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Role of feedback and broadcasting in the naming game

Andrea Baronchelli
Departament de Fı́sica i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord B4, E-08034 Barcelona, Spain
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The naming game (NG) describes the agreement dynamics of a population of agents that interact locally
in a pairwise fashion, and in recent years statistical physics tools and techniques have greatly contributed to
shed light on its rich phenomenology. Here we investigate in details the role played by the way in which the
two agents update their states after an interaction. We show that slightly modifying the NG rules in terms of
which agent performs the update in given circumstances (i.e., after a success) can either alter dramatically the
overall dynamics or leave it qualitatively unchanged. We understand analytically the first case by casting the
model in the broader framework of a generalized NG. As for the second case, on the other hand, we note that
the modified rule reproducing the main features of the usual NG corresponds in fact to a simplification of it
consisting in the elimination of feedback between the agents. This allows us to introduce and study a very natural
broadcasting scheme on networks that can be potentially relevant for different applications, such as the design
and implementation of autonomous sensor networks, as pointed out in the recent literature.
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I. INTRODUCTION

The naming game (NG) [1,2] describes a population of
agents playing pairwise interactions in order to negotiate
conventions. Following Wittgenstein’s intuition on language
[3], the negotiation is seen as an activity in which one of the
individuals (i.e., the “speaker”) tries to draw the attention of the
other (i.e., the “hearer”) toward an external meaning through
the production of a conventional form. For example, the
speaker might want to make the hearer identify an object trough
the production of a name. Based on the success or failure of the
hearer in pinpointing the proper meaning, both agents reshape
their internal meaning-form associations. Since, in general, at
each time step a different pair interacts, the interesting point is
to study how the local dynamics affects the population scale
behavior and to investigate the mechanisms leading to the final
global consensus.

The model, originally defined to describe artificial intel-
ligence experiments [1], has been recently brought to the
attention of the community of statistical physicists [2] in a
formulation that is very close in spirit to that of other opinion
dynamics models [4,5] (for a detailed analysis of this point,
see [6]). It has been studied in fully connected graphs (i.e.,
in mean-field or homogeneous mixing populations) [1,2,7];
regular lattices [8,9]; small world networks [9–11]; random
geometric graphs [9,12,13]; and static [14–16], dynamic [17],
and empirical [18] complex networks. The final state of the
system is always consensus [19], but stable polarized states can
be reached introducing a simple confidence/trust parameter
[20]. The NG as defined in [2] has also been modified in
several ways [9,12,18,20–29] and it represents the fundamental
brick of more complex models in computational cognitive
sciences [30,31]. From the point of view of the applications,
finally, its relevance in system-design in the context of sensor
networks [32], for such problems as autonomous key creation
or selection for encrypted communication [9] and, more
recently, as a tool to investigate the community structure of
social networks [18,27], has been pointed out.

The rules are simple [2]. The game is played by a population
of N agents, each of which characterized by an inventory, that

is, a list of words (or “conventions,” “opinions,” “forms,” or
“states”), whose size is not fixed. At every time step two agents
are randomly selected and interact (see also Fig. 1). One of
them plays as speaker and the other one as hearer. The speaker
picks randomly a word from her inventory and conveys it to
the hearer. If the hearer’s inventory contains that word, the
game is a success, and both agents delete all the words in
their inventories but the one that has just been transmitted.
Otherwise it is a failure, and the hearer adds the received word
to her inventory. The scheme is completed by specifying that
at the beginning of the game all inventories are empty and that
whenever a speaker has an empty inventory she invents a brand
new word and transmits it to the hearer.1

Here we focus on the success rule. The fact that both agents
undergo the very same operation (i.e., shrink their inventories
to the same unique word) underlies the existence of a feedback
between the two. In the original formulation the feedback
occurs through an outside world, with the hearer pointing to
the object she would associate with the received word. The
speaker would then point on her turn to the right object and
both individuals would immediately know whether the game
was a success or a failure [1]. In the simplified version defined
in [2], however, the feedback simply consists in the hearer
informing the speaker that she too has the transmitted word.
In case of failure, on the other hand, no feedback is needed.

