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ABSTRACT 	

The flat bones of the skull, the calvarial bones, develop by intramembranous ossification during
which mesenchymal cells first condense and subsequently differentiate into osteoblasts. Sutures
separate the calvarial bones and facilitate the synchronized growth of the underlying brain and the
calvaria.

Hedgehog (Hh) signalling has an indisputable role in craniofacial development as well as during
endochondral ossification. Yet, little is known about its function during intramembranous
ossification of the calvarial bones. GLI-Kruppel family member 3 (Gli3) is a zinc-finger transcription
factor that mediates Hh signalling. In the absence of Hh ligand Gli3 is proteolytically cleaved into a
repressor that inhibits transcription of Hh target genes. Mutations in GLI3 cause Greig
cephalopolysyndactyly syndrome in humans, in which an infrequent, but significant feature is
premature fusion of the metopic suture (interfrontal suture in mice). We have used Gli3 loss-of-
function mouse (Gli3

Xt-J/Xt-J)  as  a  model  to  investigate  the  effects  of  aberrant  Hh signalling  during
calvarial development.

In  my  thesis  I  describe  how  loss  of Gli3 causes craniosynostosis of the lambdoid as well as
interfrontal sutures in mice. Elevated proliferation and ectopic differentiation of osteoprogenitors
underlies this phenomenon. We were able to rescue craniosynostosis in these mice by two
mechanisms. Firstly, by elevating fibroblast growth factor (Fgf) signalling in the suture prior to its
fusion by imbedding Fgf2 soaked beads in tissue culture. This induced Twist1 expression, which
inhibits function of ectopically expressed Runx2. Secondly, craniosynostosis was prevented by
genetically reducing Runx2 activity by generating Gli3

Xt-J/Xt-J;Runx2
+/- mice, which normalized

elevated levels of Bmp signalling in the affected sutures.  We also put forward a model of how Hh
signalling helps to maintain the integrity of bone margins during calvarial development. The
repressor isoform of Gli3 inhibits Runx2 activity in the early osteoprogenitor cells. Runx2, on the
other hand, activates Ihh expression in the mature osteoblasts, which then induces osteogenesis by
inhibiting the function of Gli3 repressor.

Our findings indicate that Gli3 and Hh signalling have an important role in mediating the location
of osteoblast differentiation and the speed of bone formation in the developing calvaria. Uncovering
the cellular and molecular mechanisms that underlie normal calvarial development, as well as
pathological processes, is a vital step in developing treatment strategies for patients with
craniosynostosis.
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1. INTRODUCTION	

The calvarial bones, the flat bones of the skull, provide vital protection to the brain. They differ from
the axial and appendicular skeleton in many ways. Calvarial bones develop mainly by
intramembranous ossification and sutures that separate these bones are fibrous joints, which are a
unique feature of the skull. Calvarial development occurs mainly during embryogenesis and is
carefully synchronized with the development of the neighbouring tissues. Sutures are important sites
of calvarial bone growth. In a condition called craniosynostosis sutures fuse prematurely and bone
growth terminates at the site of the fusion. Craniosynostosis has fundamental consequences from
early stages of a child’s life resulting in uncoordinated compensatory craniofacial development
including deformity of the calvaria, orbits and the face. Without prompt treatment, obliterated suture
also causes neurological symptoms. To date treatment options are limited, involving major surgery,
and often, repeated operations during growth. Craniosynostosis occurs in 1/2500 live-births, but
aetiology is revealed in only fraction of the cases. It is thus essential to reveal the basic mechanisms
of normal development as well as of pathological situations in order to develop more elaborate
treatment options.

Hedgehog (Hh) signalling pathway has a vital role in development as well as tumorigenesis.
Mounting evidence suggests that Hh signalling pathway has a role in calvarial development, and
ultimately in maintaining suture patency, as mutations in several Hh pathway members cause
craniosynostosis in humans and in mice. Only preliminary data, however, exists on how Hh
signalling pathway functions during calvarial morphogenesis.

The  ultimate  aim  of  this  thesis  was  to  unravel  the  role  of  Hh  signalling  during  calvarial
development.  We  used  mouse  as  a  model  to  study  the  function  of  the  Hh  mediator,  GLI-Kruppel
family member 3 (Gli3), and the Hh ligand, Indian hedgehog (Ihh), in calvarial development. We
also investigated interaction of Gli3 and Runt domain-containing transcription factor 2 (Runx2) and
we studied interaction of Gli3 with other signalling pathways: fibroblast growth factor (Fgf)
signalling and bone morphogenetic protein (Bmp) signalling.

The following literature review entails the current understanding of embryonic calvarial
development focussing on the intramembranous bones, following an overview of the key signalling
pathways and transcription factors known to regulate calvarial development. The Hh signalling
pathway and Fgf signalling pathway are reviewed in more detail. The role of Hh signalling during
limb development is also covered as compared to the intramembranous ossification the role of Hh
signalling during endochondral ossification is well known. As this thesis is based solely on findings
obtained from mouse experiments all data presented will handle mice unless stated otherwise.
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2. REVIEW 	OF	THE	LITERATURE	

2.1 Calvarial	development	

The mammalian skull is made up of the neurocranium, which encapsulates and protects the brain,
and the viscerocranium, which forms the face, enabling feeding and breathing functions. The
neurocranium is composed of the superficial skull vault (calvaria) and the cranial base below the
brain, which permits the passage of nerves and blood vessels. Calvaria is constructed from several
flat bones, which are separated by the sutures. Bone growth occurs at these sutures, in the margins of
the bones, facilitating synchronised growth with the underlying brain.

2.1.1 Anatomy	and	origin	

Mammalian calvaria is mainly made up of five bones (Figure 1A). The paired frontal bones are
anteriorly and are apically separated by the interfrontal suture (called metopic suture in humans). The
coronal suture separates frontal bones from the parietal bones laterally. The sagittal suture lies
between the pair of parietal bones apically. The single interparietal bone is situated posteriorly to the
parietal bones, separated bilaterally by the lambdoid sutures. The intramembranous interparietal bone
later fuses with the supraoccipital bone, which is formed by endochondral ossification, to form the
posterior wall of the calvaria. In humans, the squamous part of the occipital bone represents the
intramembranous interparietal bone, which fuses early with the supraoccipital bone forming the
occipital  bone.  The  squamous  part  of  the  temporal  bone  (squamosal)  and  the  greater  wing  of  the
sphenoid bone (alisphenoid) also contribute to the lateral walls of the skull vault.

The majority of the calvarial bones are formed by intramembranous ossification between the
dermal mesenchyme and the meninges, which separate the calvaria from the brain. The outermost
meningeal layer is the dura mater made of dense fibrous tissue. External periosteal layer of the dura
mater, the pericranium, is the endosteum covering the internal surface of the calvaria. It is continuous
with the fibrous tissue in the calvarial sutures.

Calvarial bones develop from mesenchymal cells, which are derived from two distinct cell
populations: the cranial neural crest (CNC) and the cephalic paraxial mesoderm (PM) (Figure 1B)
(Couly et al., 1993; Jiang et al., 2002). Neural crest cells are a multipotent population of migratory
cells, which form at the boundary between neural plate and non-neural ectoderm along the anterior-
posterior (AP) length of the developing embryo during neurulation. PM is part of the mesoderm layer
formed during gastrulation.

 The frontal bones develop from the CNC, while the parietal bones are derived from the PM.
The interparietal bone is a composite, its central portion being derived from the CNC and the lateral
portions from the PM. The neural crest-mesoderm boundary lies between the frontal bone and the
coronal suture, the coronal suture originating from the PM. The interfrontal and sagittal suture
mesenchyme is derived from the CNC, while the lambdoid suture mesenchyme is derivative of the
PM (Yoshida et al., 2008).
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Figure 1. A) Schematic view of the anatomy of the human (top) and mouse (below) calvaria.
af, anterior fontanelle; cs, coronal suture; f, frontal bone; gs, greater wing of sphenoid bone; if, interfrontal
suture; ip, interparietal bone; ls, lambdoid suture; ms, metopic suture (interfrontal); n, nasal bone; o, occipital
bone; p, parietal bone; pf, posterior fontanelle; so, supraoccipital bone; sqo, squamous part of occipital bone;
ss, sagittal suture; st, squamous part of temporal bone.

