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Abstract

Purpose: Effective diagnosis of tuberculosis (TB) relies on accurate interpretation of radiological patterns found in a chest
radiograph (CXR). Lack of skilled radiologists and other resources, especially in developing countries, hinders its efficient
diagnosis. Computer-aided diagnosis (CAD) methods provide second opinion to the radiologists for their findings and
thereby assist in better diagnosis of cancer and other diseases including TB. However, existing CAD methods for TB are
based on the extraction of textural features from manually or semi-automatically segmented CXRs. These methods are
prone to errors and cannot be implemented in X-ray machines for automated classification.

Methods: Gabor, Gist, histogram of oriented gradients (HOG), and pyramid histogram of oriented gradients (PHOG) features
extracted from the whole image can be implemented into existing X-ray machines to discriminate between TB and non-TB
CXRs in an automated manner. Localized features were extracted for the above methods using various parameters, such as
frequency range, blocks and region of interest. The performance of these features was evaluated against textural features.
Two digital CXR image datasets (8-bit DA and 14-bit DB) were used for evaluating the performance of these features.

Results: Gist (accuracy 94.2% for DA, 86.0% for DB) and PHOG (accuracy 92.3% for DA, 92.0% for DB) features provided
better results for both the datasets. These features were implemented to develop a MATLAB toolbox, TB-Xpredict, which is
freely available for academic use at http://sourceforge.net/projects/tbxpredict/. This toolbox provides both automated
training and prediction modules and does not require expertise in image processing for operation.

Conclusion: Since the features used in TB-Xpredict do not require segmentation, the toolbox can easily be implemented in
X-ray machines. This toolbox can effectively be used for the mass screening of TB in high-burden areas with improved
efficiency.
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Introduction

X-rays were discovered by Wilhelm Röntgen, a German

physicist in 1895 and have revolutionized the field of diagnostics.

Chest radiographs (CXRs) are ubiquitous in clinical diagnostics

and make up about one-third of all radiological examinations.

Chest radiographs are inexpensive and least invasive primary

diagnostic tool for tuberculosis (TB). They are used in routine

medical checkups and immigrant medical examinations even in

well-equipped hospitals where blood and skin tests are available

[1]. The CXRs are also used for mass screening of TB in human

immunodeficiency virus (HIV) endemic areas.

Tuberculosis is one of the leading infectious diseases with high

mortality rate in developing and under-developed countries.

Approximately 1.1 and 0.35 million of deaths were caused

worldwide by the disease in non-HIV and HIV people respectively

from about 8.8 million incidents reported in 2011 [2]. The disease

is diagnosed on the basis of patient’s symptoms, CXR and smear

microscopy tests. Since the accuracy of smear microscopy test has

been less than 50%, diagnosis relies primarily on the interpretation

of radiological patterns found in a CXR. Early detection of TB

often leads to success of anti-TB therapy, and also helps in gaining

control over the transmission of infection as well as development of

drug resistant TB. However, lack of resources and skilled

radiologists particularly in rural areas of developing countries

impedes its effective diagnosis. Therefore, computer-aided diag-

nosis (CAD) tools assume a lot of significance as they not only

reduce diagnostic errors but also increase the efficiency of mass

screening in poor-resource settings.

The CAD may be referred to a diagnosis made by a radiologist

taking into account the results obtained through computer

analysis. Success of the CAD methods in better diagnosis of breast

cancer, colon cancer, lungs cancer, prostate cancer, coronary

artery disease, congenital heart defects, etc., has suggested that TB

may be detected more effectively by incorporating CAD methods

[3–6]. The CAD techniques have been helpful in providing second
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opinion to the radiologists for their findings as well as assisting

them in making their final decision regarding diagnosis with

increased accuracy. Interpretation of CXRs is dependent on the

expertise and skills of the radiologist, which is subject to human

error. Even many district level hospitals in developing countries do

not have skilled radiologists and incorrect diagnosis of TB takes

place due to erroneous interpretation of CXR patterns. A well-

trained CAD method can assume the role of a second CXR reader

to some extent and may assist the radiologist in some facets of

disease detection and decision making. Although these techniques

may by no means be able to achieve the level of cognitive ability

and knowledge of a radiologist, nonetheless, a trained classifier can

perform the prediction consistently without the intra-observer and

inter-observer variability. A recent study has also shown that the

performance of CXR readers in diagnosing TB improved with the

support of CAD [7].

