
different cellular processes, such as reactive oxygen species (ROS)
production and antioxidant defense, cardiovascular protection,
immune competence and telomere maintenance have been well
recognized to account, at least in part, for women’s longer
lifespan (Regan and Partridge, 2013; Austad and Fischer, 2016).
However, it may seem paradoxical that women still live longer
than men long after hormonal loss due to menopause and
consequently long after having benefited from the protective
effects of estrogens. Interestingly, a positive correlation between
later age at menopause or longer reproductive lifespan with
longevity has been recently reported (Shadyab et al., 2017).
That suggests that lifetime cumulative exposure to estrogenic
stimulation throughout fertile life could exert long-lasting effects
and account for such sex dimorphism in longevity. This exposure
would also affect brain aging and neurodegenerative processes.
Altogether, the above mentioned sex differences suggest that
taking sex into account as a biological variable might be
critical when approaching therapies to treat neurodenegerative
diseases or to delay brain aging (Young and Pfaff, 2014; May,
2016).

Neuroprotective Effects of Sex Hormones
As mentioned above, one factor that is believed to play an
important role in the sex differences observed in brain aging and
neurodegeneration is sex hormone levels, in particular estrogen.
It is well known that estrogen receptors (ERs) are widely

distributed in the brain (Hara et al., 2015), having important
regulatory function on different processes such as cognition,
anxiety, body temperature, feeding and sexual behavior (Do
Rego et al., 2009). The neuroprotective effect of estrogen has
been stressed by several investigations. Epidemiological studies
suggest that late symptom onset of PD in women may be related
to such neuroprotective effect (Saunders-Pullman et al., 1999;
Rocca et al., 2008; Kowal et al., 2013). It has also been suggested
that the reduced concentration of sex steroid hormones after
menopause may be responsible for the higher prevalence and
greater severity of AD in women than men (Tang et al., 1996;
Brann et al., 2007; Li and Singh, 2014). Moreover, in support of
the neuroprotective effect of sex steroids, hormone replacement
therapy (HRT) has been shown to have beneficial effects on
different animal models (Borrás et al., 2003; Ding et al., 2013;
Lu et al., 2018). Clinical data also suggest that HRT may have
an effect in humans on neurodegenerative diseases such as AD
(Li and Singh, 2014), PD and other age-related brain diseases like
stroke (Brann et al., 2007), although concerns about its use have
arisen as further discussed below.

Different animal models have been used in order to
analyze how sex hormones affect neurodegenerative processes.
Inhibition of aromatase, the enzyme that catalyzes the
nonreversible conversion of aromatizable androgens into
estrogens, results in lower estrogen levels. This inhibition is
associated with altered beta amyloid deposition and more
severe strokes in AD mouse models (McCullough et al.,
2003; Overk et al., 2012). Similar results have been observed
with aromatase knock out (KO) mice (Yue et al., 2005).
Different animal models have been used for investigating
the role of sex steroids in neurodegeneration and aging,
being gonadectomy one of the most used. This is a standard
practice in rodent hormone replacement studies, allowing
investigators more control over sex hormone levels in
circulation in order to study testosterone, estradiol and/or
progesterone specific actions and their interaction at different
levels (Frick, 2009). Moreover, ovariectomy (OVX) in female
animals, especially in rodents, is a broadly used method
to model women’s menopause. Like primates, rodents
have reproductive cycles, which start to become irregular
in middle-aged animals, i.e., 9–12 months of age in rats.
However, and unlike primates, rats do not experience complete
ovarian follicular loss at middle age, having chronically
high circulating estradiol levels. For this reason, many
laboratories often turn to the OVX rat model. Thus, using
age-appropriate rats at young, middle, and old ages, surgical,
peri- and natural menopause can be modeled (Morrison et al.,
2006).

Several studies have shown that decreasing estrogen levels
by OVX enhances neurodegenerative processes by increasing
brain damage (Borrás et al., 2003; Overk et al., 2012; Yao
et al., 2012; Ding et al., 2013; Kireev et al., 2014). Furthermore,
restoration of estradiol levels in OVX animals by hormonal
therapy reverses brain damage (Yao et al., 2012; Ding et al.,
2013; Kireev et al., 2014; Lu et al., 2018). Numerous preclinical
and epidemiological studies as well as some clinical trials have
supported beneficial effects of HRT on memory and cognition
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and reduced risk for AD. Yet, an initial evaluation of results
from the Women’s Health Initiative (WHI), the largest clinical
trial involving postmenopausal women to date, suggested the
contrary (Rettberg et al., 2014). However, the study population
in the WHI considerably differed from women in previous
observational studies regarding age or years after menopause
onset at the time treatment was initiated. Later sub-analysis of
data from the WHI trial as well as other epidemiological studies
have provided evidence supporting the concept that there is a
limited period of time around menopause during which HRT
can exert positive effects on brain function. The ‘‘window of
opportunity’’ theory suggests that beneficial effects of estrogens
can only be achieved on a healthy brain; i.e., if HRT starts
before or at the time of menopause. On the contrary, if HRT is
initiated some years after menopause onset, it has detrimental
effects on brain function and can even increase the risk of
developing AD (Morrison et al., 2006; Brinton, 2008, 2009; Scott
et al., 2012; Rettberg et al., 2014; Miller and Harman, 2017).
Moreover, it has been suggested that effectiveness of HRT is
likely to be dependent on additional factors, such as formulations
of treatments regarding type (conjugated equine estrogen vs.
17β- estradiol, medroxyprogesterone acetate vs. progesterone),
mode of delivery (oral vs. transdermal) and regimen (continuous
vs. cyclic) (Miller and Harman, 2017).

Apart from being a target for sex hormones, the brain is
now recognized as a steroidogenic organ, and the degree to
what neurosteroidogenesis, i.e., the synthesis on neuroactive
steroids in the brain, affects its function has recently started
to be unraveled. Neuroactive steroids are detectable in the
brain after the removal of peripheral steroidogenic organs
and their levels are affected by modifications in the levels
of peripheral neuroactive steroids in a region-, time after
gonadectomy- and sex-manner, suggesting a compensatory
mechanism in the brain to counteract the effects of peripheral
hormone loss (Caruso et al., 2010; Sorwell et al., 2012; Arevalo
et al., 2015). Similarly to peripheral sex steroids, neurosteroids
have also been described to exert neuroprotective effects.
Moreover, it has been suggested that endogenously synthesized
neurosteroids may reinforce the protective effects of exogenously
administered steroids (Chamniansawat and Chongthammakun,
2012; Li et al., 2013). In fact, the level of brain estrogen has
been shown to determine the effect of estrogen therapy-
induced protection against AD pathology in mice (Li et al.,
2013). Neurosteroids are not only synthesized de novo from
cholesterol. They can also be produced through transformation
of blood peripheral steroid hormones into derivatives with
potent neuromodulatory actions. Consequently, although
neurosteroidogenesis is regulated independently of peripheral
steroidogenesis, it is expected that fluctuations in plasma steroid
levels affect the rate of brain steroid synthesis (Veiga et al.,
2004).

Although they have received less attention than estrogens
on brain function, androgens and progesterone exert
neuroprotective actions as well. Testosterone and its metabolites
have been described to be neuroprotective under conditions
of glucose deprivation both in hippocampal neurons (Ishihara
et al., 2016) and astroglial cells (Toro-Urrego et al., 2016).

Similarly, testosterone has been shown to prevent dendritic
atrophy in motoneurons after induced death of the surrounding
neurons (Cai et al., 2017). Moreover, under chronic stress
conditions, depletion of testosterone has been shown to increase
susceptibility to oxidative damage in different brain areas
(Son et al., 2016). Androgens have been suggested to have a
positive impact on cognition (Colciago et al., 2015). This effect
is likely to be mediated by testosterone and its metabolites in
the hippocampus, where a high concentration of androgen
receptors has been shown in hippocampal CA1 pyramidal cells
(Colciago et al., 2015). Orchidectomy studies have described
that testosterone replacement increases spine density in the
hippocampus and at the same time improves spatial memory in
rats (Jacome et al., 2016). Likewise, dihydrotestosterone (DHT)
treatment also restores hippocampal spine density (Maclusky
et al., 2006). Moreover, the proportion of immature dendritic
spines increase after orchidectomy, suggesting that testosterone
not only affects the number of synaptic spines, but also their
maturation state (Li M. et al., 2012). The effects of testosterone
on spine density and maturation are likely related to the brain-
derived neurotrophic factor (BDNF) expression (Gao et al., 2009;
Li M. et al., 2012).