B) Schematic view depicting the origin of calvarial bones in mice. CNC, cranial neural crest; PM,
paraxial mesoderm.
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2.1.2 Skeletal	patterning	of	the	calvaria	

Calvarial bone development involves several phases: skeletal patterning and initial ossification of the
bone anlages, followed by secondary growth of the bones at the bone margins as well as modelling
and remodelling of the bones. During skeletal patterning, mesenchymal cells of CNC and PM origin
first  migrate  to  the  frontonasal  region  by  embryonic  day  (E)  9.5,  where  they  form  skeletogenic
mesenchyme condensations. Most research on calvarial development has focused on the frontal and
parietal bones. Their development is initiated at the supraorbital ridge where CNC and PM cells form
rostral and caudal domains, respectively, between E10.5 and E11.5. From here, mesenchymal cells
further migrate apically between the pre-existing dermal and meningeal mesenchymal layers and
form skeletogenic mesenchyme condensations. Frontal bone precursors first move in caudal-to-
rostral direction at E11.5 – E12.5 followed by apical migration at E13.5 (Yoshida et al., 2008).

Development of the interparietal bone remains ambiguous. In mammals, interparietal is
formed  from  two  pairs  of  ossification  centres;  the  CNC  derived  medial  pair  and  the  PM  derived
lateral  pair  that  fuse  to  form  a  single  bone  (Koyabu  et  al.,  2012).  CNC  cells  that  contribute  the
interparietal bone migrate from the rostral hindbrain at E9.5 and localise to the surface ectoderm at
E10.5. At E13.5 CNC cells are detected in the osteogenic mesenchyme, between the dermal and
meningeal layers at the level of the cerebellum (Jiang et al., 2002; Yoshida et al., 2008).

CNC cells that form the calvarial structures arise at the cephalic region of the forebrain, the
rostral midbrain and the hindbrain. They undergo epithelial-mesenchymal transition and
subsequently migrate ventrally to colonize the frontonasal region. But what determines calvarial
bone shape and location remains largely unknown. Hox homeodomain family of transcription factors
that are vital regulators of skeletal patterning along the AP axis of the embryo are not expressed in
the calvaria (Kmita and Duboule, 2003). On the contrary, ectopic expression of Hoxa2 in the calvaria
of avian embryo has been shown to inhibit calvarial bone development (Creuzet et al., 2002). There
is evidence that some neural crest cells are precommitted to a specific lineage before the onset of
migration, but majority differentiate as a result of the signals that they encounter during migration
(Krispin et al., 2010; McKinney et al., 2013). Although during skeletogenesis of many craniofacial
bones epithelial-mesenchymal interaction initiates condensation formation (Tyler and Hall, 1977;
Hall, 1981; Tyler, 1983), there is no evidence to date of this phenomenon occurring in the calvaria.
Signals from the dura mater are, however, known to influence calvarial bone development
(Greenwald et al., 2000a; Greenwald et al., 2000b).

Factors that influence specifically calvarial bone condensation formation are yet unidentified
to a large extent. Most data concerning condensations are obtained from the limb or craniofacial
skeleton. Location-specific signals initiate condensation formation. Although the source and nature
of these signals is largely unknown transforming growth factor β (Tgfβ) is able to initiate
condensation formation by activating the glycoprotein fibronectin, which in turn regulates neural cell
adhesion molecule (NCAM). NCAM is also a glycoprotein expressed on the surface of mesenchymal
cells and it is important in maintaining the condensation state. Tgfβ also stimulates N-cadherin

expression in mesenchymal cells that recruits cells to the condensations (Chimal-Monroy and Díaz
de León, 1999). Condensation grows through cell proliferation. Proliferation is actively
downregulated by cell surface proteoglycan receptor, Syndecan-3 that inhibits NCAM by binding to
fibronectin and permitting differentiation of the mesenchymal cells. NCAM expression is yet again
associated with osteoblast differentiation, while its expression must be downregulated during
chondrogenesis (reviewed in Hall and Miyake, 2000).
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2.1.3 Osteoblast	differentiation	and	bone	formation		

During the second phase of calvarial bone development the mesenchymal cells of the condensations
differentiate into osteoblasts. Differentiation begins at the site of the initial condensation in the
supraorbital region, where preosteoblasts are first detected at E12.5 (Rice et al., 2003). From here,
the differentiation wave proceeds apically, while growth of the bone anlage continues by
proliferation of preosteoblasts. Mineralisation of the bone does not begin until the upgrowth of the
bone anlage is complete, at E14.5. It is also initiated at the supraorbital region and proceeds in radial
pattern (Ishii et al., 2003; Yoshida et al., 2008).

Once a miniature form of the bone is formed, the growth of the calvarial bones toward each
other continues at the sutural margins of the bone rudiments, in the osteogenic fronts (OF) (Figure 2).
This marks the third phase of calvarial bone development that also continues postnatally. The
undifferentiated cells of the sutural mesenchyme were originally thought to account for the growth of
the bones by getting incorporated into the OF after attaining osteoblastic fate. However, evidently
only a fraction of cells of the sutural mesenchyme differentiate into osteoblasts (Lana-Elola et al.,
2007). Mesenchymal osteogenic precursor cells that form the OFs are also derived from the
supraorbital region of the bone rudiment from where they migrate towards the suture mesenchyme
until an appropriate stimulus inhibits their progression (Yoshida et al., 2008; Ting et al., 2009;
Roybal et al., 2010). Proliferation of these cells in the OF does also account for bone growth (Lana-
Elola et al., 2007). It, however, is not clear whether OF is the leading edge of the migrating and
proliferating cells of the bone rudiment, or if OF is established by a secondary wave of osteoblast
induction and proliferation once the osteogenic mesenchyme has migrated apically (Holmes et al.,
2009).

Figure 2. Schematic view of the osteogenic fronts (OF) and the suture. OFs are at the sutural

edge of the developing calvarial bones, where active growth of the bone occurs. Mesenchymal stem cells
migrate to the leading edge of the osteogenic condensation and begin to differentiate towards mature
osteoblasts in the OFs. Mature osteoblasts reside on the surface of the bone. Part of the mature osteoblasts
differentiates further into osteocytes or bone lining cells. Osteoclasts participate in modelling and remodelling
of the bones. Sutural mesenchymal cells lie between two adjacent calvarial bone margins.
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Osteoblasts and chondroblasts are both derived from common mesenchymal precursor cells,
which first differentiate into skeletal precursors, characterised by Sox9 expression (Figure 3)
(Akiyama et al., 2005). The chosen differentiation lineage these skeletal precursors follow depends
on the given transcriptional signals these precursors receive. Osteoblast differentiation can be divided
into three stages: mesenchymal precursor cells, preosteoblasts and osteoblasts. Preosteoblasts are a
heterogeneous group of proliferating cells. All preosteoblasts express Runx2 and at more advanced
stage they also express osterix (Osx;  also  known  as Sp7). Osteopontin (Op) is also expressed by
preosteoblasts. Mature osteoblasts do not proliferate and they express high levels of osteocalcin (Oc).
Osteoblasts secrete extracellular matrix (ECM), rich in type I collagen, called osteoid that
mineralises through accumulation of hydroxyapatite, which is calcium phosphate. Part of the
osteoblasts become trapped within the bone matrix and differentiate into osteocytes, which account
for about 95% of cells in the mature bone tissue. Osteocytes regulate bone remodelling in response to
both mechanical and hormonal signals. Rest of the osteoblasts either undergo apoptosis or become
inactive bone-lining cells (reviewed by Bonewald, 2011).

In addition to osteoblast-mediated bone formation, osteoclasts are critical in remodelling the
three-dimensional microarchitecture of the calvarial bones (Takahashi et al., 2002). Osteoclasts are
haematopoietically derived cells that resorb bone.

Figure 3. Schematic diagram of osteoblast differentiation. Osteoblasts differentiate from
multipotent mesenchymal precursor cells. Mesenchymal cells first differentiate into preosteoblasts, which are
a heterogeneous group of proliferating cells before reaching the mature osteoblast stage. Part of the
osteoblasts differentiates further into osteocytes. Different factors either stimulate or inhibit osteoblast
differentiation at different stages (refer to the text for details).
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2.1 .3 .1 Role	of 	Runx2 	in 	osteoblast 	differ ent ia t ion 	
Runx2 belongs to the Runx-family, consisting of Runx1 – 3, which are master regulators of different
cell lineages. These transcription factors form heterodimers with transcriptional co-activator core
binding factor b (Cbfb) and bind to a consensus DNA sequence. Runx2 is a master osteogenic
transcription factor as it is the most upstream molecule known in osteoblast differentiation and
Runx2 null  allele  mice  show complete  lack  of  osteoblasts  (Komori  et  al.,  1997;  Otto  et  al.,  1997).
Haploinsuficiency of Runx2 in  mice  and  humans  results  in  delayed  closure  of  the  sutures  and
fontanelles, which is characteristic of cleidocranial dysplasia in humans (Otto et al., 1997; Mundlos
et al., 1997). On the contrary, when Runx2 expression is activated early in the mesenchyme cells at
E9.5, not only do calvarial osteoblasts differentiate prematurely, but sutures also fail to form
resulting in multiple craniosynostoses (Maeno et al., 2011).