Basic methodology employed in most of the earlier reported

CAD studies was segmentation and extraction of grey-level co-

occurrence matrix (GLCM) textural features [8]. Ginneken et al.

used the GLCM textural features on two datasets for classification

of CXRs as TB or non-TB, but the performance of both varied

significantly [9]. For one dataset, specificity of 90% was obtained

while only 50% was achieved for the other. Detection of clavicle,

and abnormalities in texture and shape in the CXRs were

combined to develop a TB classification model by Hogeweg et al

[10]. The area under the receiver operating characteristic curve

(AUC) for the method was 0.86 [9]. Semi-automated segmentation

based classification model using textural features provided a

prediction accuracy of 92.9% with sensitivity of 0.91 [1].

Current CAD methods employed for classification of CXR

images are either object or region based [11–13]. These methods

require segmentation and are prone to magnifying and carrying

over low-level errors. The performance of GLCM features was

inconsistent across various datasets [9], and these features lose

significance when lungs have different shapes or CXRs have

complex appearances due to overlapping of anatomical structures

[1]. Commonly used manual or semi-automatic segmentation

methods not only require high expertise but also make the

classification model data and machine dependent. Although

automated segmentation methods have potential to be used for

development of CAD techniques, but studies have shown that

automated segmentation of TB CXRs failed in many cases leading

to incorrect classification [1]. Textural features are based on the

implicit hypothesis that there exist some specific texture signatures

which are dissimilar between non-TB and TB CXRs (Figure 1).

The effectiveness of these textural signatures greatly depends on

their ability to correlate with the disease. Since context of the

features obtained with respect to the whole image are expected to

be more useful than local textural features, therefore, contextual

scene based Gist features were used in this study for the prediction

of TB from CXR. This method captures biologically plausible

features into a signatory low-dimensional vector [14]. These

features identify salient locations within the image which differ

significantly from their neighbours and also accumulate image

statistics over the entire scene. Gabor [15], histogram of oriented

gradients (HOG) [16], and pyramid histogram of oriented

gradients (PHOG) [17] features were also used in this study.

PHOG features were computed as they contain local as well as

global spatial information. The advantage with these methods is

that they can be incorporated to X-ray machines for fully

automated detection of TB. Localisation of features was done

through optimising and fine-tuning various parameters, like region

of interest (ROI), blocks and frequency range.

Materials and Methods

The methodology is based on pixel-based classification which is

illustrated in Figure 2. The proposed methodology was imple-

mented in MATLAB 2010a.

Ethics statement
This study was approved by the institution, National Institute of

TB and Respiratory Diseases, and the requirement to obtain

informed consent was waived. The data was obtained and

analysed anonymously.

Dataset
Two CXR digital image datasets were obtained from two

different X-ray machines available at the National Institute of

Tuberculosis and Respiratory Diseases, New Delhi. These CXRs

were taken in standard practice conditions followed by clinicians.

In developing countries like India, the posterior-anterior (PA)

CXRs are mostly taken and lateral CXRs are taken rarely.