In what follows, we investigate what happens when only
one of the agents updates her inventory after a successful
interaction. We show that the situation changes dramatically
depending on whether the update is performed by the hearer
only or the speaker only, cases that we refer to as hearer-only
NG (HO-NG) and speaker-only NG (SO-NG) (see Fig. 1). In
particular, we show that the HO-NG yields a scaling of the
convergence time with the population size that is the same as
the one observed in the usual NG. The SO-NG, on the other
hand, is significantly slower. We understand analytically the

1The fact that the invented word is actually new to the whole
population corresponds to discarding homonymy [2].
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FIG. 1. (Color online) Interaction rules. The speaker’s inventory
contains three words, namely, A, X, and Z, while the hearer’s one
contains A and Y . If the speaker randomly selects word A, the
interaction is a success (top). In the usual NG both agents delete
competing synonyms, in the HO-NG only the hearer updates her
inventory, while in the SO-NG only the speaker does that. When
the word transmitted by the speaker is not known by the hearer (for
example, X), on the other hand, the latter adds it to her inventory and
the interaction is classified as a failure (bottom). In this case, both the
HO-NG and the SO-NG behave as the NG.

reason beyond this difference and point out that the SO-NG
spontaneously falls in the critical regime of the generalized NG
model introduced in [20] (Sec. II). The fact that the HO-NG
remains efficient, on the other hand, allows us to introduce a
very natural broadcasting scheme that significantly simplifies
previously introduced protocols [9] when the population is
embedded in any kind of topology (Sec. III).

II. NONSYMMETRIC UPDATING AND THE ROLE OF
FEEDBACK

Relevant observables in the NG are the total number of
words Nw(t), defined as the sum of the inventory sizes of all
the agents, and the number of different words Nd (t), counting,
as the name suggests, how many different words are present
in the system at time t [2]. The dynamics proceeds as follows
(see Fig. 2) [2,7]: At the beginning both Nw(t) and Nd (t) grow
linearly as the agents invent new words. As invention ceases,
Nd (t) reaches a plateau whose height is, on average, N/2
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FIG. 2. (Color online) Time evolution of the NG. (Top) The total
number of words Nw(t) grows till it reaches a maximum, Nmax

w at time
tmax , corresponding to the maximum amount of memory required to
the population. Due to an increase in successful interactions, it then
starts decreasing till the final state, in which Nw(t) = N , meaning
that all the agents share the same unique word. The inset shows that
the HO-NG and the SO-NG exhibit the same qualitative behavior
observed in the NG. (Bottom) The number of different words present
in the system saturates at Nd (t) = N/2 as soon as the invention
process ceases. It then remains almost constant to fall finally to
the consensus value Nd (t) = 1 at the convergence time tconv . Data
refer to a population of N = 103 agents and are averaged over 103

realizations.

words (since the agents interact in pairs). On the other hand,
Nw(t) keeps growing till it reaches a maximum at time tmax ,
whose height, Nmax

w , corresponds to the highest amount of
memory (i.e., size of the inventories) required by the system.
The total number of words then decreases and the system
reaches the convergence state at time tconv . At convergence all
the agents share the same unique word, so that Nw(tconv) = N

and Nd (tconv) = 1.
We now focus on the scaling of the memory consumption

and the convergence time with the system size. In the usual
NG it holds that tconv ∼ Nω, tmax ∼ Nν , and Nmax

w ∼ Nμ,
with ω � μ � ν � 1.5 (where the time is counted in terms of
microscopic interactions) [2]. Figure 3 shows that the same
scaling is observed also in the SO-NG and the HO-NG as far
as the time and height of the peak of Nw(t) are concerned.
Looking at the convergence time, however, it is clear that
while the HO-NG behaves as the usual NG,2 the SO-NG
is remarkably slower, showing a tconv ∼ Nω with ω � 2.0
behavior. This numerical result is important. Indeed, the fact
that the HO-NG behaves substantially in the same way as the
usual NG implies that the hearer’s feedback to the speaker
is not crucial and opens the way to the implementation of
straightforward broadcasting protocols, as we see in the next
section.3

2The curve for the convergence time of the NG for systems of
different sizes exhibits small oscillations when plotted in log-log
scale [7] and it does not therefore appear as a perfectly straight line.