Runx2 is proposed to be the key coordinator of cell lineage specification, proliferation and
growth. This is achieved in part by regulation of ribosomal RNA genes and ribosomal biogenesis
(Young et al., 2007). Interestingly, Runx2 concomitantly inhibits maturation of osteoblasts, keeping
preosteoblasts in a proliferative state and maintaining a supply of preosteoblasts. Unless Runx2

expression is downregulated before the final stage of osteoblast differentiation, osteopenia results
(Liu et al., 2001).

Runx2 is able to induce the expression of major bone matrix protein genes; alpha-1 type I

collagen (Col1a1), Op, integrin-binding sialoprotein (Ibsp) and Oc in preosteoblasts, but Runx2 is
not evidently essential for their expression (Komori, 2005). Runx2 regulates Osx, another
transcription factor that is required to commit osteoblastic precursors to become osteoblasts and
which later regulates terminal osteoblast differentiation (Nakashima et al., 2002). Osteoblasts also
fail to differentiate in Osx deficient mice. Osx is downstream of Runx2 and Osx fails to be expressed
in Runx2 null allele mice, but it is also regulated by Runx2-independent mechanism. Bmp2 is able to
stimulate Osx expression  by  activating  Dlx5  in  the  absence  of  Runx2  in  cell  culture  (Lee  et  al.,
2003b).

Runx2 has two major isoforms, which are activated by individual promoters: Runx2-I
(product of the proximal promoter (P2)) and Runx2-II (product of the distal promoter (P1)) (Xiao et
al., 1998). The amino acid sequence of Runx2-I is almost identical to that of Runx2-II. The two
isoforms share a common 509-amino-acid sequence, but a 5-amino-acid N-terminal sequence of
Runx2-I differs from the 19-amino-acid N-terminal sequence of Runx2-II (Stock and Otto, 2005).
The effect of this distinct N-terminal amino acid composition on their function in bone development
is not well understood. Runx2-I is proposed to be involved in the initial commitment step as it is
expressed in the sutural mesenchyme and in the preosteoblasts of the OF. Runx2-II, on the other
hand, is expressed by more mature preosteoblasts that already express Op and Oc, and by mature
osteoblasts.  It  is,  thus,  thought  to  act  during  later  stages  of  osteoblast  differentiation  (Park  et  al.,
2001; Choi et al., 2002).

2.1.4 Suture	development	

Sutures are fibrous joints consisting of mesenchymal cells and fibroblasts between two calvarial bone
ends (Figure 2) (Opperman, 2000). Sutures are growth centres and thus need to remain patent. They
also facilitate childbirth by allowing reshaping of the head. In mice, the posterior part of the
interfrontal suture is the only suture that fuses this occurring during the first month of post-natal life.
Other calvarial sutures remain patent (Bradley et al., 1996). In humans, the metopic suture also fuses
first. It begins closing during the second year and is fused by 7 years of age. Most human calvarial
sutures fuse at the third or fourth decade of life.
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Sutures not only differ in fusion timing. They can be broadly divided into two categories
depending on the conformation and location of the suture. The sagittal, interfrontal and lambdoid
sutures belong to the first group, in which the sutural margins of the adjacent bones face each other.
Bones are initially widely separate and the mesenchymal gap between them gradually narrow
forming the suture (Morris-Kay and Wilkie, 2005).  These sutures overlie interlobar spaces of the
brain. The interfrontal and sagittal sutures overlie the midline between the cerebral hemispheres and
the olfactory lobes, while the lambdoid suture is superior to the area between the cerebral
hemispheres and the cerebellum.

The coronal suture represents the second group. The suture morphology differs in that the
parietal bone margin overlaps the frontal bone margin. This overlap is present from the initial stage
of mesenchymal condensation formation at E9.5 in mice. This neural crest–mesoderm boundary is
initially situated over the telencephalon–diencephalon border. However, when cerebral hemispheres
grow they extend caudally beneath the suture so that in the final anatomical relationship the suture
lies over the cerebral hemisphere (Jiang et al., 2002). The coronal suture is thus not situated over an
anatomical landmark of the brain.

Unanswered questions concerning the suture formation still remain. Is the suture formation
prepatterned or do signals arising from neighbouring tissues inhibit the suture mesenchyme from
ossifying? What governs the location of the sutures? It was previously thought that the suture
formation was initiated when two edges of the growing bones approached each other and that sutural
mesenchyme had osteoblastic fate. Novel evidence, however, indicates that suture morphogenesis
may be traced to a considerably earlier stage of calvarial development (E10.5–12.5 in mice),
preceding the expansion of adjacent skeletal rudiments. Msx1 and Msx2 are required to be expressed
in the CNC from E10.5 onwards to inhibit ossification in a normally non-osteogenic, CNC-derived
cell layer and thus prevent heterotopic ossification in the interfrontal suture (Roybal et al., 2010).  By
fate-mapping studies, Deckelbaum et al. (2012) also showed that mesenchymal cells of the PM
origin migrate between E11 and E13.5 from the supraorbital region to form the coronal suture. The
terminal fate of this sutural mesenchyme during physiological or pathological suture fusion remains
unknown.

It is also noteworthy that sutures are not just passive, mechanical barriers between the bones
(Lenton  et  al.,  2005).  Coronal  suture  has  recently  been  proposed  to  act  as  a  growth  centre  that
actively regulates proliferation and differentiation rate of osteoprogenitors in the OFs (Deckelbaum
et al., 2012).

New data indicate that postnatally sutures become an indispensable source of mesenchymal
stem cells (MSCs), which give rise to the periosteum, dura as well as osteoblasts in the calvaria and
are  vital  for  tissue  turnover  and  injury  repair.  Destruction  of  these  MSCs  postnatally  leads  to
synostosis of all of the calvarial sutures (Zhao et al., 2015).

2.1.5 Abnormalities	in	calvarial	development	

Abnormalities affecting calvarial bone development, discussed below, include premature suture
fusion, i.e. craniosynostosis, which is characterised by heterotopic ossification and, on the other
hand, delay in suture closure involving reduced ossification.

2.1 .5 .1 Cr aniosynostosis	
Craniosynostosis is a pathological, heterogeneous condition where one or more of the calvarial
sutures fuse prematurely. Fusion may be partial or complete, but never the less, it terminates growth
at the site of the fusion leading to asymmetrical growth of the skull as other sutures compensate,
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while trying to accommodate the expansion of the underlying brain. Neurological symptoms do,
however, develop unless treatment is initiated. Currently, treatment inevitably involves surgical
emancipation of the fused suture. The affected suture also tends to re-ossify as it is impossible to
eliminate the aberrant process that originally led to synostosis.

The incidence of craniosynostosis is estimated to be 1 in 2000 to 3000 live births, including
the syndromic cases, as well as the more common non-syndromic cases (Wilkie and Morriss-Kay,
2001; Lenton et al., 2005). The sagittal suture is most frequently involved (40–55%) followed by the
coronal suture (20–25%) and the metopic suture (5–15%). The lambdoid synostosis is rare (0–5%),
even the multiple suture synostosis is more common (5–15%) (Cohen and MacLean, 2000; Rice,
2008a).

