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We use continuum simulations to study the impact of friction on the ordering of defects in an active

nematic. Even in a frictionless system, þ1=2 defects tend to align side by side and orient antiparallel

reflecting their propensity to form, and circulate with, flow vortices. Increasing friction enhances the

effectiveness of the defect-defect interactions, and defects form dynamically evolving, large-scale,

positionally, and orientationally ordered structures, which can be explained as a competition between

hexagonal packing, preferred by the −1=2 defects, and rectangular packing, preferred by theþ1=2 defects.
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Active materials are out-of-equilibrium systems that

continuously consume energy and exert stress on their

environment [1]. Examples include bacterial suspensions

[2–4], living cells [5–7], and vibrating granular rods [8].

The continuous injection of energy—or activity—and the

resulting stress can lead to phenomena such as collective

motion [9–11] and active turbulence [12,13] behaviors that

cannot be captured by conventional equilibrium statistical

mechanics [14–18].

Many active systems have nematic symmetry, and such

active materials extend the physics of passive nematics

[19]. The activity destroys long-range nematic order,

resulting in the proliferation of topological defects in the

orientation field. Moreover, in active systems, gradients in

the director field induce stresses and hence þ1=2 topo-

logical defects are self-propelled [20–22]. Flows driven by

the defects and by other gradients give rise to active

turbulence [Fig. 1(a)], a chaotic flow state characterized

by short-range nematic order, high vorticity, and localized

bursts of velocity [23,24].

A key experimental system for investigating the proper-

ties of active turbulence is a dense suspension of micro-

tubules propelled by two-headed kinesin motors [10,25].

Investigation of the defect motion in a thin layer of this

material showed that the þ1=2 topological defects can

themselves display long-range nematic order while retain-

ing their motile nature [26]. Very recent simulations of

active nematics with hydrodynamics, “wet systems,” have

shown short-range defect ordering [27,28]. Simulations and

analytical approaches to active nematics with strong

friction have ignored viscous stress and reproduced

þ1=2 defect ordering, but this is polar rather than nematic

[29–31]. Such polar defect ordering has been attributed to

archlike configurations of the nematic director field [32]. In

another study in the same regime, rotational contributions

of the flow are ignored, and a static lattice of defects with

positional and orientational order has been observed [33].

A lattice was also observed in the high friction regime in the

presence of viscous stress [34].

To clarify how defects order in wet active nematics, we

perform large-scale continuum simulations to measure both

the positional and orientational order of topological defects

with varying friction. We confirm that þ1=2 defects prefer

to position themselves side by side and align antiparallel

[27,28], while the −1=2 defects prefer to impose a threefold

symmetry on their surroundings. Increasing friction

decreases the hydrodynamic screening length, which mea-

sures the competition between viscosity and friction and

increases the effectiveness of the defect-defect interactions,

and the defects start to form dynamically evolving orienta-

tionally and positionally ordered structures even in the

regime where defects are still motile. This can be explained

in terms of the competition between hexagonal packing

preferred by the −1=2 defects and rectangular packing

preferred by the þ1=2 defects. The range of the ordering

increases with increasing friction in agreement with

experiments [26].

To investigate the orientational arrangements of defects,

we solve the continuum equations of motion for a 2D active

nematic [6,23] using a hybrid lattice Boltzmann method

[35–44]. This is now well documented, so we summarize

relevant points here, giving the full equations and simu-

lation details in the Supplemental Material [45]. The

relevant hydrodynamic variables are an orientational order

parameter Q, which describes the magnitude and direction

of the nematic order and the velocity. We consider low

Reynolds number and work above the nematic transition

temperature, so any nematic order is induced solely by the

activity, and consider a flow-aligning fluid. The equations

of motion are identical to those describing the nemato-

hydrodynamics [46,47] of passive nematic liquid crystals

except for an additional term in the stress −ζQ, which

implies that any gradients in the nematic ordering drive

flows and, for extensile activity, ζ > 0, results in active
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turbulence [48]. Finally, we include a friction coefficient f
in the Navier-Stokes equation modeling energy loss from

the 2D active plane to its surroundings.