3The fact that the HO-NG and the NG behave in the same way
as far as the scaling with the system size of the relevant quantities is

046103-2



ROLE OF FEEDBACK AND BROADCASTING IN THE . . . PHYSICAL REVIEW E 83, 046103 (2011)

10
0

10
2

10
4

10
6

N
10

0

10
6

10
12

t co
nv

NG
HO-NG
SO-NG

10
0

10
2

10
4

10
6

N

10
0

10
4

10
8

t m
ax

10
0

10
2

10
4

10
6

N

10
0

10
4

10
8

N
wm

ax

1.5

1.5 1.5

2.0

FIG. 3. (Color online) Scaling with the system size. (Top) In the
SO-NG the convergence time tconv is much larger than in the NG
and the HO-NG. Also the scaling with the population size is slower
than the tconv ∼ Nω with ω � 1.5 (dashed line) exhibited by both the
NG and the HO-NG. (Bottom) The time (left) and the height (right)
of the total number of words scale in all cases as tmax ∼ Nν and
Nmax

w ∼ Nμ, with ν � μ � 1.5 (dashed lines). Each point represents
the average value obtained over 30 simulation runs and is plotted
with the correspondent statistical error (often not visible on the scale
of the graph).

To shed light on the extremely slow convergence of the
SO-NG it is convenient to consider the generalized NG scheme
defined in [20]. The rules are the same as in the NG, but for
the fact that in case of a successful interaction the agents
update their inventories with probability β (so that the usual
rules correspond to the β = 1 case). Generalizing in the
same way the HO-NG and the SO-NG is straightforward:
In the first, only the hearer will update her inventory after
a success and will do that with a probability β, in the latter
it will be only the speaker. The generalized NG exhibits
a consensus-polarization transition at βc = 1/3. For β > βc

the system always reaches the final consensus state, while
for β < βc two competing words survive asymptotically
(in the limit N → ∞) and convergence is never reached.4

The transition can be understood considering that, after the
peak of the total number of words, the dynamics proceeds
through the progressive elimination of competing words, and
just before convergence only two different words, say A and
B, are present in the system [7]. Thus, the population can
be divided into three groups formed by all the agents whose
inventory stores either only A or only B or both A and B,
whose relative size in the population we label as nA, nB , and

concerned holds in the framework of the simplified scheme introduced
in [2], being a consequence of the the fact that homonymy is not taken
into account. Feedback remains, in fact, a fundamental ingredient of
any language games, as devised by Wittgenstein [3].

4This is, in fact, the first of a series of transitions occurring as
β → 0 [20].

nAB . The transition probabilities from different groups are the
following [20,33]:

pA→AB = nB + 1
2nAB, pB→AB = nA + 1

2nAB, (1)

pAB→A = 3β

2
nA + βnAB, pAB→B = 3β

2
nB + βnAB. (2)

In Eq. (1), an agent with a single word A (B) adds B (A)
to its inventory when, playing as hearer, she receives it from
the speaker. This may happen either because the speaker stores
only B (A) or because the speaker stores both words and selects
randomly, with probability 1/2, B (A). In Eq. (2), on the other
hand, an agent reduces her inventory from AB to A (B) only in
case of an update following, with probability β, a success on
word A (B). The interaction may involve another agent with
two words [in this case the factor 1/2 relative to the speaker ex-
traction is balanced by the fact that both agents will have only A

(B) in their inventory] or an agent storing only A (B). In the lat-
ter case, either the AB agent is the speaker and plays A (B) with
probability 1/2 or she is the hearer and the success is certain,
the sum of these two terms yielding the factor 3/2 [Eq. (2)].