The aetiology of the non-sydromic craniosynostosis remains poorly understood, although
they account for about 70% of the cases. Mutations in EphrinA4 (EFNA4), Fibroblast growth factor

receptors 1, -2 and -3 (FGFR1,  -2,  -3) and TWIST1 have been associated with non-syndromic
craniosynostosis (Merrill et al., 2006; Lattanzi et al., 2012). Craniosynostosis is a clinical feature of
at least 150 syndromes. Mutations in FGFR1, -2, -3, TWIST1, EphrinB1 (EFNB1), Msh homeobox 2

(MSX2) and RAS-associated protein 23 (RAB23) unequivocally cause craniosynostosis (Passos-
Bueno et al., 2008). Fibrillin1 (FBN1) (Sood et al., 1996), Transforming growth factor β receptor

type I and II (TGFBR1, -2) (Loeys et al., 2005), Cytochrome p450 reductase (POR)  (Flück  et  al.,
2004) and GLI3 (McDonald-McGinn et al., 2010; Hurst et al., 2011) have also been occasionally
associated with premature suture fusion, but penetrance has been low. Mutations in these 12 genes
account for approximately 30% of the syndromic cases (Cohen and MacLean, 2000; Rice, 2008a;
Passos-Bueno  et  al.,  2008).  At  least  another  10%  of  the  syndromic  cases  are  explained  by  the
chromosomal alterations (duplications, deletions, copy number variants etc.) (Passos-Bueno et al.,
2008). Genetic analysis of syndromic craniosynostosis has revealed many of the important pathways
participating in suture development and closure (Passos-Bueno et al., 2008; Ting et al., 2009).

FGFR-mutations cause most of the syndromic craniosynostoses. They are inherited
autosomally dominantly and confer gain-of-function to the mutated receptor. Several de novo FGFR-
mutations originate exclusively paternally and incidence increases with father’s age (Moloney et al.,
1996; Glaser et al., 2000). FGFR-related craniosynostoses are discussed in more detail in the chapter
2.3, regarding the Fgf signalling pathway (refer to page 33). Mutations in TWIST1 and MSX2 are also
autosomally dominantly inherited, while EFNB1-mutations, causing craniofrontonasal syndrome, are
linked to the X-chromosome and paradoxally affecting mostly females (~95%). Carpenter syndrome,
caused by mutations in RAB23, is the only autosomally recessive condition.

Non-syndromic craniosynostosis may also be caused by extrinsic factors such as metabolic
causes. Vitamin D deficiency and hyperthyroidism, for example, have both been associated with
premature suture fusion (McCarthy and Reid, 1980; Hirano et al., 1995). Also some brain
malformations, such as, microcephaly and encephalocele, predispose to craniosynostosis.

It is important to distinguish deformational plagiocephaly from craniosynostosis.
Deformational plagiocephaly refers to asymmetrical head shape caused by repeated pressure to the
same area of the head, although sutures remain patent. Intrauterine pressure, muscular torticollis,
prematurity and back sleeping have all been associated with abnormal head shape. Experimental
studies have revealed that calvarial mesenchymal cells do respond to mechanical strain.
Mesenchymal cells express markers of proliferation and differentiation in response to tensile or
cyclic loading, while compressive loading favors osteogenesis (Kopher and Mao, 2003; Collins et al.,
2005; Vij and Mao, 2006).
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2.1 .5 .2 Delay	in 	sutur e	closur e 	
Another anomaly affecting the calvaria is delayed suture closure, which is an opposite phenomenon
to premature suture fusion. Delayed suture closure is a feature of cleidocranial dysplasia, caused by
heterozygous loss-of-function mutation in RUNX2 (Otto et al., 1997; Mundlos et al., 1997). In
cleidocranial dysplasia, intramembranous ossification of calvarial as well as clavicle bones is
defected. All the calvarial bones are smaller in size and the fontanelles are larger.

Related condition is enlarged parietal foramina, which is an inherited condition caused by
mutation in either MSX2 or ALX4 (Wilkie et al., 2000; Mavrogiannis et al., 2001). It is characterised
by symmetrical and circular enlarged openings in the two parietal bones. The size of the foramen
varies, ranging from a few millimetres to several centimetres wide. The condition is due to impaired
parietal bone ossification. Parietal foramina are normally seen in parietal bones during the foetal
period, but they usually close by the fifth month of pregnancy.

2.1.6 Molecular 	regulation	of	calvarial	development	

There are several signalling molecule families that direct the development of different organs and
which are conserved among different species. A signalling family consists of extracellular ligands,
cell membrane receptors, intracellular signalling factors, transcription factors, co-factors and
antagonists. These molecule families are named after soluble growth factors that control the activities
of cells through intercellular communication even over long distances. The growth factor signal
binds to its receptor on the cell surface in the recipient cell, which activates an intracellular
transduction cascade leading to target gene transcription in the nucleus.

The role of the important growth factor families that regulate calvarial development is
described below, apart from Hh and Fgf signalling pathways, which have been dedicated their own
chapters owing to their important role in this thesis. Following the growth factor families, important
transcription factors in calvarial development are introduced.

2.1 .6 .1 TGFβ	Super fa mi ly	signa l l ing	pa thways	
The Tgfβ superfamily includes Tgfβs,  Bmps, and Growth and differentiation factors (Gdfs) that  all
mediate calvarial development at multiple stages. These Tgfβ superfamily ligands form dimers that
bind to heterodimeric receptor complexes that consist of type I and type II receptor subunits with
serine/threonine kinase domains. Ligand binding activates type II receptor, which in turn activates
the type I receptor by phosphorylation, initiating a Smad-dependent signalling cascade that induces
or represses transcriptional activity. These Smad proteins are intracellular mediators of the Tgfβ
superfamily signalling, which are also phosphorylated upon activation (Whitman 1998; Sakou et al.,
1999; Massagué and Chen, 2000). Smads 1, 5 and 8 mediate Bmp signalling, while Smads 2 and 3
mediate Tgfβ signalling (Massagué and Chen, 2000; Ross and Hill, 2008). Smads 6 and 7 are
inhibitory Smads, with Smad6 regulating Bmp signalling and Smad7 Tgfβ signalling (Massagué and
Chen, 2000).

Tgfβ and Bmps are both involved in the earliest step of ossification, in initiating the
skeletogenic condensations. Bmps are associated with growth of the condensations i.e. recruitment of
cells, while noggin, an antagonist of Bmps, has an important role in restricting condensation size and
duration. In the absence of noggin condensations become hyperplastic. Since neither the initial
condensation phase, nor the cell proliferation is affected, it has been proposed that the expansion of
the condensation is due to increased recruitment of cells (Hall and Miyake, 2000). Tgfβ signalling
also plays a vital role in mesenchymal osteoprogenitor maintenance and proliferation during bone
development (Derynck and Akhurst, 2007). In the frontal bone anlage it has been shown to control
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proliferation by activating Fgf signalling (Sasaki et al., 2006). Conditional inactivation of the
receptor Tgfbr2 in the calvarial mesenchyme in mice leads to complete absence of interparietal and
parietal bones as well as hypoplastic frontal bones (Spagnoli et al., 2007).

Tgfβ superfamily also participates in determining the osteogenic fate of the condensations.
Both Tgfβ1 and Bmp2 stimulate Runx2 expression and function (Ryoo et al., 2006). Bmp2
specifically regulates Runx2-II and Osx expression by activating Dlx5 (Lee et al., 2003a; Lee et al.,
2003b). It is important to note that neither Dlx5 nor Osx are expressed in the skeletal primordium of
Runx2

-/- mice indicating that Bmp signalling is involved in regulating a later stage of osteoblast
differentiation (Ryoo et al., 2006). Bmp and Tgfβ signalling also promote osteoblast differentiation
by stimulating the expression of Msx1, Msx2 and Dlx5 (Bei and Maas, 1998; Sasaki et al., 2006).
Overactivation of Bmp signalling, however, directs cells to differentiate toward the chondrogenic
lineage, by inducing Sox9 expression, while inhibiting Runx2 and Op expression (Abzhanov et al.,
2007).

Bmp2, Bmp4 and Bmp7 are all expressed in the frontal bone rudiment (Kim et al., 1998; Rice
et al., 1999). Conditional deletion of Bmp2, Bmp4 and Bmp7 from the CNC leads to development of
very truncated frontal bones (Bonilla-Claudio et al., 2012). Bonilla-Claudio et al. (2012) showed that
special AT-rich sequence-binding protein 2 (Satb2) is a direct target of Smad1/5. Satb2 enhances
osteoblast lineage development by regulating Runx2 and activating transcription factor 4 expression.
Bmp2 is also expressed in the OFs of the calvarial bones where it controls differentiation and
proliferation of osteogenic mesenchymal cells. It has been proposed that differentiation of the
proliferative preosteoblasts in the OF into more mature osteoblasts in the mineralizing bone involves
a reduction in phosphorylated Smad1/5/8, which indicates decreased Bmp signalling (Ting et al.,
2009). On the other hand, conditional inactivation of Tgfbr2 from the CNC cells has indicated that
Tgfβ signalling is required for the terminal osteoblast differentiation in the frontal bones (Sasaki et
al., 2006).