Defect distributions.—To measure positional and orien-

tational correlations between defects, we treat theþ1=2 and
−1=2 defects as two different types of quasiparticle with

different symmetries [Fig. 1(b)] [49]. Defects are found by

measuring the local winding number [50,51] (see

Supplemental Material for details [45]). We consider a

reference defect i and choose a coordinate system with the

reference defect as the origin and the Cartesian axes

oriented relative to the defect as shown in Figs. 1(c) and

1(d). To define the relative position of the second defect, we

use polar coordinates ðr; θÞ, defining θ as the angle from

the x axis. We measure the relative position of the other

defects j present at a given time step [Figs. 1(c) and 1(d)],

and then sum over all the measured defect pairs, taking data

every 1000 time steps to get the pairwise positional

distribution function

g��ðr; θÞ ¼
V

N��

X

t

X

��pairs

δðr − rij; θ − θijÞ; ð1Þ

where the subscripts of g indicate the type of the defect pair
ij, e.g., −þ refers to the positioning of þ1=2 defects

around a −1=2 defect. The normalization V=N�� is the

area divided by the total number of defect pairs N��.

We introduce this normalization to set g ¼ 1 at r → ∞ to

normalize to bulk densities at large distances. To acquire

sufficient statistics, each distribution function is based on

measurements of at least 106 defect pairs, which requires

runs ∼3 orders of magnitude longer than the average defect

lifetime (see Supplemental Material [45]).

In addition to the relative defect positions, we are also

interested in the average defect orientation relative to the

reference defect. To obtain this information, we calculate

the orientation distribution vector,

S��ðr; θÞ ¼ N ��

X

t

X

��pairs

δðr − rij; θ − θijÞ

�

cos κjψ j

sin κjψ j

�

;

ð2Þ

where ψ j is the polar angle of the orientation of defect j in
the coordinate frame defined by the reference defect i
[Figs. 1(c) and 1(d)]. Here κj ¼ 2ð1 − kjÞ, where kj is the
charge of the jth defect, accounts for the threefold rota-

tional symmetry of the −1=2 defects. Taking the normali-

zation constant as N �� ¼ V=ðN��g��ðr; θÞÞ means that

the magnitude of S is zero in the absence of orientational

correlations and one if the defect orientations are perfectly

correlated. To avoid statistically insignificant data, we set

g ¼ 0 and S ¼ 0 if the defect count for any site is lower

than 5.

(a) (b)
(f) (g)

(h) (i)

(c) (d)

(e)

FIG. 1. Defect ordering in wet active turbulence: (a) Snapshot of active turbulence for very low friction, F ¼ 0.023. The white

(magenta) symbols are þ1=2 ð−1=2Þ defects. Background color denotes the vorticity. (b) Schematic representation of þ1=2 and −1=2
defects. þ1=2 defects have a single polar axis (blue line) and −1=2 defects have three axes. (c),(d) For a referenceþ (c) or − (d) defect i
we define an associated polar coordinate system. (e) Spacing between þ1=2 defects [defined as the position of the maximum in gþþ (in

lattice units) as a function of the active length scale
ffiffiffiffiffiffiffiffiffi

K=ζ
p

]. Activity ζ and elasticity K were varied. (f)–(i) Pair distribution function

gabðr; θÞ where a and b represent þ and/or − defects showing the positional distribution of b-type defects around an a-type defect. The
white arrows represent the orientational distribution vector S with arrow size normalized by the magnitude of S and axes are in

lattice units.
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Emergent defect ordering at low friction.—We first

consider very low friction and high activity, recovering

well-developed wet active turbulence [Fig. 1(a)].

Figure 1(f) shows how positive defects behave in the

vicinity of another positive defect: even in this highly

turbulent regime, there is a clear preference for neighboring

þ1=2 defects to line up along the x axis in an antiparallel

configuration with a preferred distance between neighbors.

This preferred defect spacing scales with the active nematic

length scale,
ffiffiffiffiffiffiffiffiffi

K=ζ
p

[Fig. 1(e)]. Therefore, we choose to

measure the friction in terms of a dimensionless friction

number F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðK=ζÞðf=ηÞ
p

, which is the ratio of the active

length scale to the hydrodynamic screening length.