Progesterone is another major sex hormone, whose
best-characterized function is reproduction regulation.
Progesterone receptors are broadly expressed in the brain,
and they have been described to be present in all neural cell types
(Brinton et al., 2008). Together with its metabolites, progesterone
exerts several physiological functions in the brain. It regulates
neuronal development of Purkinje cells in cerebellum (Tsutsui
et al., 2011), differentiation and proliferation of oligodendrocytes
(Ghoumari et al., 2005), and synaptogenesis and neuronal
plasticity (Rossetti et al., 2016) among others. On the other hand,
progesterone and its metabolites have been described to exert
beneficial effects in various animal models of neurodegeneration
and brain damage, including PD (Bourque et al., 2009) stroke
(Singh and Su, 2013) traumatic brain injury and demyelination
(De Nicola et al., 2009; El-Etr et al., 2015). These neuroprotective
effects involve different mechanisms of action. Among them,
progesterone and its metabolites activate the MAPK/ERK and
PI3K/Akt pathways (Kaur et al., 2007; Baudry et al., 2013), which
are well-established survival signaling pathways. In addition,
progesterone also exerts neurotrophic actions regulating the
expression of neurotrophins such as BDNF (Melcangi et al.,
2014). Besides, progesterone modulates neuroinflammation. The
anti-inflammatory effect of progesterone has been extensively
investigated in an experimental multiple sclerosis murine
model: autoimmune experimental encephalomyelitis (EAE).
Since progesterone and its derivates promote myelin formation
in the peripheral nervous system, the role that they might
play in demyelinating diseases has received attention for
many years. In EAE mice, progesterone itself and one of its
reduced metabolites, allopregnanolone, have been shown to
reduce inflammatory markers, to inhibit microglia activation
and to avoid the penetration of circulating lymphocytes and
macrophages in the central nervous system (CNS) (De Nicola
et al., 2013, 2017; Noorbakhsh et al., 2014). This reduction in
neuroinflammatory processes would mediate, at least in part,
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the beneficial effects of progesterone in EAE mice, which show
reduced clinical severity, lower demyelination and improved
neuronal function after progesterone treatment (Garay et al.,
2007, 2009).

Remarkably, the effect of progesterone when delivered in
combination with estrogen is not always positive. It is well known
that progesterone regulates estrogen actions, particularly at the
reproductive level (Graham and Clarke, 1997). At the CNS level,
various studies have suggested that when both hormones are
administered together, progesterone often antagonizes rather
than synergizes estrogen effects (Bimonte-Nelson et al., 2004,
2006; Rosario et al., 2006; Carroll et al., 2008; Yao et al., 2011).
Although the precise mechanism behind the antagonistic effect
of progesterone on estrogen actions is poorly understood, some
studies have suggested that it might be mediated, at least in part,
by the regulation of ER expression (Pike et al., 2009).

Sex Hormones: Mechanisms of Action in
the Brain
Similar to other steroid hormones, sex steroids exert their
multiple actions through binding to nuclear receptors that
act as ligand-dependent transcription factors to regulate the
expression of target genes (McDevitt et al., 2008). As for
estrogens, two classical receptors have been described, ERα

and ERβ. However, in recent years, the existence of membrane
associated ER and other proteins unrelated to ERs that also
trigger estrogen responses, like membrane G protein-coupled
ER 1 (GPER1), has become evident (Nilsson et al., 2001; Zárate
and Seilicovich, 2010; Rettberg et al., 2014). This provides an
additional layer of complexity to the understanding of how sex
hormones affect higher cognitive functions and other neural
processes including mood, cardiovascular regulation, fine motor
skills and neuroprotection (Dumitriu et al., 2010; Hara et al.,
2015). Androgen and progestin receptors have also revealed both
nuclear and non-nuclear forms and locations of classical and
non-classical receptors (McLachlan et al., 1991; Brinton et al.,
2008; Sarkey et al., 2008; Petersen et al., 2013; Li et al., 2015).

Apart from being highly expressed in regions related to
reproductive behavior and neuroendocrine function like the
hypothalamus, sex hormone receptors are widely distributed
in the brain and are present both in nuclear and non-nuclear
compartments, including mitochondria (Kelly and Levin, 2001;
Boulware et al., 2007; Psarra and Sekeris, 2008; Simpkins
et al., 2008; Rettberg et al., 2014; McEwen and Milner,
2017). In accordance with the complexity of the brain, sex
hormones modulate not only neuronal function; they exert
their actions on different cellular targets, modulating an
important number of physiological processes. Thus, estrogen
and progesterone have been described to regulate proliferation
and maturation of oligodendrocytes (Marin-Husstege et al.,
2004; Ghoumari et al., 2005) as well as local inflammation
processes mediated by astrocytes and microglia (Arevalo et al.,
2010). Studies in different animal models of brain injury
have described that sex hormones also have an important
effect in the cerebral vasculature. ERs have been localized
in endothelial as well as in smooth muscle cells (Stirone
et al., 2003). During stroke, estrogens exert a protective

action due to theirs effect on the cerebral vasculature,
increasing endothelial nitric oxide synthase activity, suppressing
inflammatory markers like COX-2, and reducing leukocyte
adhesion (Suzuki et al., 2009). Similarly, in a rat model of
traumatic brain injury, progesterone has been described to
promote angiogenic activity of endothelial progenitor cells (Yu
et al., 2017).

Estrogens have an important effect on mitochondrial
function as well (Klinge, 2017). Although the mechanisms
by which estrogen regulates mitochondrial function are not
totally understood, both direct and indirect actions have
been described to contribute to such regulation. Estrogen’s
beneficial effects in mitochondria are especially important
in those tissues that have high demand of energy like the
CNS. Along with metabolism regulation (Brinton, 2008;
Klinge, 2017), estrogen exerts different actions involving
mitochondrial function in neuronal tissues, including biogenesis
(Kemper et al., 2014), apoptosis processes (Garcia-Segura
et al., 1998; Nilsen and Diaz Brinton, 2003; Mo et al., 2013)
and even morphology (Arnold et al., 2008; Hara et al., 2014).
Many estrogen actions in mitochondria are mediated by the
presence of ERs in these organelles, which seems to be cell-type
specific. In relation to the brain, mitochondrial ERs have
been suggested to be present in primary cultured rat neurons,
murine hippocampal cell lines (Yang et al., 2004), neurons and
glia of rat hippocampus (Milner et al., 2005; Herrick et al.,
2006) and also in pre- and post-synaptic mitochondria of
hippocampal neurons (Milner et al., 2008). The presence of ERs
within mitochondria suggests that estrogen might modulate
mitochondrial function by directly affecting transcription of
mitochondrial DNA (mtDNA). In fact, mitochondrial ERβ

has been described to bind to estrogen response element-like
sequences in mtDNA (Demonacos et al., 1996; Chen et al.,
2004). However, estrogen actions on mitochondria are
not exclusively related to such mechanism. Estrogen also
regulates mitochondrial functions through their classical
nuclear mechanism, i.e., transcriptional regulation of nuclear-
encoded mitochondrial proteins. It is known that estrogen
regulates the nuclear transcription of different proteins affecting
mitochondrial function such as nuclear respiratory factor-1
(NRF-1) and peroxisome proliferator-activated receptor-gamma
coactivator 1 (PCG-1) (Kemper et al., 2013; Klinge, 2017).
Hence, this regulation is critical for the activation of nuclear
genes encoding proteins involved in mitochondrial biogenesis
as well as in the mitochondrial electron transport chain
complexes (Scarpulla, 2008; Klinge, 2017). It also regulates the
transcription of mitochondrial transcription factor A (TFAM),
which translocates into mitochondria and initiates transcription
and replication of mtDNA (Virbasius and Scarpulla, 1994; Kang
et al., 2007).