The above transition probabilities translate into the fol-
lowing mean-field equations for the evolution in time of the
fractions of agents in each state [20]:

dnA

dt
= −nAnB + βn2

AB + 3β − 1

2
nAnAB, (3)

dnB

dt
= −nAnB + βn2

AB + 3β − 1

2
nBnAB, (4)

and nAB = 1 − nA − nB . The fixed points are nA = 1,nB =
nAB = 0 and nA = nAB = 0,nB = 1 and nA = b(β),nB =
b(β),nAB = 1 − 2b(β), with b(β) = 1+5β−

√
1+10β+17β2

4β
[and

b(0) = 0]. Defining the magnetization as m = nA − nB , we
have

dm

dt
= 3β − 1

2
nABm. (5)

Thus, for βc > 1/3, sgn( dm
dt

) = sgn(m): |m| → 1 and the
system ends up in an absorbing state of consensus in the A

or B option. For βc < 1/3, sgn( dm
dt

) = −sgn(m) and |m| → 0,
implying the stationary coexistence of the three phases, with
nA = nB and a finite density of AB agents.

To describe the SO-NG in the same framework one must
modify Eq. (2) to take into account that the hearer never
updates her inventory after a success [Eq. (1), concerning the
update following a failure, remains unchanged]. The transition
probabilities now read

pAB→A = β
(nA

2
+ nAB

2

)
, pAB→B = β

(nB

2
+ nAB

2

)
, (6)

yielding

dnA

dt
= −nAnB + β

2
n2

AB + β − 1

2
nAnAB, (7)

dnB

dt
= −nAnB + β

2
n2

AB + β − 1

2
nBnAB, (8)

and therefore,

dm

dt
= β − 1

2
nABm. (9)
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FIG. 4. (Color online) The generalized NG: Consensus time as
a function of β. In the NG the convergence time tconv diverges at
βc = 1/3. The HO-NG is less robust, and βc = 1/2. For the SO-NG,
on the other hand, it holds that βc = 1, so that the final consensus is
never a stable solution. Dotted vertical lines represent the theoretical
predictions. Data refer to a population of 3 × 103 agents and each
point represents the average value obtained from 30 simulation runs.
Error bars represent the statistical error of the average value.

Thus, the transition occurs at βc = 1, and the SO-NG is
naturally critical. This explains why the behavior of the SO-NG
is qualitatively different from the one observed in the usual
NG. The system is not driven to consensus, but rather ends
up there only due to large, system size, fluctuations of the
magnetization. The same analysis can be repeated also for the
generalized HO-NG, where one finds that βc = 1/2. Hence,
even though for β = 1 the HO-NG and the NG behave in the
same qualitative way, the latter is more robust to perturbations
in the generalized setting. Figure 4 shows that numerical
simulations are in very good agreement with the theoretical
prediction, confirming that focusing on the two words case
is indeed a valid assumption to determine the critical values
of β (while it can be an oversimplifying starting point to
describe more subtle properties of the convergence process
in the NG [20]).

III. BROADCASTING ON NETWORKS

Complex networks are the natural environment to inves-
tigate the dynamics of models that aim at describing social,
technological, or biological systems [35–39]. Motivated by
the communication protocols employed by sensor nodes, Lu,
Korniss, and Szymanski introduced a broadcast version of
the NG to make it applicable in sensor networks [9,12]. In
this framework, the rules are the same as in the usual NG
but for the fact that the speaker transmits her word to all her
neighbors at the same time, rather than to a randomly selected
one. If a hearer has that word in her inventory, she deletes all
the competing synonyms but the winning one; otherwise she
adds the new word to her memory. As for the speaker, she
will consider the interaction a success if at least one of the
hearers knows it. At least one successful hearer must therefore
report to the speaker that she knew the transmitted word. In real
network this communication could be performed, for example,
through the “lecture hall” algorithm [40].