All members of the Tgfβ superfamily have been implicated in calvarial suture closure. Bmp2,
Bmp4 and Bmp7 have been proposed to promote suture fusion by activating their downstream
targets Dlx5 and Msx2 (Holleville et  al.,  2003; Rice et  al.,  2003).  Recent evidence has shown that
enhanced Bmp signalling through the Bmp type IA receptor in the CNC causes craniosynostosis of
the interfrontal suture in mice (Komatsu et al., 2013).

The antagonist Noggin is expressed in the sutural mesenchyme of patent sutures enforcing
suture patency by blocking the positive-feed-back loop of Runx2-induced Bmp2 stimulating Runx2

expression. Noggin is downregulated by Fgf signalling during suture fusion (Warren et al., 2003).
Noggin can also bind to Gdf6 and inhibit its signalling ability (Chang and Hemmati-Brivanlou,
1999). Gdf6 participates in coronal suture development, as in Gdf6 null allele mice, coronal suture is
not established, the primordia of frontal and parietal bones being fused already before the onset of
ossification (Clendenning and Mortlock, 2012; Settle et al., 2003). The function of Gdf6 is  not  yet
fully revealed, but it is known that it is expressed in the frontal bone primordia.

Gain-of-function mutations in the TGFβ receptors TGFBR1 and TGFBR2 in humans cause
Loeys-Dietz syndrome, an autosomal dominant aortic aneurysm syndrome, of which many patients
have craniosynostosis (Roth et al., 1997; Loeys et al., 2005). These mutations evidently increase
cellular response to TGFβ. Increased Tgfβ signalling has also been associated with posterior
interfrontal suture fusion in rodents and downregulation of Tgfβ signalling is required for suture
patency (Opperman et al., 1993; Opperman et al., 1995). Smad7 maintains suture patency by
downregulating Tgfβ signalling by inhibiting Smad2/3 activation (Zhou et al., 2014). Tgfβ signalling
has also been suggested to regulate suture closure through the Erk-MAPK pathway. Opperman et al.
were able to hinder Tgfβ2-induced suture closure by an Erk kinase inhibitor, which blocked Erk1/2
function (Opperman et al., 2006).
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2.1 .6 .2 Canonical 	Wnt 	signall ing	pathw ay 	
Three wingless-type MMTV integration site (Wnt) signalling pathways have been characterised: the
canonical Wnt pathway, the non-canonical planar cell polarity pathway, and the non-canonical
Wnt/calcium pathway. The canonical Wnt pathway utilises β-catenin through which it regulates gene
transcription, while the non-canonical planar cell polarity pathway, which controls the cytoskeleton
and the non-canonical Wnt/calcium pathway that regulates calcium inside the cell, are both β-catenin
independent pathways (reviewed by Nusse, 2012).

The canonical Wnt signalling pathway is activated by the binding of the Wnt-protein ligand
to a transmembrane receptor called Frizzled to activate intracellular cascade that is transduced by
unphosphorylated β-catenin. β-catenin is stabilised and enters the nucleus where it binds to Tcf/Lef
transcription factors to activate the expression of Wnt-target genes. In the absence of Wnt-ligands, β-
catenin is phosphorylated and degraded by a destruction complex, which includes axin, adenomatosis
polyposis coli, protein phosphatase 2A, glycogen synthase kinase 3 (Gsk3), and casein kinase 1α
(Ck1α). Activated Frizzled receptor interacts with another transmembrane protein, LRP, which in
turn binds to axin and thus restricts the function of the destruction complex (Logan and Nusse, 2004;
Moon et al., 2004; MacDonald et al., 2009).

Canonical Wnt signalling has an important role in calvaria development from initial stage
onwards as conditional deletion of β-catenin from neural crest cells results in a complete loss of
calvarial bones and dramatic brain malformation indicating that β-catenin has a role in neural crest
cell survival and/or differentiation (Brault et al., 2001).

In mesenchymal condensations Wnt/β-catenin signalling is required to determine osteoblastic
fate. When β-catenin is absent from the condensations cells that normally differentiate into dermis
and calvarial bones acquire cartilaginous fate (Day et al., 2005; Tran et al., 2010). Normally β-
catenin represses chondrogenesis by activating Twist1 expression in the calvarial mesenchymal
condensations, which in turn inhibits Sox9 expression (Goodnough et al., 2012). Although there is
evidence that Wnt/β-catenin signalling is able to stimulate Runx2 expression, it is not obligatory for
Runx2 expression. When β-catenin is conditionally deleted in the head from E11.5-12.5, Runx2 is
expressed, although mesenchymal cells fail to differentiate further into functional osteoblasts (Gaur
et al., 2005; Tran et al., 2010). β-catenin also promotes proliferation of osteoprogenitors by activating
cyclin D (Mirando et al., 2010).

On the other hand, high levels of Wnt/β-catenin signalling evidently inhibit ossification of
embryonic calvarial mesenchyme. During posterior interfrontal suture closure, which occurs by
endochondral ossification, there is a sharp decrease in canonical Wnt signalling and this decrease is
not detected in the patent sagittal suture (Quarto et al., 2010). Endochondral ossification is proposed
to be initiated by decrease in Twist1 expression due to downregulation of Wnt signalling leading to
chondrogenesis (Behr et al., 2010).

Axin2 is a transcriptional target of Wnt signalling and also functions as an inhibitor of Wnt
signalling, among others. The role of Axin2 in calvarial development is controversial. It is expressed
in CNC cells, in the OFs and in the sutural mesenchyme. It has been shown to repress
osteoprogenitor proliferation and osteoblast differentiation (Yu et al., 2005). Deletion of Axin2 in
mice causes premature fusion of the interfrontal suture at an early postnatal stage, evidently due to
elevated Bmp signalling, which in turn controls β-catenin activity (Yu et al., 2005; Liu et al., 2007).
To support this, feedback regulation has also been shown to exist between Runx2 and Axin2 as in
mesenchymal progenitor cells Axin2 inhibits Wnt/β-catenin signalling, and thus inhibits Wnt/β-
catenin mediated Runx2 activation. Runx2, on the other hand, represses Axin2 transcription during
early stages of osteoprogenitor cell commitment (McGee-Lawrence et al., 2013). There is, however,
novel and contradicting evidence to show that Axin2 deletion has an opposite effect on frontal bone
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development leading to a delay in ossification and absence of posterior interfrontal suture fusion
(Behr et al., 2013).

Wnt5a is a Wnt-ligand that is able to inhibit as well as activate Wnt/β-catenin signalling
depending on the location and timing. Wnt5a overexpression in mice causes induction of Wnt/β-
catenin signalling in the meninges, which has been proposed to cause reduced calvarial ossification
at E18.5 (van Amerongen et al., 2012).

In more mature bone, canonical Wnt signalling has been shown to affect bone homeostasis
and influence bone mass by activating osteoblasts and inhibiting osteoclasts (Glass et al., 2005).
Disruption of β-catenin signalling in osteoblasts causes osteopenia and increased numbers of
osteoclasts in postnatal mice (Holmen et al., 2005).

2.1 .6 .3 Notch 	signa l l ing	pathw ay	
The mammalian notch signalling pathway consists of four single-pass transmembrane receptors
(Notch1-4) and five canonical ligands: Jagged 1 (Jag1), Jag2, Delta-like 1 (Dll1), Dll3 and Dll4.
Notch ligands are also transmembrane proteins and so the receptor activation requires direct cell-to-
cell contact. Ligand binding activates the receptor and an intracellular part of the receptor is cleaved
off and translocated to the nucleus, where it binds to the DNA-binding protein CBF1/Suppressor of
Hairless/LAG-1 and activates the transcription of Notch target genes (reviewed in Andersson et al.,
2011).

Notch signalling has a vital role during development in boundary formation and cell fate
determination. Increased activation of Notch pathway in the neural crest cells in mice
(Wnt1Cre;Rosa(Notch)) causes abnormal and deficient neural crest cell migration leading to severe
craniofacial malformations including exencephaly (Mead and Yutzey, 2012).