Effects of estrogen in mitochondria might be especially
relevant in the brain since the accumulation of mtDNA
mutations and the related mitochondrial dysfunction have
been suggested to play a critical role in the process of brain
aging and in the onset of neurological disorders (Barja, 2004;
Cantuti-Castelvetri et al., 2005; Kujoth et al., 2007). Accordingly,
increased levels of oxidative modifications and mutations in
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mtDNA occur in the brain during normal aging (Melov, 2004;
Beal, 2005; Vermulst et al., 2007), with enhancement of these
levels in neurodegenerative diseases such as AD and PD (Gabbita
et al., 1998; Sanders et al., 2014). One of the main factors
contributing to mtDNA instability, both during brain aging and
in neurodegenerative diseases, is the decline in mtDNA repair
capacity (Imam et al., 2006; Weissman et al., 2007a; Gredilla,
2010; Gredilla et al., 2012). Different DNA repair pathways
have been described both in the nucleus and mitochondria
(Gredilla et al., 2010a; Jeppesen et al., 2011). The major ones are
base excision repair (BER), mismatch repair (MMR), nucleotide
excision repair (NER) and double-strand break repair. The main
pathway taking place in mitochondria is BER, which repairs
mtDNA modifications caused by alkylation, deamination and
oxidation. A brief description of these repair pathways and the
effect of sex-hormones on them will be described later in this
review.

SEX HORMONES AND BRAIN AGING

Aging is an inevitable physiological process orchestrated by a
plethora of molecular mechanisms that interact to alter body
homeostasis, eventually leading to organismal functional decline
and disease. While for many years the brain was not considered
to be a sex-hormone-responsive organ, except the hypothalamus
for reproductive function regulation, it is now well accepted that
the entire brain is both a target and a source of sex hormones
(Acaz-Fonseca et al., 2016; McEwen and Milner, 2017). Sex
hormones exert numerous protective and antioxidant actions in
the adult brain increasing neural function and resilience and
promoting neuronal survival. As the organism age, a relatively
rapid loss of ovarian hormones in the female after menopause,
and a gradual but indeed significant decline of testosterone in
men occur. Thus, it is not surprising that reproductive senescence
both in males and females has a negative impact on neural
function and represents a significant age-associated risk factor
for neurodegenerative diseases, such as AD (Barron and Pike,
2012).

Sex Hormones and Synaptic Plasticity
during Aging
The key role of estrogens and ERs in the synaptic basis
of cognitive functions mediated by the hippocampus and
prefrontal cortex (PFC) is well recognized (Dumitriu et al.,
2010; Hara et al., 2015). Both ERα and ERβ are localized
in synaptic terminals and dendritic spines, dendritic shafts,
axons and glial cell processes in a membrane-associated manner
(Milner et al., 2005; McEwen and Milner, 2007), suggesting
that estrogen mediates its effects on synapses locally rather
than via regulating nuclear transcription. As the brain ages,
changes in the pattern of ER expression and/or in differentially
activated signaling pathways in these brain areas have been
suggested to be the basis for the detrimental effects of
aging in memory and learning. Briefly, synapse number and
spine density decrease with natural or surgical depletion of
ovarian hormones in the CA1 area of the hippocampus

from female rats (Gould et al., 1990; Woolley and McEwen,
1992, 1993; Adams et al., 2001). Unlike what is observed
in young animals, estrogen treatment cannot restore synapse
and spine density levels in aged animals, suggesting that the
hippocampus becomes unresponsive to estrogen effects with
age (Adams et al., 2001). Furthermore, the finding that the
number of ERα-containing synapses in the hippocampus of
old female rats decreases to half the number found in young
animals could explain loss of estrogen actions in the aged
hippocampus, which has been suggested to be the basis for
lower brain plasticity with aging (Adams et al., 2002). Unlike
the hippocampus, hypothalamic levels of ERα and progestin
receptor are maintained with age in female rhesus monkeys,
while membrane GPER1 expression is increased, indicating that
the aged hypothalamus retains the ability to express steroid
hormone receptors at levels comparable to young adults (Naugle
et al., 2014).

Despite being extensively homologous, ERα and ERβ diverge
in their expression and action in the brain. They are widely
expressed throughout the adult brain and their expression is
differentially regulated in aging and by estrogen treatment. Like
ERα, the levels of synaptic ERβ are reduced with age in the
hippocampus of female rats. However, ERβ levels are increased
following estrogen treatment both in young and old OVX rats,
indicating that ERβ-mediated effects at the synaptic level are
maintained during aging in the female rat hippocampus. It
suggests that ERβ would be a more sensitive target to estrogen
actions in the aged female brain (Waters et al., 2011). Since ERβ

signaling has been associated with altered synapse formation
and plasticity (Szymczak et al., 2006; Waters et al., 2009),
the shift to decreased ERα/ERβ ratio has been proposed to
be a major contributor to the age-induced loss of synapse
formation by estrogens (Waters et al., 2011). Also, since ERα

and ERβ are linked to unique second messenger pathways
that can oppose one another, the altered ERα/ERβ ratio can
contribute to deficits in specific signaling pathways, affecting
memory and plasticity in old animals (Waters et al., 2011).
Moreover, clinical studies have shown a positive correlation
between Mini Mental StateExam (MMSE) score and nuclear
ERα levels in the frontal cortex of AD patients, suggesting
that decreased ERα responsiveness is directly associated to
severity of cognitive impairment (Kelly et al., 2008). On the
contrary, an age-realted increase in the ERα/ERβ ratio has
been reported in cortical astrocytes from both male and female
rats, which correlated with lower glial trophic support to
neuronal function. The increased ratio was suggested to be
associated to both long-term potentiation and spatial memory
impairment (Paris et al., 2011; Arimoto et al., 2013; Yin et al.,
2015).

Like females, the male brain is also responsive to variations
in androgen levels at the synaptic level. The density of dendritic
spines in the hippocampus has been reported to be modulated
in vivo by androgen depletion and replacement (Leranth et al.,
2003). Gonadectomy in male rats decreased CA1 spine synapse
density compared to sham-operated animals (Jia et al., 2013).
Since it can be metabolized into the androgen DHT and
estradiol, testosterone can mediate its effects through androgen
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and/or estrogen pathways. Treatment of gonadectomized rats
with DHT or testosterone propionate but not with estradiol
restored spine synapse density to similar levels of those found
in intact males, suggesting a direct role of androgens through
androgen receptors rather than indirectly via local estradiol
biosynthesis in hippocampal synaptic plasticity (Leranth et al.,
2003). Similar results were obtained in SAMP8 mice, an
animal model of accelerated aging (Jia et al., 2016; Pan et al.,
2016).

Sex Hormone and Growth Factor
Interaction during Aging
A functional interplay between ERs and growth factor receptors,
such as insulin-like growth factor-1 (IGF-1) or BDNF, has
broadly been shown to take place in the brain. Hence, it is
expected that conditions that affect the expression and/or activity
of these receptors have a reciprocal negative impact on the
multiple processes regulated by these systems, from the control
of hormonal homeostasis and reproduction to learning and
cognition. For example, estrogen-induced transport of glucose
in the brain through the insulin-sensitive glucose transporter
GLUT-4, adult hippocampal neurogenesis and protection against
stroke are processes that require the coupling between ERα and
IGF-1 receptor, providing further evidence for the interplay
between these two systems in promoting enhanced neuronal
metabolism and neuroprotection (Cardona-Gómez et al., 2002;
Garcia-Segura et al., 2010; Arevalo et al., 2012; Sohrabji, 2015;
Huffman et al., 2017). Besides, in aged OVX animals, which
had undergone estrogen replacement treatment during middle
age, estrogen-induced improvement in memory function was
abolished by treatment with an IGF-1 receptor inhibitor. This
finding indicates that estrogen may exert part of its lasting
effects on the hippocampus and memory through the IGF-1
receptor signaling pathway (Witty et al., 2013). In female rats,
both reproductive senescence and OVX have been shown to
consistently decrease the levels of IGF-1 gene expression, which
correlates with increased expression of genes involved in Aβ