Therefore, only PA CXRs were used in the creation of the

datasets. The CXRs were randomly collected over a period of one

year with varied lung presentations. Dataset A (DA) was taken

from Diagnox-4050 X-ray machine manufactured by Meditronics

with CXRs digitised by AGFA CR35-X. Dataset B (DB) was

obtained from PRORAD URS with Canon CXDI detectors. The

tube voltage was set to 50 kV and 55 kV for DA and DB

respectively. E-7252X and E-7254X X-ray tubes manufactured by

Toshiba, Japan were used by Diagnox-4050 and PRORAD URS

respectively. Although AGFA CR35-X acquires 12-bit grayscale

CXRs, but 8-bit CXRs (DA) were obtained due to imaging system

used by the radiologists. 14-bit CXR digital images (DB) were

obtained by using PRORAD URS. For both the datasets DA and

DB, the acquired images were resized to 102461024 resolutions to

obtain images with identical dimensions. No change in classifica-

tion accuracy was noticed with respect to original sized images.

CXRs from each dataset were randomly divided into training and

test sets. DA comprised of training set (52 non-TB and 52 TB

CXRs) and the independent test set (26 non-TB and 26 TB

CXRs). Similarly, DB comprised of training set (50 non-TB and

50 TB CXRs) and the independent test set (25 non-TB and 25 TB

CXRs). Selection of all non-TB and TB cases was based on the

consensus of independent review of each CXR by two highly

experienced chest radiologists from National Institute of Tuber-

culosis and Respiratory Diseases, New Delhi, India and Indira

Gandhi Medical College, Shimla, India. The selection of

abnormal CXRs, varying from subtle to severe TB findings, was

based on radiological findings through the consensus of the

radiologists. Datasets are available freely at http://sourceforge.

net/projects/tbxpredict/files/data/.

Segmentation
Segmentation is the process of dividing an image into a set of

distinctive areas or regions that differ significantly qualitatively or

quantitatively. It is a critical intermediate step in high level object-

recognition tasks. Since existing methods required segmentation of

CXRs, manual and automatic segmentation of CXRs for the

dataset DA was done merely to evaluate the performance of our

method (features extracted from whole image) against features

extracted from manual and automatic segmentation. Manual

segmentation of CXRs was done with the help of ImageJ software

[18]. To evaluate the effectiveness of classification using features

extracted from automated segmentation methods, Chan-Vese

method [19] was used for the segmentation of CXRs from the

dataset DA (Figure 3). The Chan-Vese algorithm is a type of

Computer-Aided Diagnosis of Tuberculosis
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geometric active contour model which begins with a contour in the

image plane defining an initial segmentation, and then this

contour evolves with respect to evolution equation. The contour is

evolved using level set method in such a manner that it terminates

on the foreground boundaries. The level set function minimizes

the Mumford-Shah functional, which is a type of ‘‘fitting energy’’

functional.

Initial contour was developed using Euler-number [20] based

segmentation with an auto-tuned threshold value as shown in

Figure 4. The optimal threshold value for this segmentation is

obtained on the basis of minimum and maximum values of the

correlated image Euler numbers. Chan-Vese active contours

segmentation was then used and the number of iterations for

segmentation was fixed to 4000. The terminating criterion for

segmentation does not depend on the gradient of the image.

Preprocessing
Preprocessing involves denoising of the image. Wavelet-based

denoising is a well-known method in the field of digital image

processing. Mean, Gaussian, anisotropic diffusion, Fourier trans-

formation and the SURE orthonormal wavelet filters [21] were

Figure 1. CXRs. Left: TB patient Right: Normal person.
doi:10.1371/journal.pone.0112980.g001

Figure 2. Schematic representation of CAD implementation for
TB. CAD module is applied to the digital CXRs obtained from the
computer attached to the the X-ray machine. The CAD module
preprocesses (denoises) the image using SURE wavelet denoising,
extract features (Gist and PHOG), selects relevant features using chi-
square based feature selection method and finally classifies the CXR
into TB and non-TB.
doi:10.1371/journal.pone.0112980.g002

Figure 3. Chan-Vese active contour segmentation of a CXR. a.
Original CXR image b. Initial contour c. Iterations for foreground
segmentation, and d. Segmented image.
doi:10.1371/journal.pone.0112980.g003
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evaluated in this study for denoising of the images. Finally,

orthonormal wavelet denoising of the image was used for this

study as it provided best denoising effect with respect to visual

inspection. The denoising process is parameterized as the sum of

elementary non-linear processes with unknown weights. The

estimate of mean square error (MSE) between denoised and clean

image is minimized using Stein’s unbiased risk estimate (SURE), a

statistically unbiased estimate that depends only on the noisy

image. The existence of this as a priori estimate avoids the

requirement of statistical model for wavelet coefficients.