Notch signalling also contributes to coronal suture formation as disruption of notch ligand,
Jag1, in mice and in humans (Alagille syndrome) alike, causes craniosynostosis of the coronal suture
(Yen et  al.,  2010;  Kamath  et  al.,  2002).  Deletion  of Jag1 from the  PM-cells  of  the  coronal  suture,
where  it  is  normally  expressed,  alters  the  identity  of  the  sutural  mesenchymal  cells  from  E12.5
onwards and disrupts the boundary between osteogenic and non-osteogenic cells. Notch2 expression
and Notch signalling activity were concomitantly increased in the sutural mesenchyme. Yen et al.
revealed that Jag1 and Notch2 are both downstream effectors of Twist1 in the developing coronal
suture (Yen et al., 2010).

Notch signalling also affects calvarial osteogenic cells by keeping them in the proliferating
preosteoblast state, restricting further differentiation prior to Osx activation (Hilton et al., 2008).
Decreased proliferation has been proposed to cause widened interfrontal suture and reduced frontal
bone formation at E18.5 in mice that lack Notch signalling from the neural crest cells
(Wnt1Cre;RBP-J(f/f)) (Mead and Yutzey et al., 2012).

2.1 .6 .4 Eph-ephr in 	signal l ing	pathw ay	
Ephrin receptors (ephs) are receptor tyrosine kinases, which are activated by ephrin ligands. Both
Ephs and ephrin ligands are transmembrane proteins that require direct cell-cell communication for
signal transduction. Ephs have a unique capacity of bidirectional signalling that affect both receptor-
and ephrin-expressing cells (reviewed in Lisabeth et al., 2013). Eph-ephrin signalling is a critical
regulator of embryonic development including axon guidance, formation of tissue boundaries, cell
migration, and segmentation.

Anti-adhesive interaction, where eph repulses the ephrin ligand, is proposed to play a
significant role in restricting cell mixing across boundaries (Poliakov et al., 2004). Indeed, deletion
of ephrin type-A receptor 4 (EphA4) in mice causes premature fusion of the coronal suture (Merrill et
al., 2006; Ting et al., 2009). Likewise, mutations in ephrin ligands: EFNA4 and EFNB1
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(Craniofrontonasal syndrome), are known to cause craniosynostosis of the coronal suture in humans
(Twigg et al., 2004; Wieland et al., 2004; Merrill et al., 2006).

Eph-ephrin signalling functions downstream of Twist1 and Msx2 to regulate the apical
migration of osteoprogenitor cells from the frontal and parietal bone primordia in the supraorbital
ridge to the leading margins of the developing bones. Concomitantly it inhibits these osteoprogenitor
cells from entering the coronal suture (Merrill et al., 2006; Ting et al., 2009).

2.1 .6 .5 Twist1 	
Twist1, basic Helix-loop-Helix (bHLH) transcription factor, is a critical regulator of calvarial
development. Twist1-null allele mice die by E11.5 exhibiting major craniofacial defects (Chen and
Behringer, 1995).  Twist1 is required for early migration and survival of cranial mesenchyme and for
proper  osteogenic  differentiation  of  both  PM  and  CNC  cells,  as  well  as  for  reciprocal  tissue
interaction. Conditional deletion of Twist1 from CNC causes complete failure of the frontal and
supraoccipital bones to develop, and only remnants of the parietal and interparietal bones are formed
(Bildsoe et al., 2009). Likewise, conditional deletion of Twist1 from PM leads to absence of parietal
and interparietal bones, but also the size of frontal bones is severely reduced. Twist1 was also found
to maintain cells derived from PM in a mesenchymal progenitor state and to inhibit transition of
these cells to an epithelial architecture (Bildsoe et al., 2013).

Twist1 has a critical role in maintaining boundaries between osteogenic and non-osteogenic
compartments in the calvaria (Ting et al., 2009). Twist1-heterozygous mice (Twist1

+/-)  present  a
postnatally occurring synostosis of the coronal suture, as well as the lambdoid suture associated with
enlarged interparietal bone (Bourgeois et al., 1998; Carver et al., 2002; Ting et al., 2009). Twist1 is
expressed from E9.5 onwards in the calvarial mesenchyme to control intramembranous bone
progenitor specification. Twist1 inhibits Runx2 function by interacting with its binding domain.
Osteoblast differentiation in the mesenchymal condensations is not initiated until E13 when Twist1

expression is decreased. The calvarial defects in Twist1
+/- mice may be in part explained by the

genetic interaction of Twist1 and Runx2 as in Twist1
+/-;Runx2

+/- mice the calvarial development is
normalized (Bialek et al., 2004).

Twist1
+/- mouse models the Saethre-Chotzen syndrome, which is caused by loss-of-function

mutations in TWIST1 and  features  a  coronal  synostosis  (El  Ghouzzi  et  al.,  1997;  Howard  et  al.,
1997). Most research has thus focussed on the coronal suture, where Twist1 is expressed in the
sutural  mesenchyme and in the OFs of the frontal  and parietal  bones (Rice et  al.,  2000; Johnson et
al., 2000). The ‘Twist box’ that controls Runx2 function does not explain coronal craniosynostosis in
Saethre–Chotzen syndrome patients as TWIST1 missense mutations cluster in the bHLH region of the
protein only (Morris-Kay and Wilkie, 2005). Twist1 has been shown to be vital in maintaining the
neural-crest mesoderm boundary during coronal suture development. In Twist1

+/- mice, neural crest
cells cross the boundary into the mesoderm domain of the coronal suture (Merrill et al., 2006).
Twist1 controls the guidance of migratory osteogenic mesenchymal cells to the leading margin of the
frontal and parietal bones and excludes osteogenic cells from the coronal suture by activating Notch
signalling (Jag1) and Eph-ephrin signalling (EphA4) (Merrill et al., 2006; Ting et al., 2009; Yen et
al., 2010).

Twist1 also regulates suture organisation and osteoblast differentiation in the OFs by
controlling Fgf signalling. It does this by forming functional homodimers as well as heterodimers
with bHLH E-proteins, which are ubiquitously present. These dimers have distinct activities and
regulate the expression of different sets of genes. Homodimers are present in the OFs, where they
upregulate Fgfr2 expression, while heterodimers exist in the sutural mesenchyme to downregulate
Fgfr2 expression (Connerney et al., 2006; Connerney et al., 2008).
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2.1 .6 .6 Msx1 	and	Msx2 	
Homeobox genes Msx1 and Msx2 encode transcriptional regulators that participate in calvarial
development from E9.5 onwards in mice. Msx1 and Msx2 are both expressed in the CNC-derived
frontal bone anlage from E10.5, while only Msx2 is detected in the developing parietal bone at
E12.5, once the osteoblast differentiation is already initiated (Kim et al., 1998; Han et al., 2007).

Loss-of-function mutations in MSX2 cause enlarged parietal foramina in humans (Wilkie et
al., 2000). Likewise, Msx2 null allele mice have a large ossification defect in the frontal bones
(Satokata et al., 2000). In mice that lack both Msx1 and Msx2 all calvarial bones fail to form
(Satokata et al., 2000; Han et al., 2007). Msx-genes act  in parallel  pathways with Twist1 to control
the proliferation and differentiation of the CNC-derived mesenchyme that forms the frontal bones
(Ishii  et  al.,  2003;  Han  et  al.,  2007).  The  parietal  bone  defect  is  postulated  to  be  a  result  of
compromised CNC-derived meninges (Han et al., 2007).

Msx-genes control the initial step of osteoblast lineage specification in frontal bone
primordium, but later on they inhibit the terminal differentiation keeping preosteoblasts in a
proliferating state (Dodig et al., 1999; Hu et al., 2001). In the absence of both Msx1 and Msx2, Runx2

fails to be expressed in the frontal bone condensation (Han et al., 2007). Msx2, on the other hand, has
been shown to suppress the promoter of Runx2-II (Lee et al., 2005; Kawane et al., 2014). There is
also evidence that Msx-genes control Dlx5 expression; Msx2 has been shown to inhibit Dlx5

expression, while Msx1 is required for Dlx5 expression in the developing frontal bone anlage (Lee et
al., 2005; Chung et al., 2010). Msx2 is also evidently a downstream target of Bmp2, while Msx1 is
activated by both Bmp and Fgf signalling (Kim et al., 1998; Kim et al., 2004; Choi et al., 2005).