generation (Rettberg et al., 2014). In addition, clinical studies
have shown that patients with AD have decreased expression
of insulin receptors and impaired insulin signaling in brain
areas susceptible to AD pathology, which could account for the
early cognitive impairment seen in these patients (Schiöth et al.,
2012). These studies suggest that impaired brain estrogen/ER
and IGF-1/IGF-1 receptor systems may account, at least in part,
for the women’s well known higher vulnerability to develop
AD after menopause. Despite estrogens and androgens share
metabolic pathways and functional properties, far less research
has examined a functional link between IGF-1 and androgens
in the brain (Huffman et al., 2017). However, some studies
have shown that IGF-1/androgen interactions promote beneficial
effects in neuroprotection (García-Fernández et al., 2008; Puche
et al., 2008). On the other hand, BDNF is a crucial molecule
for synaptic plasticity and hippocampal memory formation
(Heldt et al., 2007; Bekinschtein et al., 2014). BDNF and
estrogens activate a number of common signaling pathways,
which converge in the induction of growth, survival, neural
plasticity and learning. Estrogens can also induce BDNF gene

expression through direct binding to an estrogen-sensitive
response element (ERE) on the BDNF gene or by increasing
neural activity that in turn upregulates BDNF (Scharfman and
MacLusky, 2006). Serum BDNF levels have been reported to
decline with increasing age in both men and women (Shimada
et al., 2014). In addition, a significant drop in serum BDNF levels
was found in women after menopause, suggesting that ovarian
hormone and BDNF circulating levels are tightly associated
(Bus et al., 2012). Interestingly, a recent report has shown that
working memory-related hippocampal function is differentially
modulated by estradiol in women carrying the specific BDNF
Val66Met functional single-nucleotide polymorphism (SNP; Wei
et al., 2017). A decrease in BDNF expression has been observed
both during aging and after OVX in murine hippocampus
(Singh et al., 1995; Sohrabji et al., 1995; Chapman et al.,
2012; Perovic et al., 2013; Lu et al., 2014) and estrogen
replacement treatment to OVX rats has been shown to increase
BDNF mRNA or protein levels (Singh et al., 1995; Sohrabji
et al., 1995; Gibbs, 1998; Kiss et al., 2012; Lu et al., 2014).
Recently, it has also been suggested that estrogen-enhanced
consolidation of multiple forms of hippocampal memory in
middle-aged rats is associated with the induction of BDNF
protein levels through non-classical cell signaling mechanisms
involving epigenetic regulation of the BDNF gene (Fortress
et al., 2014). Although there has been substantial growth of
new data on the functional consequences of the interplay
between sex hormones and these growth factors in recent
years, many key aspects remain to be addressed. In particular,
an area that warrants further study is to ascertain the role
this interaction plays during aging and menopause, when the
levels of sex hormones and IGF-1/BDNF decline and the cells
and tissues that respond to them undergo both metabolic
and functional changes (Garcia-Segura et al., 2010; Sohrabji,
2015).

Sex Hormones and Mitochondrial Function
during Aging
Despite comprising only 2% of the body’s mass, the brain
consumes 20% of the body fuel to sustain its high demand
of energy in the form of ATP, making it highly dependent
on proper mitochondria function (Rettberg et al., 2014). As
mentioned before, estrogens have beneficial effects on brain
energy metabolism, increasing blood flow and glucose uptake
and enhancing aerobic glycolysis coupled to the citric acid
cycle, mitochondrial respiration and ATP generation (Brinton,
2008). Not surprisingly, a strong link between the drop in
circulating ovarian hormones and reduced brain bioenergetics
in women during menopause and in animals undergoing
natural or surgical reproductive senescence has been reported
(Maki and Resnick, 2000; Rasgon et al., 2005; Yao et al.,
2009, 2010, 2012). In line with this, it is now recognized
that normal aging and several age-related diseases, such
as AD and PD, are related to mitochondrial dysfunction
(Chakrabarti et al., 2011; Johri and Beal, 2012). The common
features observed in aging and AD regarding mitochondria
have recently been reviewed (Grimm et al., 2016a). Briefly,
the aging process is characterized by decreased mitochondrial
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activity, including impaired oxidative phosphorylation, reduced
expression and activity of respiratory chain complexes and
decreased antioxidant defenses (Grimm et al., 2016a). Extensive
evidence indicates that the decline in brain mitochondrial
function observed in reproductive senescent female animals is
caused by loss of ovarian hormones (Yao et al., 2009, 2010,
2012). Also, considering that the first steps of steroidogenesis
take place in mitochondria, it is reasonable to hypothesize that
age-related accumulation of mitochondrial deficits may have
a detrimental effect in steroid biosynthesis and comprise a
potential pathogenic mechanism leading to neurodegeneration
(Velarde, 2014).

OVX in young adult animals has been shown to induce
adverse effects in brain mitochondrial bioenergetics similar to
those found in aged animals, including reduced respiration and
ATP production rates, increased oxidative stress and decreased
expression and/or activity of metabolic enzymes within this
organelle (Irwin et al., 2011; Shi et al., 2011; Yao et al., 2012;
Gaignard et al., 2015). A recent report has shown that OVX
induces mitochondrial dysfunction in terms of reduced active
respiration and ATP production likely associated to alterations
in the mitochondrial membrane lipid profile in the hippocampus
(Zárate et al., 2017). In particular, OVX induces changes in the
fatty acid profile of mitochondrial membranes rendering them
more prone to peroxidation, a feature also observed during aging
in an organ-dependent manner (Pamplona, 2008). Interestingly,
OVX also induces a specific decrease in cardiolipin content and
changes in its fatty acid composition. Importantly, cardiolipin is
an essential component of mitochondria membranes that plays a
crucial role in several mitochondrial processes such as oxidative
phosphorylation, apoptosis, mitochondrial protein import and
supercomplex formation (Claypool and Koehler, 2012). Reduced
cardiolipin content, alterations in its acyl chain composition
and/or increased cardiolipin peroxidation have been linked to
mitochondrial dysfunction in multiple tissues during aging and
in neuropathological disorders (Monteiro-Cardoso et al., 2015).
Overall, these studies suggest that loss of ovarian hormones
accelerates the decline in mitochondrial bioenergetics promoting
a premature aging phenotype (Yao et al., 2009). In line with
this, alteration in mitochondrial membrane lipid composition,
especially in cardiolipin content, could be an additional player
in the aging effects of ovarian hormone loss contributing to
the early bioenergetic decay during menopause (Zárate et al.,
2017).

Although activation of both ERα and ERβ favors
mitochondrial function, ERβ activation often results in greater
mitochondria functional capacity (Irwin et al., 2012; Yao et al.,
2013). It has also been suggested that estrogen effects in brain
metabolism mainly relies on ERβ signaling through directly
promoting mtDNA gene expression, mitochondrial antioxidant
defenses and oxidative and calcium buffering capacity (Nilsen
and Diaz Brinton, 2003; Yang et al., 2004; Simpkins et al., 2008;
Rettberg et al., 2014).

In addition to be the main source of ATP in cells,
mitochondria also play important roles in other cellular
functions, such as cell growth and differentiation, regulation
of intracellular calcium homeostasis, apoptosis, alteration of

the cellular redox state and synaptic plasticity (Grimm et al.,
2016b). Mitochondria are considered the major source of ROS
production in cells under physiological conditions. Electrons leak
the electron transport chain during mitochondrial respiration,
combining with molecular oxygen to generate O−•

2 , which
subsequently can be converted to H2O2 by superoxide dismutase
(SOD). When compared to most other tissues, the brain has very
low antioxidant capacity and it is subjected to particularly high
levels of oxidative DNA damage. Considerable evidence supports
the role of oxidative damage in the aging process (Golden
et al., 2002; Samarghandian et al., 2016) and an increasing
number of studies implicate ROS as an important contributor to
cognitive impairment during aging as well as in age-associated
neurodegenerative diseases (Grimm et al., 2016b). Estrogens
have well-known antioxidant effects. Clinical evidence points
to lower brain oxidative stress and better antioxidant defenses
in premenopausal women compared to men, parameters which
gradually decrease as women age or if they undergo bilateral
oophorectomy (Mandal et al., 2012; Bellanti et al., 2013; Rekkas
et al., 2014). Similar results were obtained in animals, where brain
mitochondria from young adult females showed lower peroxide
production and higher levels of MnSOD, glutathione (GSH) and
glutathione peroxidase (GPx) compared to males of the same
age (Borrás et al., 2003). Estrogens also increase the expression
of peroxirodoxin 5 and glutaredoxin in brain mitochondria
(Nilsen et al., 2007). Remarkably, OVX blunted the differences
in peroxide and GSH levels between females and males while
estrogen treatment prevented them, highlighting the protective
effects of this steroid against oxidative stress (Borrás et al., 2003).
A similar pattern of a positive correlation between circulating
testosterone levels and the activity of antioxidant enzymes both
in serum and in the hippocampus have been reported in men
and in orchidectomized rats, respectively (Meydan et al., 2010;
Cunningham et al., 2014). Again, these effects were prevented
in animals after testosterone administration (Meydan et al.,
2010).