Feature extraction
Textural (GLCM and Gabor) as well as other features, like Gist,

HOG and PHOG were extracted from the digital CXRs. Details

of the feature extraction methods used in this study are given

below:

GLCM textural features
Textural features are calculated based on the statistical

distribution of combinations of pixel intensities at specific positions

relative to each other. Based on the number of pixels in each

combination, statistics are categorized into first-, second- and

higher-order statistics. The GLCM method extracts second-order

statistics textural features. GLCM is a matrix with rows and

columns equal to the number of grey levels. The matrix element

G(i,j | dx,dy) is the relative frequency with which two pixels occur

within a given neighbourhood, where i and j are pixel intensities

separated by distance (dx,dy). Various textural features were

extracted from this matrix (for details refer to Table S1). A two

pixel offset (2,0 and 0,2) was used in this study.

Gabor features
Gabor filters have been found to be very effective in texture

representation and discrimination [15,22,23]. These filters with

different frequencies and orientations are used for extracting

textural features from an image. A 2-D Gabor function g(x,y) and

its Fourier transform G(u,v) are calculated using Eq. (1) and Eq. (2)

respectively:

g(x,y)~
1

2psxsy

� �

exp {
1

2

x2

sx2
z

y2

sy2

� �

z2pjWx

� �

Eq:ð1Þ

Where, j =
ffiffiffiffiffiffiffiffi

{1
p

, and W is the frequency of the Gabor function

G(u,v)~exp {
1

2

u{W 2
� �

su2
z

v2

sv2

� �	 


Eq:ð2Þ

Where su~
1
2
psx,sv~

1
2
psy

Impulse responses of Gabor filters are rotated and scaled

versions of the above function. The Gabor filters can be

considered as edge detectors with adjustable orientations and

scales. A self similar filter dictionary is obtained by the association

of rotation parameter h and scale factor a with the Gabor function

g(x,y). Scales and orientations of the Gabor wavelets are

represented by M and N respectively.

gmn x,yð Þ~a x0,y0ð Þ,0ƒmƒM{1,0ƒnƒN{1 Eq:ð3Þ

x’~a{m xcoshzysinhð Þ,y0~a{m xsinhzycoshð Þ;

where h~np=K and K is the total number of orientations.

Gabor wavelet transform for a given image I(x,y) is defined as in

Eq. (4):

Gmn x,yð Þ~
ð

I x1,y1ð Þg�mn x{x1,y{y1ð Þdx1dy1 Eq:ð4Þ

Figure 4. X-ray image before and after Euler-based segmentation. The Euler-based segmented image provides initial contour for Chan-Vese
segmentation.
doi:10.1371/journal.pone.0112980.g004
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Where, * represents complex conjugate.

Spatial homogeneity of local textural regions is assumed. mmn

and smn are the mean and standard deviation of the magnitude of

Gabor wavelet transform coefficients respectively, and are used to

represent regions for classification and retrieval of images.

mmn~
ÐÐ

DGmn xyð ÞDdxdy;

and

smn~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðð

DGmn x,yð ÞD{mmnð Þ2dxdy
s

Eq:ð5Þ

Gabor features are created using mmn and smn as feature

components. Number of scales and orientations was set to six and

ten respectively for creating feature vectors in this study.

Frequency range was set between 0.01 and 0.4.