Msx-genes also contribute to suture development as overexpression of Msx2 in mice causes
craniosynostosis of the coronal and sagittal sutures, which mimics the human condition, Boston-type
craniosynostosis, caused by activating mutation in MSX2 (Liu  et  al.,  1995).  These  mice  exhibit  an
increased number of proliferating preosteoblasts in the OFs at the early postnatal stage (Liu et al.,
1999). Msx2 also functions downstream of Twist1 to control Eph-ephrin signalling in coronal suture
development to maintain the neural crest-mesoderm boundary between frontal and parietal bones
(Merrill et al., 2006). Together they control the guidance of migratory osteogenic cells to the leading
margin of the frontal and parietal bones.

Interestingly, Msx1 and Msx2 function early during calvaria development to supress
osteogenic program in the interfrontal suture. When Msx1 and Msx2 are conditionally deleted only
from the CNC from E9.5 or E10.5 onwards, frontal and parietal bones do develop, but frontal bone
morphology is defected and heterotopic ossification is present in the interfrontal suture. Roybal et al.
showed that Msx-genes are required to supress ossification in a normally non-osteogenic, CNC-
derived cell layer within which the frontal bone anlages grow. This heterotopic ossification was
associated with increased Bmp signalling (Roybal et al., 2010).

2.1 .6 .7 Dlx3 ,	Dlx5 	and 	Dlx6 	
Distal-less homeobox (Dlx) genes encode transcription factors that control development of the
appendages of the main body axis. Dlx-genes function in specifying the differential fates of the CNC
cells and govern epithelial-mesenchymal interactions (Morasso et al., 1995; Bendall and Abate-Shen,
2000). Consequently they are important regulators of the branchial arch patterning (Depew et al.,
2005).

Out  of  the  six Dlx-genes Dlx3, 5 and 6 are known to contribute to calvarial development.
Dlx5 is expressed in CNC-derived calvarial mesenchymal cells already before the onset of calvarial
ossification (Holleville et al., 2003). Calvarial ossification is delayed in Dlx5 null allele mice (Depew
et al., 1999; Acampora et al., 1999). Dlx5 most likely has redundant functions with Dlx6 during
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calvarial bone patterning as Dlx5
-/-;Dlx6

-/- compound mutant mice lack all calvarial bones (Depew et
al., 2002; Merlo et al., 2002; Robledo et al., 2002).

Dlx-genes are vital regulators of osteoblast differentiation. Dlx3 functions in early stages of
osteoblast maturation, while Dlx5 is associated with more mature osteoblasts. Dlx5 is expressed in
cells that are undergoing differentiation in the OFs of calvarial bones, where it specifically activates
the expression of Runx2-II by directly binding to the distal Runx2 (P1) promoter (Lee et al., 2005;
Kawane et al., 2014). Dlx3 and -5 are both targets of Bmp2 signalling (Holleville et al., 2003).
Although Bmp2/Dlx5-pathway is not the initial inducer of Runx2 expression, as there is normal
Runx2 expression in Dlx5

-/- mutant mice, Dlx5 is capable of activating Runx2 target genes in the
absence of Runx2 (Choi  et  al.,  2005;  Hassan  et  al.,  2006).  Dlx5  also  promotes  maturation  of
osteoblasts by regulating Oc expression  (Ryoo  et  al.,  1997;  Newberry  et  al.,  1998;  Depew  et  al.,
1999).

2.1 .6 .8 En1 	
Homeodomain-containing transcription factor Engrailed 1 (En1) regulates several developmental
processes, such as dorsoventral patterning of the limb, mid-hindbrain specification as well as skeletal
development (Loomis et al., 1996; Wurst et al., 1994). En1 has a dual role during calvarial
development. During early stage it regulates coronal suture formation by positioning and maintaining
the PM/CNC boundary. En1 expression is initiated in the calvarial osteogenic mesenchyme at E11.5,
following the establishment of supraorbital regulatory centre across the PM/CNC lineage boundary.
Evidence suggests that En1 restricts the invasion of CNC cells into the PM derived parietal bone and
the coronal suture by regulating early Msx2 and Twist1 expression (Deckelbaum et al., 2012).

Later on, En1 promotes calvarial osteoblast differentiation and proliferation by activating
Fgfr2 signalling in the bone anlage. In the suture progenitors it, in turn, prevents ossification by
inhibiting Fgfr2 signalling (Deckelbaum et al., 2005; Deckelbaum et al., 2012).

2.1 .6 .9 Foxc1 	
Foxc1 is a forkhead box transcription factor that controls the differentiation of osteogenic precursor
cells and is required for the apical growth phase during calvarial bone development. In Foxc1

-/-

mutant mice only rudimentary calvarial bones form at the sites of initial mesenchymal cell
condensations. Foxc1 has been shown to regulate Bmp-mediated induction of Alx4 and Msx2

expression. Reduction of Alx4 and Msx2 expression in Foxc1
-/- mutant mice leads to decreased

osteoprogenitor cell proliferation (Rice R. et al., 2003). Sun et al. have recently shown that Foxc1
restricts differentiation of osteogenic precursors to the frontal bone primordium, where Bmp
signalling is active. Foxc1 limits Msx2 expression to this osteogenic zone by setting a transcriptional
threshold for the Bmp-dependent Msx2 activation (Sun et al., 2013). There is also evidence that Msx2

is a direct target of Foxc1 during early stages of osteoblast differentiation (Mirzayans et al., 2012).
Foxc1 expression, on the other hand, is regulated by Fgf2, which indicates that Foxc1 has a role in
integrating Bmp and Fgf signalling pathways during calvarial development (Rice et al., 2005).

2.1.7	 Regulation	of	calvarial	development	by	the	brain,	the	meninges	and	the	
dura	mater 	

Despite the rapid evolution of the vertebrate head, the brain and the calvaria have retained a tight fit
(Nieman et al., 2012). The brain and skull morphogenesis are inevitably linked through coordinated
integration  of  signalling  pathways,  but  the  processes  remain  unknown to  a  large  extent.  Signalling
that regulates certain tissue can evidently have direct influence also on other tissues. Sympathetic
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nervous system, for example, has been shown to inhibit proliferation of preosteoblasts (Karsenty and
Wagner, 2002).

Mounting evidence now supports the original functional matrix theory by Moss (Moss,
1962), which states that the growing brain produces mechanical pressure on the developing calvarial
bones, which causes morphological remodelling of the bones to reduce the strain by mirroring the
shape of the brain (Henderson et al., 2005). Mechanical forces deform the cell membrane and
cytoskeleton, which have an effect on cell signalling, cell differentiation, and cell proliferation (Mao
and Nah, 2004). ECM and the cytoskeleton also communicate (Ingber, 2003; Temiyasathit and
Jacobs, 2010). Application of strain to preosteoblasts has been shown to activate Wnt signalling
pathway by causing accumulation of β-catenin in the cell cytoplasm and nucleus (Case et al., 2008).

The meninges connect the brain and the calvarial surfaces, and it is capable of transmitting
signals, but the nature and mechanisms of communication that underlie their interaction remain
elusive. The meninges may serve as a scaffold on which the calvarial bone condensations take shape
as brain and bone follow their own developmental programs (Richtsmeier and Flaherty, 2013).
Initiation of apical growth of the frontal and parietal bones and differentiation of meningeal
precursors begin at the same time and progress jointly toward the apex of the head. In Foxc1 null
allele mice failure of the apical growth of the bone primordia is associated with disrupted meningeal
development, which begins correctly, but mature meninges fail to form. This indicates that the early
development of meninges and the calvarial bones are closely linked (Vivatbutsiri et al., 2008).

The composition of the dura mater varies regionally and it has age specific functions (Warren
et al., 2003; Loeys et al., 2005). Especially immature dura mater secretes many osteogenic growth
factors, cytokines and ECM molecules, which are vital for ossification of calvarial bones (Greenwald
et al., 2000a; Greenwald et al., 2000b). Inductive stimulus from the dura mater is also required
during suture formation before the suture is able to maintain patency independent of the surrounding
tissues (Opperman, 2000). The dura mater has also been shown to influence fusion of the posterior
frontal suture in rats (Opperman et al., 1993; Roth et al., 1996; Levine et al., 1998).

Tgfβ signalling originating from the dura mater has been shown to have many roles during
calvarial development. Tgfβ signalling regulates suture morphogenesis by controlling cell numbers
within the sutural mesenchyme and OFs. Disruption of Tgfβ signalling from the CNC severely
impairs cell proliferation in the dura mater, resulting in calvaria agenesis. Ossification of the parietal
bone also requires interaction with the CNC derived meninges (Jiang et al., 2002). CNC derived dura
mater may induct the frontal and parietal bone formation (Ito et al., 2003).