Some brain areas seem to have a particularly high
vulnerability to the effects of sex hormone deprivation, aging
and oxidative stress. Thus, several studies have reported
a link between hippocampal synaptic decline, cognitive
impairment and increased risk of neurodegeneration after
OVX in animal models and menopause in women (Morrison
et al., 2006; Brinton, 2009; Velarde, 2014; Hara et al., 2015).
Mitochondrial dysfunction and oxidative damage are also
more evident in the hippocampus than in brain cortex or
whole brain in aged male rodents (Navarro et al., 2008).
Moreover, OVX severely induces a decrease in the activity
of SOD together with an increase in the pro-oxidant enzyme
monoamine oxidase (MAO) in the hippocampus but not in
the cortex of young rats (Huang and Zhang, 2010). Overall,
increasing evidence indicates that the hippocampus is an
early target of aging, sex hormone loss and oxidative stress
(Navarro et al., 2008; Paradies et al., 2011; Hara et al.,
2015).

Another brain region highly sensitive to ovarian hormones
is the PFC, an area tightly associated to cognitive function in
humans. A recent report has shown that aging in non human
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primates induces morphological changes in mitochondria from
this brain area leading to a mitochondrial phenotype related
to enhanced oxidative stress and ROS production. Noteworthy,
this correlates with worsening of working memory. Interestingly,
OVX promoted similar effects in mitochondrial morphology and
cognitive behavior, which was reversed by estradiol treatment.
These studies suggest that estrogen effects on PFC-related
memory can result from its antioxidant capacity leading to
improved mitochondrial health (Hara et al., 2014).

Sex Hormones and Neurosteroidogenesis
during Aging
Another process that has been described to be affected by aging
is the synthesis of neurosteroids. The transport of cholesterol
from the outer to the inner mitochondrial membrane is the first
and rate-limiting step in steroidogenesis. For many years, there
has been general agreement that this trafficking relies on the
activity of at least two proteins, steroidogenic acute regulatory
protein (StAR) and translocator protein of 18 kDa (TSPO),
previously known as peripheral benzodiazepine receptor (PBR;
Veiga et al., 2004; Acaz-Fonseca et al., 2016). However, recent
research using genetic depletion of TSPO both in in vivo and
in vitro models has challenged the view of TSPO as a critical
enzyme for steroidogenesis (Selvaraj et al., 2015). A recent
report suggested that TSPO may be functionally redundant
in achieving baseline steroidogenesis although it may play an
important role in maintaining androgen levels during aging
(Barron et al., 2017). It is important to stress that the expression
and activity of both enzymes are increased with aging and after
brain injury, suggesting that the production of brain steroids
can be modulated as a protective mechanism to cope with
decreased peripheral steroids or pathological conditions (Veiga
et al., 2004).

Also, other enzymes catalyzing different steps in
neurosteroidogenesis are differentially expressed in neurons
and glia in a region and pathophysiological-condition manner.
Under physiological conditions, neurons are the main sites for
brain estrogen production, relying on their high expression
of aromatase (Acaz-Fonseca et al., 2016). However, enhanced
aromatase expression in astrocyes has been reported following
brain injury in rats and also in the human PFC in the late stages
of AD, suggesting that neuronal impairment can induce estrogen
production as a glial protective mechanism against neuronal
death (Veiga et al., 2004; Luchetti et al., 2011; Acaz-Fonseca
et al., 2016). A recent report has shown decreased levels of
aromatase in the hippocampus of aged female mice when
compared to the levels detected in adult mice (Zhao et al., 2017).
OVX also downregulates aromatase gene expression in the
hippocampus of middle-aged rats (Sárvári et al., 2014). Female
brain-derived estradiol levels have been reported to mirror
estradiol circulating levels and thus significantly decline in
postmenopausal compared to premenopausal women (Rosario
et al., 2011). Since the level of the estradiol precursor and
aromatase substrate testosterone is also decreased in the female
cerebral cortex after OVX (Caruso et al., 2010), it is tempting
to speculate that brain-derived estradiol levels would also be
decreased in the brain after surgical loss of ovarian hormones.

It has been reported that the inhibition or null mutation
of brain aromatase results in accelerated neurodegeneration
(Azcoitia et al., 2003). Furthermore, genetic variants in human
aromatase have been reported to confer an increased risk for
AD (Iivonen et al., 2004; Huang and Poduslo, 2006). Depletion
of aromatase in an animal model of AD also led to earlier
and more severe neuropathology than what was observed in
OVX control mice, suggesting that depletion of brain-derived
estrogen rather that peripheral blood estrogen is a more direct
and significant risk factor for developing AD and points to
the importance of preserving neurosteroidogenesis for healthy
brain aging (Cui et al., 2013). Indeed, targeting key enzymes
involved in brain estrogen production have been proposed as
pharmacological targets to ameliorate brain function decline
during aging and to prevent neurodegenerative diseases (Veiga
et al., 2004).

Sex Hormones and Neuroinflammation
during Aging
As reviewed so far, a wide variety of profound physiological
changes occur during aging in the brain. The immune
system is not an exception, shifting from a resting, surveying
state to a chronic mild inflammatory one (Nissen, 2017).
Neuroinflammation is choreographed bymicroglia and astroglia,
both of which are affected with aging. Microglia constitute
the resident immunocompetent cells of the CNS. It modulates
the inflammatory response under pathological conditions but
it also maintains homeostasis in the healthy brain through
immune surveillance of the brain parenchyma. Changes in
microglial cells during aging and in neurodegenerative processes
as well as sex-related differences have recently been reviewed
(von Bernhardi et al., 2015; Nissen, 2017). Aging promotes
the dysregulation of microglia. As a result, an impairment
of their physiological neuroprotective functions occurs. At
the same time, a mild chronic inflammatory environment
characterized by an increased production of inflammatory
cytokines and ROS takes place in the CNS. Aged microglia
displays morphological changes and a less dynamic response
to injury; however, they appear to be activated under mild
stimulatory events or minor injuries, responding in an
exacerbated way to local and peripheral signals (Nissen,
2017).

Sex differences in gene expression across age in
adult human brain have been reported. Thus, women
display higher age-related increases in expression of genes
associated with immune and inflammatory functions than
men (Christensen and Pike, 2015). While both men and
women show increased expression of these genes in the
hippocampus and entorhinal cortex, only women have
significant increases in other brain regions, suggesting a
more global pro-inflammatory state in the aged female brain
(Berchtold et al., 2008). Also, postmenopausal women display
higher expression of macrophage-associated genes in the
aging frontal cortex than premenopausal women, suggesting
that ovarian hormone loss shifts the microglia phenotype
from the resting towards the reactive state (Sárvári et al.,
2012).
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It is well known that activated microglia can be
polarized into a proinflammatory/cytotoxic M1 or an anti-
inflammatory/neuroprotective M2 phenotype in response
to a myriad of physiological and pathological stimuli (Villa
et al., 2016; Labandeira-Garcia et al., 2017). It has been
broadly reported that estrogens trigger the polarization of
microglia to an M2 phenotype (Habib and Beyer, 2015). This
estrogen action becomes especially relevant under chronic
inflammation conditions, where perpetuation of microglial
proinflammatory status induce neuronal damage. Hence, it
could provide an explanation for the neuroprotective effects
of estrogens observed in aging and neurodegenerative diseases
(Gyenes et al., 2010; Selvamani et al., 2012; Siani et al., 2017).
Besides, growing evidence has highlighted the role of the
local renin-angiotensin system in aging and several processes
mediated by microglial activation and neuroinflammation
(Hellner et al., 2005; Kerr et al., 2005; Rey et al., 2007;
Rodriguez-Pallares et al., 2008; Torika et al., 2016). Interestingly,
estrogen-induced inhibition of this system leads to reduced
oxidative stress, neuroinflammation, and neurodegeneration
of dopaminergic neurons in murine models of PD, which
may explain, at least in part, the lower risk of developing the
disease in premenopausal vs. postmenopausal women and
men (Rodriguez-Perez et al., 2010; Labandeira-Garcia et al.,
2016).