Gist features
These are global image features and they assist in characterizing

various important statistics of a scene. These features are

computed by convoluting the filter with an image at different

scales and orientations. Thus, high and low frequency repetitive

gradient directions of an image can be measured. The scores for

filter convolution at each orientation and scale are used as Gist

features for an image. These features are currently being used for

scene classification [14,24–26]. The first step of Gist feature

extraction is filtering of input image into a number of low level

visual feature channels, like intensity, colour, orientation, motion

and flicker at multiple spatial scales. Center-surround operations

within each sub-channel i are performed between filter output

maps, Oi(s), at different scales s. This yields feature maps Mi(c, s),

given a ‘‘center’’ scale c and ‘‘surround’’ scale s. Across scale

difference (H) between two feature maps is computed by

interpolation to the center scale and pointwise absolute difference.

For color and intensity channels, feature maps are computed

usingEq. (6):

Mi c,sð Þ~DOi cð ÞHOi sð ÞD~DOi cð Þ{interps{c Oi sð Þð ÞD Eq:ð6Þ

Feature maps are used to detect conspicuous regions in each

channel and are merged linearly to yield a saliency map.

Information from the orientation channel is incorporated by

employing Gabor filters to the grayscale image (Eq. (7)) at four

spatial center scales (c = 0, 1, 2, 3) and at four different angles

(hi=0u, 45u, 90u, 135u).

For orientation channels, feature maps are computed using

Eq. (7):

Mi cð Þ~Gabor hi,cð Þ Eq:ð7Þ

After the computation of low-level center-surround features,

each sub-channel extracts a gist vector from its corresponding

feature map. Averaging operations are applied in a 464 grid of

subregions over the map. Sixteen raw gist features (Gi
k,l(c, s)) are

computed per feature map using Eq. (8):

Gk,l
i c,sð Þ~ 1

16WH

X

kz1ð ÞW
4

{1

u~kW
4

X

lz1ð ÞH
4

{1

v~lH
4

Mi c,sð Þ½ � u,vð Þ Eq:ð8Þ

where W and H are width and height of the image respectively.

k and l are the indices in horizontal and vertical directions

respectively.

12 orientations per scale and 8 blocks were used for this study.

HOG features
This method was first introduced by Dalal and Trigg [16].

HOG breaks up a CXR image into small cells, computes the

HOGs for each cell, normalizes HOGs using block pattern, and

provides a descriptor for each cell [27]. These features are

generally used for object detection in an image. The basic idea

behind HOG features is that shape and appearance of local

objects within an image can be described by the intensity gradients

distribution. This method involves counting the occurrence of

gradient orientation and thereby maintains photometric transfor-

mations and geometric invariance. The descriptor generation is

comprised of four main steps: gradient computation, orientation

binning, descriptor blocks generation, and block normalization. In

gradient computation, the filtering of intensity or color data of the

image is done with 1-D centred discrete derivative masks (Dx= [2

1,0,1] and Dy= [21,0,1]T) in horizontal and/or vertical direc-

tions. For a given image I, x and y derivatives are obtained using a

convolution operation Ix= I * Dx and Iy= I * Dy. Magnitude and

orientation of the gradient is computed by the following equations

Eq. (9) and Eq. (10) respectively:

G½ �~Ix
2
zIy

2 Eq:ð9Þ

h~ arctan
Iy

Ix
Eq:ð10Þ

Orientation binning involves the creation of a cell histogram.

Weighted vote is cast by each pixel within a cell based on the

gradient computation values. The histogram channels are

uniformly spread over 0 to 360 or 0 to 180 degrees depending

on signed or unsigned gradient respectively. The cells are then

grouped together into spatially connected blocks to account for

changes in contrast and illumination. These blocks usually overlap,

and two main geometries R-HOG (rectangular) and C-HOG

(circular) blocks exist. The blocks are normalised using one of the

following normalization factors:

L1-norm: f~v= vk k1ze
� �

)

L1-sqrt: f~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v= vk k1ze
� �

q

L2-norm: f~v=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vk k22ze2
q

L2-hys: L2-norm equation with maximum value of n limited to

0.2 followed by renormalization.
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In this study, block size and number of bins were set to 666 and

9 respectively. R-HOG was used as it provided better classification

accuracy as compared to C-HOG.