The results discussed above about the HO-NG, however,
show that, at least as far as pairwise interactions are considered,
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FIG. 5. (Color online) Broadcasting on networks. Scaling of the
consensus time (top) and the maximum number of words (bottom)
for the broadcasting rule on ER homogeneous (left) and UCM
heterogeneous networks (right). Each point is averaged over 30
simulation runs (5 runs on each of 6 network realizations), and error
bars are not visible on the scale of the graph. Heterogeneous networks
(right panels) are generated with the uncorrelated configuration model
(UCM) [34], with minimum degree k = 4 and degree exponent,
P (k) ∼ k−γ , is γ = 2.5. ER networks are generated with 〈k〉 = 8.

there is no need for the speaker to receive any feedback in order
to guarantee an efficient route to convergence. Thus, a very
natural broadcasting scheme might simply consist of letting
only the hearers update their inventories, following the usual
rules in case of failure or success. Figure 5 shows that such
a simple broadcasting scheme guarantees a fast convergence.
The scaling exponent ω of the consensus time, tconv ∼ Nω,
is ω � 1.4 in Erdos-Renyi (ER) homogeneous graphs and
ω � 1.1 in uncorrelated heterogeneous networks [34], the
latter being compatible also with a logarithmic behavior
tconv ∼ N ln N . Therefore, the broadcasting scheme yields a
much faster convergence when the broadcasting protocol is
adopted, but only in heterogeneous networks. This is not the
case in the usual NG, where it holds that ω ∼ 1.4 in both ER
and heterogeneous networks [14].

Though faster, however, the broadcasting scheme is not
scalable in the thermodynamic limit, since the maximum
memory required to the system scales with an exponent μ �
1.1 (again compatible with a behavior Nmax

W ∼ N ln N ), thus
implying that single agents should have an infinite memory as
N → ∞. This is not the case for the usual NG, where it holds
that μ � 1 [14]. Strictly speaking, therefore, it is not possible
to conclude whether the broadcast rule has to be preferred
to the usual pairwise interaction scheme, but rather it would
be necessary to decide in a case by case setting, depending
also on the topology in which the agents are embedded. In
case of heterogeneous networks, broadcasting is certainly the
fastest solution when the memory of the system is not a vital
parameter, while pairwise interaction offers the best solution
if inventory size is a (major) concern. However, the memory
consumption is probably not a big issue for all the practical
purposes in which a finite population is considered, due to the
small value of μ.
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FIG. 6. (Color online) Leader election. The probability that a
given agent gets elected increases (almost) linearly with the degree
in the broadcasting scheme (solid symbols) and it is inversely
proportional to the same quantity in the usual NG with pairwise
interactions (open symbols). All curves refer to heterogeneous
networks generated with the UCM with minimum degree k = 4
and degree exponent γ = 2.5 (circles) and γ = 3 (squares). Data
come from 104 simulation runs and have been logarithmically binned.
Curves are vertically shifted for clarity.