Like humans, female rodents display enhanced inflammation
in the brain with aging, which is regulated, at least in part,
by estrogen status. When compared to age-matched males,
female mice show higher induction of inflammation-related
genes, especially of microglia-specific ones, in the hippocampus
(Mangold et al., 2017). In addition, gene expression studies
in the rat frontal cortex and hippocampus have shown that
both aging and ovarian hormone loss increase the expression of
several microglial and immune function genes, leading to a shift
towards a more inflammatory and reactive microglia phenotype
(Sárvári et al., 2011, 2012, 2014). Estrogen replacement treatment
attenuates the OVX-induced effects and most of these effects
are mimicked by both ERα and ERβ agonists, suggesting that
both ERs are targets of estrogens in microglia (Sárvári et al.,
2011, 2014). Besides, both aging and OVX increase the gene
expression of pro-inflammatory cytokines such as TNFα and
IL-1β in the hippocampus of aged mice (Benedusi et al.,
2012). It has been shown that aging exacerbates microglial
response to OVX, indicating that loss of sex hormones
increase the susceptibility of aged microglia to inflammation
(Lei et al., 2003). Recently, it has been suggested that a
form of estrogen resistance may be involved in the impaired
ability of microglia to resolve inflammation during aging (Villa
et al., 2016). Astroglial cells also display a proinflammatory
phenotype during aging, expressing and secreting increased
levels of inflammatory markers such as TNF-α, IL-1β and
IL-6 and hence contributing to brain neuroinflammation.
They also display age-related increased levels of intermediate
glial fibrillary acidic protein (GFAP) and vimentin filaments
as well as increased accumulation of proteotoxic aggregates
(Salminen et al., 2011). Taken together, both preclinical and
clinical data indicate that both aging and menopause lead

to increased neuroinflammation, which may contribute to sex
differences in age-related neurological diseases such as stroke
and AD.

Although the age-induced increase in the expression of GFAP
has been the most classical change reported in astroglial cells
(Schipper, 1996; Unger, 1998; Cotrina and Nedergaard, 2002;
Lynch et al., 2010), experimental data suggest that physiological
brain aging and early stages of neurodegenerative disease are
characterized by an increased number of dystrophic astrocytes
(Oddo et al., 2003; Broe et al., 2004; Mena and García de Yébenes,
2008; Rossi et al., 2008; Bradford et al., 2010; Olabarria et al.,
2011; Cerbai et al., 2012; Kulijewicz-Nawrot et al., 2012; Beauquis
et al., 2013). These cells are smaller and less complex, with
reduced capacity for glutamate uptake and decreased activity of
glutamine synthetase, hence displaying reduced neuroprotective
and homeostatic potential (Verkhratsky et al., 2014).

Taken together, aging promotes profound changes in
morphological and functional parameters within the brain, most
of which are recapitulated by sex hormone loss, particularly in
the female (Figure 1).

DNA REPAIR AND BRAIN AGING

The DNA in brain cells is frequently damaged and if this
damage is not removed it can have serious consequences such
as compromised genomic stability. Although exogenous sources
of DNA damage exist and replication errors may lead to DNA
strand breaks, the majority of DNA lesions in non-replicating
brain cells are introduced endogenously by ROS. It is important
to note, though, that there are other common DNA lesions
that have recently been recognized to also substantially impact
genome stability. Among these, rNTP incorporation into DNA,
genome damage from transcription-associated R-loop formation
(hybridization of nascent primary RNA transcripts to the
transcribed DNA strand), and aberrant topoisomerase activity
are potential threats to the neural genome (McKinnon, 2016;
Williams et al., 2016). Also, the generation of DNA damage
through topoisomerase I cleavage complexes formed during
transcription is likely to play a significant role in neurons due
to the high transcription rates in these cells (Katyal et al.,
2014). The difference in replicative status influences to some
extent the damage and repair processes in cells. In this context
it is important to note that the brain is composed of both
non-dividing and dividing cells. As mentioned above, neurons
are in a post-mitotic state. But glial cells (e.g., astrocytes,
oligodendrocytes and microglia) are in either a proliferative
or non-proliferative state, depending on their differentiation
status. Because both neurons and glial cells are required to
carry out the various higher-order brain functions, it is critically
important tomaintain all cell types in an appropriate number and
configuration (Iyama and Wilson, 2013).

When DNA is exposed to ROS, it may result in oxidative
base modifications. Among these, 8-oxo-dG is one of the most
abundant and well characterized (Dizdaroglu et al., 2002).
It has been estimated that approximately 180 guanines are
oxidized to 8-oxo-dG per mammalian genome per day (Lindahl,
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FIGURE 1 | Organismal, cellular and molecular hallmarks of brain aging are frequently observed in ovariectomized animal brains. Examples of common features

shared in aging and lack of sex hormones in the brain are shown. For details, see text.

1993). These lesions may cause G:C to T:A transversion
mutations because 8-oxo-dG can base pair with adenine as
well as cytosine during DNA replication (Shibutani et al.,
1991). 8-oxodG has also been implicated in an event called
transcriptional mutagenesis (TM), whereby a mis-incorporated
adenine in the transcribing mRNA leads to the generation of
mutated species of protein (Bregeon et al., 2009). Interestingly,
it has recently been suggested that TM may contribute to
α-synuclein aggregation and the pathogenesis of PD (Basu
et al., 2015). It is important to note that e.g., 8-oxo-dG
may also become further oxidized into secondary oxidation
products such as guanidinohydantoin 2′-deoxynucleoside
(dGh) in doublestranded DNA or spiroiminodihydantoin
2′-deoxynucleoside (dSp) in single stranded DNA (Suzuki et al.,
2001; Fleming and Burrows, 2013). ROS may also give rise to
DNA single strand breaks (SSBs), which are some of the most
common DNA lesions arising at an estimated rate of tens of
thousands per cell per day (Lindahl, 1993). Persistent SSBs can
lead to the collapse of the replication fork during chromosome
duplication, but theymay also block transcription. Double strand
breaks (DSBs) may also be formed as a result of the actions of
ROS. Although these lesions normally are relatively rare, DSBs
are some of the most deleterious forms of DNA damage, causing
translocations and loss of genomic information. Finally, ROS can
also lead to lipid peroxidation, whose byproducts can also react
with DNA to produce exocyclic DNA lesions (Yu et al., 2016).

There is growing evidence for the accumulation of unrepaired
DNA lesions in the CNS during both normal and accelerated

aging and progressive neurodegeneration, but the observed
changes depend on brain region, cell types and sub-cellular
location of the DNA. Rutten et al. (2007) reported that the
number of SSBs increases substantially with aging in the nuclear
DNA (nDNA) of hippocampal pyramidal and granule cells as
well as in cerebellar granule cells but not in cerebellar Purkinje
cells in the mouse brain. For rat brain it has been reported
that Ogg1-sensitive sites (i.e., mainly 8-oxo-d-G) accumulate
continuously through adulthood and old age in both neurons
and astrocytes (Swain and Subba Rao, 2011). Furthermore, it
has been shown that susceptibility to oxidative DNA damage
is lower and BER capacity is higher in undifferentiated human
SH-SY5Y neuro-blastoma cells than in neuronally differentiated
SH-SY5Y cells (Sykora et al., 2013). Due to the close proximity
of the mtDNA to the site where most of the cellular ROS is
formed, mtDNA is particularly vulnerable to oxidative damage.
Accordingly, age-associated accumulation of DNA damage is
mostly reported for mtDNA. It has been reported that human
brain cells experience a progressive increase in the levels of
8-oxo-dG and the magnitude of the age-related damage is
approximately ten-fold greater in mtDNA than in nDNA (Wang
et al., 2005, 2006; Lovell and Markesbery, 2007).