PHOG features
These are spatial shape descriptors which describe an image by

its spatial layout and local shape [17]. These descriptors are

comprised of HOGs over each sub-region of an image at each

pyramid resolution level. Local shapes in an image are captured by

the distribution over edge orientations within a region while the

spatial layout is captured by tiling an image into regions at

multiple resolutions.

Initially, the HOG for entire image is computed. The bin size

for HOG is fixed to N bins. The CXR is divided into a sequence of

increasingly finer spatial grids by repetitively doubling the number

of divisions along each axis. The number of points in each grid cell

is stored. Since the number of points in a cell at one level is equal

to the sum of points contained in the four cells it is divided into at

the next level, this is a pyramid representation. HOG is computed

for each of these levels. The bin count for the histogram

representing a level is the cell count at that level of resolution.

This process is repeated until a depth L. During pyramid

formation, 2L cells are present along each dimension for the grid

at level L. PHOG features obtained for an image is a weighted

combination of the above HOG features. The summation of

calculated PHOG values is then normalized to unity to ascertain

that texture rich images are not weighted more strongly than

others. In this study, the number of bins on histogram and number

of pyramid levels at 360 degrees were set to 8 and 3 respectively.

Feature selection
Feature selection was performed using chi-square based

method. Although several other feature selection methods such

as correlation based feature selection, info gain and kernel

principal component analysis were evaluated, but the performance

of chi-square based feature selection method using WEKA

software [28] was found to be the best with respect to classification

results. This method uses chi-square statistics to discretize features

repeatedly until some inconsistency is found in the data. Feature

ranking was also done by this method and the best features were

used for classification of a CXR as TB or non-TB.

Classification
Support vector machines (SVMs) [29], a machine learning

algorithm, is commonly used for classification and regression. The

objective of SVM is to find the hyperplane which maximizes

distance between data points from two classes. Training data

points closest to the hyperplane are called support vectors

(Figure 5). The hyperplane can be defined as:

f xð Þ~b0zbTx

where b, b0 and x are the weight vector, bias and support vectors

respectively.

The SVM is a non-probabilistic binary linear classifier, but it

can also perform a non-linear classification using the kernel trick

by mapping the data points into high-dimensional feature spaces.

Some common kernel methods are polynomial homogeneous,

polynomial inhomogeneous, Gaussian radial basis function and

hyperbolic tangent. Gaussian radial basis function was used in the

study. LIBSVM [30], a supervised machine learning software, was

used for labelling (classification) of a given CXR as TB or non-TB.

Results and Discussion

Current CAD methods use local GLCM textural features

extracted from segmented CXRs for the classification of CXRs.

Segmentation is an important step for the optimal extraction of

features. Implementation of CAD method into X-ray machines for

the automatic prediction requires features to be extracted from

automatically segmented or whole CXR images. The ground truth

that we were striving to reproduce by this CAD method for the

two datasets was the judgement or decision of radiologists who

read the CXRs.

Performance of features extracted from automatically
segmented CXRs
The performance of the GLCM textural features was quite low

for the CXR dataset DA (Table 1). Prediction accuracy of only

65.4% was obtained for GLCM textural features extracted from

automatically segmented CXRs, while 80.8% was obtained for

manually segmented CXRs from dataset DA. The poor perfor-

mance of the features extracted from automatic segmented CXRs

may be attributed to severe intensity distortions [1], variability in

lungs shape, and complex appearances of CXRs due to

overlapping of anatomical structures.