Figure 1(i) shows that −1=2 defects prefer not to lie too

close to each other and that there is no preferred length

scale in contrast to the þ1=2 defects. Interestingly, the

−1=2 defects do impose an orientational structure on

surrounding −1=2 defects even in this fully active turbulent
regime. We already find six peaks where the neighboring

defects have a strong preference for antiparallel alignment.

This is due to the elastic torque [52]. However, the

symmetry of the peak positions is caused by the flow

fields, which form six vortices around negative defects.

Finally, Figs. 1(g) and 1(h) show that positive and negative

defects are preferentially found close together and aligned

in the relative orientation associated with creation and

annihilation events.

Defect lattices at high friction.—As the friction is

increased to F ∼ 0.08 the defect interactions result in

large-scale ordering of the defects. As an example,

Fig. 2(a) presents a snapshot of the defect structure and

corresponding vorticity field for F ¼ 0.083, where the

mean speed of the flow has been reduced by an order of

magnitude with respect to the no friction regime. This

figure and Video S1 [45] show that þ1=2 defects have a

strong tendency to form antiparallel pairs, which induce

and orbit on vortices, as already apparent in the no friction

limit. But much larger-scale defect arrangements also

become apparent at high friction, as not only the inter-

actions between the þ1=2 defects but also those between

the −1=2 defects result in significant ordering. To inves-

tigate this, we first consider the structure formed by the

þ1=2 defects [Fig. 2(b)] and then the ordering preferred by
the −1=2 defects [Fig. 2(c)].

Figures 3(a) and 3(b) show distribution functions of

�1=2 defects around a þ1=2 defect at strong friction

(F ¼ 0.103). The first obvious feature of these correlations

is that the antiparallel ordering of the þ1=2 defects along x
is more pronounced and longer ranged than in the friction-

less limit. This is confirmed by Fig. 3(c) where we plot the

pairwise positional distribution function gþþðr; 0Þ showing
how the strength and range of the correlations increase with

increasing friction.

Figure 3(d) shows that þ1=2 defects are also ordered

along the y axis. This ordering can be interpreted by

comparing the distribution functions in Figs. 3(a) and 3(b),

which show thatþ1=2 and −1=2 defects alternate along the
y axis and that they align parallel. The ordering increases

with friction, but is less pronounced than that along x.

(a) (b)

(c)

FIG. 2. (a) Snapshot of the defect structures at intermediate

friction F ¼ 0.023. þ1=2 (−1=2) defects are shown in white

(magenta). There is transient local defect ordering into a

rectangular (green outline) or a hexagonal (magenta outline)

pattern. The background color represents the vorticity field.

(b) Schematic of the rectangular ordering. (c) Schematic of the

hexagonal ordering. This is chiral: −1=2 defects (in gray) have

either a left or right neighboring −1=2 defect (in green). The other
position is filled by rotating þ1=2 defects resulting in local zero

charge.

(a)

(c)

(d)

(e)

(b)

FIG. 3. Ordering of theþ1=2 defects at high friction (a),(b) Pair
distribution function gþþðr; θÞ and gþ−

ðr; θÞ (color map) and the

orientation distribution vector (white arrows) for high friction

F ¼ 0.103. Axes are in lattice units. (c),(d) gþþðr; 0Þ and

gþþðr; π=2Þ showing the buildup of order along the x and y
axes (in the direction of the red dotted line) with increasing

friction. (e) Nematic defect ordering Sd, as a function of

dimensionless friction F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðK=ζÞðf=ηÞ
p

, for varying elastic

constant K.
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We show in the Supplemental Material that the energy of

two þ=− defect pairs, each arranged as in Fig. 2(b) and

held at a fixed distance apart, is minimized if the pairs line

up along the y axis [45]. Moreover, this configuration is

favored because it leads to nonconflicted flows. We note

that this result relies on the presence of intervening −1=2
defects and is different from the active torque between two

þ1=2 defects studied in [53]. Together, the preferred

ordering of þ1=2 defects along x and y, i.e., perpendicular
and parallel to the polar axis of the defects, is satisfied by

the rectangular packing of defects shown in Fig. 2(b).