In [9] it is pointed out also that the NG could provide a
valuable mechanism for leader election among a group of
sensors. The leader is a single node with important responsi-
bilities ranging from routing coordination to key distribution,
and the NG would make the identification of the leader
hardly predictable from the outside, resulting in enhanced
security of the system to possible attacks. To study the effect
of broadcasting on the election of the leader, we have run
simulations in which at the beginning of the process every node
is endowed with a word. All words are different and therefore
represent a tag assigned to the agents. Having checked that
these initial conditions do not alter the scaling properties of the
system (data not shown), we look at the statistics of the word
upon which consensus is reached, and more in particular on the
degree of the node to which it was assigned at the beginning. It
has already been observed, even though never quantified, that
in the case of pairwise interactions the hubs, playing mostly
as hearers, are not good promoters for conventions, but rather
act as intermediaries between lower degree nodes [14]. In fact,
Fig. 6 shows that in the NG the probability that a given node
of degree k spreads her identity (i.e., is elected) is linearly
suppressed by a factor k, and the same behavior is observed
also for the HO-NG (not shown). Remarkably, the situation
is inverted in the broadcasting scheme, where this probability
is magnified by the same linear k factor. Due to the dramatic
nonlinearities of the process it is difficult to go beyond the
numerical experiment, but this observation can be relevant
for the applications and at the same time sheds light on the
existence of profound differences between the pairwise and the
broadcasting schemes at a microscopic level, whose detailed
investigation is left for future work.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have focused on the role of feedback in the
NG. We have modified the rule that prescribes the symmetric
update of the agents’ inventories after a successful interaction,

addressing the two circumstances in which only one of them
acts in case of success. We have shown that if the updating
agent is the speaker the NG protocol becomes inefficient and
the final consensus state is reached in much longer times as
compared to the scaling of the usual symmetric rule. Casting
this finding in the broader context of a generalized NG scheme,
we have shown analytically that preventing the update of
the hearer sets the model to a critical point below which
consensus is not the stable solution, and the system would
persist forever (in the thermodynamic limit) in a polarized
state in which two words survive indefinitely. At the critical
point the magnetization is therefore conserved and consensus
is reached through large fluctuations in a finite system, thus
being slower than in the NG. When the update is performed
only by the hearer, on the other hand, the scaling of the
main quantities with the system size remains the same as in
the usual NG. Thus, feedback is not crucial in the NG as
defined in [2]; that is, the scaling of the convergence time
and of the memory required to the system does not change
if the hearer never informs the speaker of the outcome of
the game.

The results concerning the HO-NG have also allowed us
to introduce a very natural broadcasting scheme in which
the speaker transmits simultaneously the word to all of her
neighbors, who update their inventories following the usual
rules. We have shown that this scheme is efficient in terms
of convergence time, outperforming the pairwise interaction
rule in heterogeneous networks as far as the scaling of the
convergence time is concerned, with some minor drawbacks
from the point of view of the memory requirements. Finally, we
have discussed how these findings could be relevant also from
the point of view of possible applications in the field of sensor
networks [9,12].

Our work sheds light on the dynamics of the NG, pointing
out that the update of the hearer is a fundamental ingredient of
the model contrarily to the feedback provided to the speaker,
which turns out to be less crucial. It also opens the way to
several lines of investigation. From the theoretical point of
view, a systematic study of the broadcasting dynamics on
different kinds of networks as well as its generalization, and
thorough characterization, in the probabilistic β framework
is potentially very interesting. Furthermore, while in this
paper we have concentrated on the study of the system scale
behaviors, performing in the future a detailed analysis of the
microscopic aspects of the dynamics, so far addressed only
in [15], could provide important insights into the broadcasting
rule as well as into the difference between the NG, the
SO-NG, and the HO-NG. It is also worth noting that the
result concerning the possibility of neglecting the hearer’s
feedback might help in the more ambitious exploration of
the connection between the dynamics of the NG and that
of the voter model [41,42] or of other simple ordering
dynamics schemes (see also [6] on the challenges concerning
this point).

From the point of view of the applications, finally, the
broadcasting scheme is relevant for sensor nodes, as we have
already mentioned. Moreover, it could be the best solution
also in those cases in which the communicating agents are not
embedded in a static network, but on the contrary move in an
unknown environment and need to communicate about their
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exploration [43]. In general, broadcasting is the fundamental
communication mechanism in different frameworks ranging
from scientists communicating through articles visible to
their community to social tagging systems like Delicious
[44], from bacterial quorum sensing [45] to social networks
like Facebook [46] or Twitter [47], and the NG could now
constitute a helpful conceptual tool also in these cases
(see also [48]).
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