Performance of features extracted from whole-CXR and
manually segmented CXRs
Since low prediction accuracy was obtained using GLCM

method, therefore, features extracted from the whole image, like

Gabor, Gist, HOG, and PHOG were evaluated for their ability to

discriminate between the TB and non-TB CXRs. The parameters

were fine-tuned, so that the features relevant to TB discrimination

were extracted. The Gabor, Gist, HOG, and PHOG features

extracted from the whole CXR provided a prediction accuracy of

86.5%, 94.2%, 86.5%, and 92.3% respectively for dataset DA,

and 92.0%, 86.0%, 86.0%, and 90% respectively for dataset DB

(Table 1 and 2). The Gist features provided the maximum

sensitivity of 0.961 for the dataset DA. This outcome is significant

because sensitivity is considered as major criterion when measur-

ing the effectiveness of a classification model for the detection of

diseases. Although Gabor features provided comparable predic-

Figure 5. Hyperplane (blue line) representation in SVM. Red and
blue circles represent data points from two different classes. Solid filled
circles denote support vectors.
doi:10.1371/journal.pone.0112980.g005
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tion accuracy to PHOG for dataset DB, but the latter provided

significantly better 5-fold cross-validation accuracy of 86.6% in

comparison to the former’s 81.5%. Also, Gabor feature extraction

is a computationally intensive process than PHOG method. For 5-

fold cross-validation, the dataset were divided into five equal parts.

One part was used for testing while the other four parts were used

for the training of SVM. The procedure was repeated five times.

The performance of features extracted from manually segmented

images was comparable or lower than to those extracted from

whole CXR image (Table 1). This may be attributed to the better

spatial and contextual information provided by the whole CXR in

comparison to the segmented one. Comparable performance

between the whole and manually lung segmented CXRs indicated

that these features (Gist, Gabor, HOG, and PHOG) were able to

capture discriminative features without the need for segmentation

of lungs (Table 1). Comparison of performance for various

features is provided in the form bar graph in Figure 6.

Validation
The performance of various feature extraction methods used in

this study is provided in Table 1 and 2. To validate the proposed

methodology, five-fold cross validation and ROC curve analysis

were done. PHOG features provided five-fold cross-validation

accuracies of 83.2% and 86.6% for the datasets DA and DB

respectively while 84.4% and 86.6% were obtained for the same

datasets using Gist features.

The AUC is a plot between true positive and false positive rates

and it determines how well a model can distinguish between the

TB and non-TB CXRs [31,32]. Figure 7 and 8 show high value of

AUC for both Gist and PHOG features indicating a good

discrimination between the TB and non-TB CXRs [33]. Every

point on the ROC curve represents a specificity and sensitivity pair

corresponding to a certain decision threshold. Higher is the overall

accuracy of classification; closer is the ROC curve to the upper left

corner. When a classifier cannot discriminate between the two

classes or groups, the AUC would be equal to 0.5. When there is a

perfect discrimination, the AUC would be equal to 1. The 95%

confidence interval (CI) is the interval in which the true AUC lies

with 95% confidence. P-value is the probability that the observed

AUC is found when actually the true AUC is 0.5. If P is smaller

than 0.05, it can be concluded that the AUC is significantly

different from 0.5 and the classifier has the ability to discriminate

between the two classes. High AUC values were obtained (Table 1

and 2) at 95% confidence interval for our methods at P-level

(AUC=0.5) smaller than 0.0001. Standard error (SE) of AUC was

also calculated using the method of Delong et al. [34] and SE

values were found to be quite low (Table 1 and 2). As inferred

from the results of this study, the Gist and PHOG features were

quite robust and provided better results without segmentation.

TB-Xpredict
Gist and PHOG features were implemented to develop TB-

Xpredict, a MATLAB toolbox available at http://sourceforge.

net/projects/tbxpredict/. It has a user-friendly graphical user

interface (GUI), which provides both training and prediction

modules (Figure 9 and 10). The former enables the user to develop

a model trained on his/her own CXRs (TB and non-TB CXRs)

while the latter can be used for the classification of digital CXR(s).