In Fig. 3(e) we plot the nematic order parameter,

Sd ¼ −1þ 2
P

t

P

þþpairsðm̂i·m̂jÞ
2=Nþþ, where m̂j is the

polar axis of the jth þ1=2 defect, as the friction and elastic
constants are varied. The data collapse confirms F as a

suitable control parameter for the simulations. We find that

Sd takes a nonzero value, even when the defects are still

motile, and increases with increasing friction. It is remi-

niscent of the experimental system of microtubules driven

by motor proteins, where the nematic order of defects

increases with decreasing film thickness [26]. However, the

patterning also exhibits higher-order symmetry than just

nematic as the ordering of defects is polar or antipolar

depending on their relative positions. Upon increasing the

friction further [F ¼ 0.106 in Fig. 3(e)], the defects stop

moving and a vortex lattice with orientational defect order

is established [34] on scales comparable to the system size,

which is ∼15 times the active length scale. To check

whether this is a true transition, we ran simulations on

larger lattices, which showed that the ordering decreases

with increasing system size (reported in the Supplemental

Material [45]). Thus, at these values of F, we observe

coexisting domains with long- but not infinite-range order.

At yet higher frictions, the dynamics becomes too slow to

allow feasible simulations of the defect lattices and, for

F ≳ 0.14, the activity is too weak to create defects.

Figure 4 presents results for the ordering around negative

defects showing a distinct difference between intermediate

(F ¼ 0.082) [Fig. 4(a)] and high friction (F ¼ 0.103)

[Fig. 4(b)]. In the intermediate friction regime there are

six first neighbor and six second neighbor peaks in

the positional distribution function around the central

defect, corresponding to a hexagonal packing of −1=2
defects. Both right- and left-handed lattices are possible

[see Fig. 2(c) and Video S1 [45]]. With increasing friction,

however, the nearest neighbor peaks become less pro-

nounced, showing that it is increasingly difficult to form a

hexagonal lattice.

Instead, the secondary peaks become more pronounced.

The reason for this is apparent from Figs. 4(c) and 4(f),

which show that the þ1=2 defects increasingly line up

along the polar arms of the −1=2 defects and lie between

two −1=2 defects [28,53]. We show in the Supplemental

Material that this is the elastically preferred configuration

of two defect pairs [45]. It corresponds to the polar ordering

of alternate þ1=2 and −1=2 defects seen in the rectangular

lattice [Fig. 2(b) and Video S1 [45]].

Conclusion.—We have numerically investigated defect

ordering in an active nematic with hydrodynamic inter-

actions and increasing friction. We show that friction can

introduce nematic ordering of defects on length scales

many times larger then the active length scale, as observed

in experimental systems [26]. A local measurement would,

however, give polar order of þ1=2 defects in the direction

of their polar axis (mediated by intervening −1=2 defects)

and antipolar order of the þ1=2 defects perpendicular to

this axis.

Weak signatures of this ordering are observed even in

fully developed active turbulence with no friction. Upon

increasing the friction, they result in structures with

longer-ranged order. The −1=2 defects tend to reorganize

themselves into hexagons [Fig. 2(c)], where each hexagon

encompasses two þ1=2 defects that rotate on a vortex.

However, this is not an ideal configuration for pairs of�1=2
defects and, as a consequence, the hexagonal packing

of defects coexists with the rectangular structure shown in

Fig. 2(b). As the friction is increased, and the hydrodynamic

screening length becomes comparable to the active length

scale, the rectangular packing becomes dominant, and the

system eventually freezes into the rectangular lattice [33,34].

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. Ordering around a −1=2 defect at high friction. (a) Pair

distribution function g
−−

ðr; θÞ (color map) and the orientation

distribution vector (white arrows) for intermediate friction

F ¼ 0.083. Axes are in lattice units. (b),(c) Pair distribution

functions g
−−

ðr; θÞ and g
−þðr; θÞ for high friction F ¼ 0.103.

(d)–(f) g
−−

ðr;−π=2Þ, g
−−

ðr;−π=6Þ, and g
−þðr;−π=6Þ (along the

red dotted line) with increasing friction.
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