If left unrepaired, DNA damage can give rise to genomic
instability and trigger signaling cascades leading to cellular
senescence or cell death, which are phenotypes associated with
aging (Rodier et al., 2009). Accordingly, increased levels of
mutations in the DNA have been described to occur in the
brain and other tissues during normal aging leading to DNA
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FIGURE 2 | Changes in base excision repair (BER) in brain aging and neurodegeneration. The figure depicts age-related changes in the BER pathway from different

investigations performed in specific brain regions: cortex, hippocampus, cerebellum; or using whole brains and in different fractions: (M): mitochondrial, (N): nuclear,

(S): synaptosomal, (T): total. It also summarizes some of the major findings in humans and rodents implicating BER in age-related neurodegenerative diseases.

Numbers in brackets correspond to references: (1) Imam et al. (2006); (2) Gredilla et al. (2010b); (3) Kisby et al. (2010); (4) Gredilla et al. (2012); (5) Cabelof et al.

(2003); (6) Weissman et al. (2007b); (7) Canugovi et al. (2014); (8) Lovell et al. (2000); (9) Iida et al. (2002); (10) Shao et al. (2008); (11) Coppedè and Migliore (2015);

(12) Kovtun et al. (2007).

instability (Gredilla, 2010). Although the majority of known
DNA repair pathways are present in neurons and glia cells,
many investigations suggest that BER impairment and increased
DNA instability are the principal contributors to brain aging
and age- associated neurodegenerative diseases (Figure 2). The
BER pathway is basically divided in four distinct steps. First,
DNA glycosylases recognize and remove the modified bases.
These DNA glycosylases, such as NTH1 and Ogg1, have distinct
substrate specificities. They render an abasic site, which is
mainly processed by the AP endonuclease (APE1). BER may
proceed through two different sub-pathways, both in nuclei and
mitochondria: short- or long-patch BER. Both pathways mainly
differ in the number of nucleotides that are incorporated into
the gap by a DNA polymerase. Different accessory proteins are
involved in this step. Finally ligation of the DNA strand takes
place by a DNA ligase (Robertson et al., 2009; Liu and Demple,
2010).

Together with BER, it has been suggested that proteins
involved in MMR and DSBs repair are present in mitochondria;
however, no evidence of mitochondrial NER activity has been
reported (Gredilla et al., 2010a). The NER pathway repairs
different types of helix distorting and bulky lesions. Moreover,
this pathway plays a critical role in DNA crosslinks repair.
Similarly to other DNA repair pathways, NER involves various
steps, including damage recognition, opening of the DNA helix,
incision of the nucleotides surrounding the lesion, gap filling
and ligation. Two NER sub-pathways exist: the global genome
(GG)-NER and transcription coupled (TC)-NER. The first step
of the pathway, recognition of the damage, involves the action
of multiple proteins. In GG-NER destabilization of the base
pairing is detected by XPC together with the human homolog
Rad23 protein, which is suggested by many studies to be the
first protein factor to arrive at the lesion. For specific types of
lesions, such as UV-induced photoproducts, other proteins are
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involved i.e., UV-damaged DNA-binding protein (UV-DDB),
thereby recruiting XPC and extending the substrate specificity
(Sugasawa, 2011). In TC-NER, damage recognition is caused
by the blockage of the transcribing RNA polymerase II on
the damaged DNA template. TC-NER is initiated by the CSB
protein, followed by CSA. In both GG-NER and TC-NER, the
lesion recognition step is followed by recruitment of TFIIH.
DNA is unwound around the lesion and the open complex
is stabilized by XPG and XPA. Specific endonucleases XPG
and ERCC1/XPF cleave the lesion, and after removal of a
24–32 nucleotide fragment, the remaining single-strand gap
is filled by the replication machinery and the resulting nick
is sealed by ligase I or ligase III (de Boer and Hoeijmakers,
2000; Jeppesen et al., 2011). In MMR, MSH2–MSH6 or
MSH2–MSH3 heterodimeric ATPase complexes recognize and
bind the mismatch. After recruitment of different proteins e.g.,
MLH1, PMS2, PCNA, excision is performed by the exonuclease
EXO1. Repair synthesis is accurately performed by Polδ, and
ligation of the remaining nicks after DNA synthesis is performed
by ligase I (Jiricny, 2006). The DSB repair pathway is regulated
by several phosphorylation events, starting immediately after
DSB formation, where large numbers of the histone protein
H2AX are phosphorylated (γH2AX) and accumulate in the
chromatin around the break (Bonner et al., 2008; Muslimovic
et al., 2008). Moreover, different DSB damage response proteins
accumulate in foci around DSBs, activating signaling pathways
that affect events related to DNA repair, cell cycle checkpoints,
and transcription. The repair of DSBs involves one of two
mechanisms: non-homologous end-joining (NHEJ), directly
joining the broken ends and involving loss of genetic material, or
homologous recombination (HR), which can only take place in
replicating cells and uses the intact sister chromatid as a template
for repair.

Several studies have shown that oxidative DNA damage do
accumulate with age, especially in the mitochondria. The DNA
glycosylase Ogg1, is likely to be particularly important for DNA
maintenance in the brain due to its specificity for the common
8-oxo-dG lesion. Ogg1 activity decreases significantly with age in
neuronal extracts of rat brain, and a similar trend is observed,
to a lesser extent though, in rat brain astrocytes (Swain and
Subba Rao, 2011). The glycosylases NEIL1 and NEIL2, are also
considered to be essential for neuronal DNA repair, due to
their ability to remove various oxidatively damaged bases in
single stranded regions of DNA, since neuronal DNA is heavily
transcribed and during that process the DNA is transiently in a
single stranded conformation. In aged rats the activity of APE1,
the major enzyme responsible for incision of the DNA backbone
in BER, is reduced in the frontal/parietal cortex, cerebellum,
brainstem, midbrain and hypothalamus compared to young rats
(Kisby et al., 2010) and APE1 activity seems to be reduced both
in neurons and astrocytes (Swain and Subba Rao, 2011). While
APE1 activity declines with age, there does not seem to be any
change in the protein levels of either APE1, Pol β or LIG3 in
the rat frontal/parietal cortex, suggesting that the reduced APE
activity could be due to altered post-translational modification.

Mitochondrial DNA repair is likely to be particularly
important due to the heavy exposure of mtDNA to ROS. Studies

by Hollensworth et al. (2000) indicate that mtBER is more
efficient in astrocytes than oligodendrocytes or microglia, and
that the efficient repair associates with reduced susceptibility to
apoptosis. We have previously reported age-associated changes
in mtBER activity in the murine brain and showed that these
changes are region specific. Thus, in cortical mitochondria,
DNA glycosylase activities peak at middle-age followed by a
significant drop at old age. However, only minor changes
are observed in hippocampal mitochondria during the whole
lifespan. Furthermore, DNA glycosylase activities are lower in
hippocampal than in cortical mitochondria (Gredilla et al.,
2010b). Noteworthy, we have also reported that an age-related
decline in mouse brain mtBER occurs specifically at the synapses,
which is associated with a decrease in the level of BER proteins
(Gredilla et al., 2012). In the human brain, the expression of
at least some genes coding for proteins involved in BER has
been shown to fluctuate with aging. Interestingly, this seems
to some extent to be due to an age-associated accumulation
of oxidative lesions in the promotor regions of these genes
(Lu et al., 2004). Recently, work from Lillenes et al. (2011,
2017), suggests a potential link between specific SNPs in
APE1 and DNA polymerase β in humans and reduced cognitive
performance in healthy elderly individuals, which is in support
of a role for BER in the maintenance of brain function late in
life.