The user can independently upload CXRs into the prediction

module to classify them using already trained model provided with

the software. Training and prediction modules of the toolbox are

available for Gist and PHOG features separately with the use of

Gist as default. The toolbox automatically identifies the bit size

and file format (dicom or jpeg) of the CXR images.
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Figure 7. ROC plot for classification between TB and non-TB
CXRs (DA) using Gist features.
doi:10.1371/journal.pone.0112980.g007

Figure 8. ROC plot for classification between TB and non-TB
CXRs (DA) using PHOG features.
doi:10.1371/journal.pone.0112980.g008

Figure 6. Comparison of performance for various features from whole, manually segmented, and automatically segmented CXRs.
doi:10.1371/journal.pone.0112980.g006
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Since TB-Xpredict does not require prior segmentation of

digital CXR images, this toolbox can easily be incorporated into

existing X-ray machines for the automated classification of CXR

as TB or non-TB. X-ray machines with such modules can

effectively be used for the mass screening of TB in high-burden

areas. GUI of TB-Xpredict enables user to train and classify

CXRs without the need of expertise in image processing. User

only needs to upload positive and negative CXRs separately, and

the module trains the model in an automatic manner. The newly

developed model can be used for the prediction of CXRs using

Figure 9. GUI of Prediction and Training Modules in Matlab toolbox, TB-Xpredict.
doi:10.1371/journal.pone.0112980.g009

Figure 10. GUI of sample output provided by Matlab toolbox, TB-Xpredict.
doi:10.1371/journal.pone.0112980.g010
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prediction module. Since illumination and other parameters do

not differ significantly in test data with respect to training model,

automated prediction methods which use CXRs from the same X-

ray machine for training as well as classification generally may lead

to better prediction accuracy. Furthermore, such model may

become more efficient as the number and diversity of training data

increases over time.

Conclusions

CAD techniques provide second opinion to the clinicians for

their findings, so its implementation is expected to improve their

performance in the diagnosis of TB. Features extracted by

methods such as Gabor, Gist, HOG, and PHOG enabled SVM

to efficiently discriminate between the TB and non-TB whole

CXR images. Validations of results using five-fold cross-validation

and independent datasets have shown that the performance of

these features is significantly higher than that of textural features

(Table 1 and 2). CAD techniques proposed earlier were mainly

based on the segmentation of CXRs followed by the extraction of

GLCM textural features. The major limitation with these methods

is that they cannot be incorporated into existing X-ray machines

for automated detection of TB due to their dependency on manual

or semi-automated segmentation. Although GLCM textural

features extracted from the automatically segmented CXRs can

be used for automated detection, however, the performance of this

method is exceedingly poor (Table 1). Since the features (Gabor,

Gist, HOG, and PHOG) extracted from the whole CXR do not

require ROI identification using segmentation, these features can

easily be implemented to existing digital X-ray machines for the

automated TB detection. As Gist and PHOG features provided

the best discrimination between the non-TB and TB for both 8-bit

and 14-bit CXRs, these features were used to develop a MATLAB

toolbox, TB-Xpredict, which can effortlessly train as well as

predict CXRs as TB or non-TB. TB-Xpredict has a very simple

GUI for automated training and classification of CXRs, and

requires only basic knowledge of computer to operate. It also gives

users the option to choose between Gist and PHOG for feature

extraction. One of the limitations of the toolbox is that since TB

has similar radiological patterns to cancer and some interstitial

lung diseases (ILDs), it may wrongly classify CXRs with these

diseases as TB CXRs. This toolbox will assist in better diagnosis as

well as efficient mass screening of TB in high burden areas.

Supporting Information

Table S1 Various grey-level co-occurrence matrix

(GLCM) textural features used for the classification.
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