SEX HORMONES AND DNA REPAIR IN
THE BRAIN

As mentioned above, DNA instability is one of the major
hallmarks of aging. Several investigations have associated brain
aging and age-related neurodegenerative disorders with higher
accumulation of DNA mutations due, at least in part, to a
reduction inDNA repair capacity (Vermulst et al., 2007; Jeppesen
et al., 2011; Sanders et al., 2014). Since sex steroids have been
described to exert neuroprotective effects, it is likely that such
effects might be partly linked to a direct impact on DNA
repair mechanisms. In fact, the effect of sex steroids on DNA
damage responses have been extensively investigated in cancer,
where sex steroids have been described to interact with different
DNA repair pathways (Caldon, 2014). Estrogen and androgens
positively regulate the repair of DSBs by activation of NHEJ
in breast and prostate cancers (Schiewer and Knudsen, 2016).
However, conflicting results have been reported regarding the
effect of sex steroids on HR depending on the type of cancer,
with positive regulation in prostatic cancer and melanoma (Fang
et al., 2013; Bowen et al., 2015), but negative in medulloblastoma
(Urbanska et al., 2009). Estrogen has also been associated
with an enhanced DNA repair via MMR in colorectal cancer
(Lu J. Y. et al., 2017). Regarding NER, estrogen up-regulates
the repair of UV-induced DNA damage in breast cancer
cells (Boulay and Perdiz, 2005) while reducing the repair of
thymine dimers in human keratinocytes (Evans et al., 2003).
Moreover, in patients with basal cell carcinoma, postmenopausal
women show a significant drop in lymphocyte DNA repair
capacity compared to postmenopausal women on estrogen
supplementation (Grossman and Wei, 1995).
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Poly (ADP-ribose) polymerases (PARP) are members of
a family of enzymes that are particularly abundant in cell
nuclei and can function as sensors of DNA damage. Various
investigations have reported sex differences in PARP1 activity.
A recent report has shown that female and estrogen-treated
male mice are completely protected from alkylation-induced
nephrotoxicity in a transgenic model of enhanced alkyladenine
DNA glycosylase (Aag) expression together with PARP-1 KO
(AagTg/Parp1−/−). This sex dimorphism suggests a direct
interaction between Aag and/or PARP1 with estrogen pathways
leading to changes in DNA repair activity and/or gene expression
(Calvo et al., 2016). Estrogen supplementation also affects
PARP-1 activity differently in peripheral blood mononuclear
cells from male and female mice (Zaremba et al., 2011).
Moreover, PARP-1 is an important regulator of neuronal cell
death and cellular responses to DNA damage and it has been
reported that PARP-1 mediated cell death is dependent on
androgen-receptor signaling after stroke (Vagnerova et al., 2010).

In contrast to cancer research, the relation of sex steroid
hormones and DNA repair pathways and whether the former
regulates the latter contributing to their neuroprotective effect
has not been extensively investigated. However, various studies
have reported that sex steroids, particularly estrogen and
progesterone, regulate DNA repair mechanisms in the brain.
Most of those studies have used OVX animals as a model for
analyzing their effect on specific activities or expression of DNA
repair enzymes. Studies on how estrogen levels affect DNA repair
in the brain have mainly focused on enzymes involved in BER.
Estrogen has been described to regulate the transcription as well
as the translocation within different cellular compartments of
BER enzymes. Neuroprotection of estrogens has been shown
in cerebral cortex where they have been described to reduce
oxidative DNA damage after hypoxia (Rao et al., 2011), an effect
that is associated with an enhancement in the transcription of
DNA repair enzymes like APE1 in that brain region (Dietrich
et al., 2013). Moreover, estrogen supplementation in OVX old
female macaques has been shown to increase the transcription
levels of different DNA repair enzymes in the dorsal raphe
(Bethea et al., 2016). Bethea et al. (2016) described a significant
increase in the transcription of DNA repair enzymes involved
in different pathways, including BER (APE1, NTH1 among
others), NER (RAD23 and GTF2H5, a subunit of THIIF) and HR
(NBS1 and SHFM1). Interestingly, they also reported that when
estrogen is combined with progesterone the effect is reduced
or even absent (Bethea et al., 2016). That is in agreement with
those studies that have previously reported an antagonistic effect
of progesterone over estrogen, e.g., in cognitive function of
hormone-treated OVX rats (Bimonte-Nelson et al., 2006) and
in hippocampal cellular survival after treatment with kainate
or mitochondrial toxins (Rosario et al., 2006; Carroll et al.,
2008; Yao et al., 2011). Similarly, progesterone has also been
described to reduce the estrogen-related enhancement of BDNF
in OVX rats (Bimonte-Nelson et al., 2004). This is especially
interesting, because BDNF has been described to enhance
neuronal survival, at least in part by inducing the transcription
of DNA repair enzymes such as APE1 (Yang et al., 2014). Thus,
the effect of estrogen on DNA repair might also be related

to BDNF levels, since as we previously described, estrogens
induce BDNF expression. Various studies have also linked
beneficial effects of estrogens with an up-regulation of Nrf-2 via
the PI3K/Akt signaling pathway. This is a relevant link since
Nrf2 has been associated to the transcription of antioxidant
response elements, including different DNA repair enzymes
(Jayakumar et al., 2015; Habib et al., 2016). The expression
of Nrf2 has been described to be reduced after OVX and
restored to normal levels after estrogen supplementation in
murine hippocampus (Li et al., 2017). This mechanism has
also been described to play an important role in the protective
role of estrogens after light-induced degeneration in retina
(Zhu et al., 2015). Moreover, it has been described that certain
phytestrogens exert their beneficial effects by activating the
PI3K/Akt/Nrf2 pathway through ER binding (Hwang and Jeong,
2010).

Estrogen not only regulates the expression/activity of DNA
repair enzymes, it has also been described to regulate their
subcellular distribution. Leclère et al. (2013) have shown that in
whole brain extracts, APE1 activity is increased in mitochondrial
fractions after OVX. The same effect is observed in liver extracts,
being associated with a translocation of APE1 from the cytosol
to the mitochondria. Moreover, this effect of estrogen on the
trafficking of DNA repair enzymes has been suggested to be brain
region-dependent. Araneda et al. (2005) have shown that after
estrogen supplementation in OVX rats, Ogg1 was translocated
within the nucleus and to other cellular compartments in the
paraventricular nucleus of the hypothalamus but not in the bed
nucleus of the stria terminalis. This translocation of DNA repair
enzymes dependency on estrogen levels might be associated with
the increased oxidative stress that has been described to occur
after OVX (Borrás et al., 2003; Baeza et al., 2008). Various studies
have reported that DNA repair enzymes can be specifically
translocated to nuclei and mitochondria in response to increased
oxidative stress and DNA damage (Mitra et al., 2007; Boesch
et al., 2011; Li M. X. et al., 2012).

CONCLUDING REMARKS

Brain aging is associated with an important decline in
neuronal function. The drop in sex hormone levels during
aging is believed to play an important role in the loss of
neuronal function, which may further contribute to the onset
of age-related neurodegenerative diseases. A broadly used
animal model for investigating the effects of sex hormones in
brain aging and neurodegeneration is gonadectomy, especially
in rodents. Gonadectomized young rodents display several
features of intact aged animals, including changes in brain
metabolism, mitochondrial function, and neuroinflammation
among others. Interestingly, estrogen supplementation in female
rodents has been described to revert the negative effects of
OVX in brain functionality. Different studies have supported
the neuroprotective effect of estrogen at different levels. Such
effect may be extremely complex, and it may depend not
only on the type of receptor involved, but also on the timing
of estrogen therapy. In view of ERβ sustained actions on
plasticity during aging in the female brain and its effects
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on mitochondrial function, ERβ appears as a target worth
exploring to counteract age-associated detrimental effects in the
brain. A better understanding of the underlying mechanisms of
sex hormone actions may lead to new avenues for treatment
of age-associated neurodegeneration. Recently, some studies
have reported a significant effect of estrogens on DNA
repair enzymes in the brain. However, the investigations on
this particular issue and the related mechanisms are still
scarce. Since reduction in DNA repair capacity has been
suggested to contribute to brain aging and the onset of
neurodegenerative diseases, it is critical to fully understand how
estrogens affect DNA repair mechanisms. This novel interplay
warrants further study in an attempt to find new therapeutic
targets to promote healthy brain aging and prevent age-related
diseases.
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