The role of the dura mater has also been investigated in Apert syndrome mouse models with
mixed findings. Dural cells transfected with the Fgfr2

P253R allele were shown to promote ossification
of the co-cultured osteoblasts (Ang et al., 2010). On the other hand, occurrence of Apert mutation
(S252W) solely in the dura mater is unable to induce osteogenic fusion of the coronal suture in mice
(Holmes and Basilico, 2012).

The mutations that lead to craniosynostosis have also been shown to affect interactions
between genes and regulatory networks that communicate during head development. Same genes
participate in brain and calvaria development. In the FGFR-related craniosynostosis syndromes, for
example, evidently both the brain and the calvaria are primarily affected. Expression of Fgfr1 and -2

has been shown to determine brain size (Stevens et al., 2010).

2.2 Hedgehog	signalling	

The Hh pathway has a crucial role in development, as well as in tumorigenesis. Three Hh ligands
have been identified in mammals; Sonic (Shh), Indian (Ihh) and Desert (Dhh) hedgehog, which differ
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primarily in tissue distribution (Echelard et al., 1993). Shh is expressed, for example, in the nervous
system, in the limb bud and in many epithelial tissues, and has a vital role in early embryogenesis
and patterning. Ihh is indispensable for endochondral ossification, while Dhh is expressed in the
peripheral nervous system and reproductive organs.

Figure 4. Schematic view of the vertebrate Hedgehog (Hh) pathway depicting the Hh-
receiving cell when Hh ligand is absent (Off) and present (On).
Off: In the absence of Hh ligand Ptch resides in the primary cilium and inhibits Smo from entering the ciliary
membrane from the cytosol. Sufu retains the full-length (FL) forms of Glis in the cytosol. Kif7 is required to
recruit PKA, GSK3β and CK1α, which then phosphorylate Gli2FL and Gli3FL. These FL-Glis are further
processed proteolytically into repressor (R) forms, which enter the nucleus and actively inhibit Hh target gene
transcription.
On: When Hh ligand binds to the receptor Ptch and to the co-receptors, Gas1, Cdo and Boc, Smo enters the
ciliary membrane, forming a complex with Evc and Evc2. This complex relieves the inhibition of Gli proteins
and Kif7 then transports Gli-Sufu complex to the tip of the cilium. GliFL proteins are processed into activators
(GliA2/3), which enter the nucleus to activate transcription of Hh target genes. Modified from Briscoe and
Thérond, 2013.
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2.2.1 Hh	signalling	pathway	

Hh ligands are secreted proteins. Following translation, Hh precursor peptides go through two
independent lipid modifications, which are essential for normal Hh signalling. A cholesterol residue
is first added to the C-terminus by cholesterol-dependent autocatalytic cleavage in the endoplasmic
reticulum (ER) lumen (Porter et al., 1996; Chen et al., 2011). The subsequently cleaved C-terminal
fragment is degraded in the ER. Then Hh acyltransferase, called Skinny hedgehog (Ski), catalyses
the  attachment  of  palmitate  to  the  N-terminal  end  of  Hh  ligand  (Chamoun  et  al.,  2001).  This
hydrophobic Hh ligand is membrane-associated, but the exact mechanism of Hh release is unknown.
Multispanning membrane protein Dispatched (Disp) and secreted protein Scube are known to be
essential for secretion and long-range Hh signalling (Burke et al., 1999; Ma et al., 2002; Tukachinsky
et  al.,  2012).  They  recognise  the  cholesterol-moiety  and  affect  the  solubility  of  Hh  ligand.
Cholesterol and palmitate moieties are also required to form active multimeric Hh complexes
enabling long-range spread (Zeng et al., 2001).

Hh is able to signal both short- and long-range. Recent evidence suggests that long-range
activation of Hh signalling is mediated through direct receptor-ligand interaction between cell
membranes that utilize specialized class of actin-based filopodia called cytonemes, which are long
cytoplasmic extensions (Sanders et al., 2013). Hh ligand, together with its co-receptor CAM-
related/downregulated by oncogenes (Cdo), is transported in exovesicles via these cytonemes
(Gradilla et al., 2014). The spread of Hh proteins is also regulated by proteins responsible for Hh
reception, which are situated on the membranes of the receiving cells. The receptor Patched 1 (Ptch)
and the vertebrate-specific Hh-interacting protein 1 (Hip1) both limit diffusion of Hh ligands
(Chuang et al., 2003; Chen and Struhl, 1996).

Primary cilia, microtubule-based, non-motile structures that protrude from the surface of most
cells of the body, are essential for Hh signal transduction in vertebrates (Huangfu et al., 2003)
(Figure 4). Intraflagellar transport (IFT) proteins are required for primary cilia production and
maintenance, and facilitate transport of proteins into and out of the cilia (Pedersen and Rosenbaum,
2008). At the base of the ciliary shaft is the basal body from which the microtubules originate and in
this transition zone cytoplasmic proteins are being loaded to the IFT system. Also what proteins enter
the ciliary membrane is tightly controlled. Novel evidence indicates that primary cilia serve as
signalling centres and other signalling pathways, including platelet-derived growth factor-, Notch-
and Wnt signalling, are also associated with primary cilia (Goetz and Anderson, 2010).

The Hh receptor Ptch is a transmembrane protein that has a dual role in Hh signalling serving
as an inhibitor of Hh signalling in the absence of the ligand, as well as a receptor for the Hh ligands
(Rohatgi et al., 2007). Ptch1 is also a direct transcriptional target of Hh signalling. In the absence of
the Hh ligand it resides in the primary cilium where it inhibits another transmembrane protein
Smoothened (Smo) from entering the cilium (Taipale et  al.,  2002).  Smo’s structure resembles a G-
protein-coupled receptor and it is a signal transducer of Hh signalling (Corbit et al., 2005).

Ptch requires Hh co-receptors: Cdo, Brother of Cdo (Boc), and Growth arrest-specific 1
(Gas1) for Hh ligand binding (Beachy et al., 2010). These co-receptors are situated on the cell
membrane, where they form multimolecular complexes with Ptch and facilitate high-affinity Hh
binding. These co-receptors, however, have an opposing role in pathway regulation compared to
Ptch; the co-receptors promote Hh signalling while Ptch inhibits it.

2 .2 .1 .1 	Tr anscr ipt ion 	factor s	Gli1 ,	2	and 	3	mediate	Hh 	signal l ing 	
GLI-Kruppel family members 1, 2 and 3 (Gli1, 2, 3) are zinc finger-containing transcription factors
that mediate transcriptional output of Hh signalling (Buttitta et al., 2003; Motoyama et al., 2003). Gli
proteins function as repressors (R) as well as activators. Gli1 contains only an activator domain in the
C-terminal and functions solely as an amplifier of activation (Park et al., 2000). Gli2 and Gli3, on the
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other hand, contain, in addition, N-terminal R-domains and can be cleaved into R-forms by removal
of their carboxy-terminal trans-activation domains (Dai et al., 1999; Sasaki et al., 1999). Gli1 and, to
lesser extent, Gli2 are  direct  targets  of  Hh  signalling,  while  high  concentration  of  Hh  ligand
downregulates transcription of Gli3 (Marigo et al., 1996). Primary cilia are evidently mandatory for
Gli-protein metabolism and transcriptional activity (Kim et al., 2009; Wen et al., 2010).

In the absence of the Hh ligand the full-length (FL) activator forms of Gli2 and Gli3 are kept
in  the  cytosol  by  Suppressor  of  Fused  (Sufu),  which  further  promotes  phosphorylation  of  the  C-
terminal residues of the FL Gli’s by activating protein kinase A (PKA) (Figure 4). Sufu thus acts as a
negative regulator of Hh signalling. GliFL is further phosphorylated by Gsk3β and Ck1α. The
kinesin family member 7 (Kif7) is required to recruit PKA, Gsk3β and Ck1α (Jiang and Hui, 2008).
E3 ubiquitin ligase, βTrCP, then degrades C-terminal peptides and the modified proteins are then
partially proteolytically processed by the proteasome to generate the R-forms of Gli2 (Gli2R) and
Gli3 (Gli3R). The processing of Gli3 is significantly more efficient compared to Gli2, and so the
Gli3R, in particular, enters the nucleus and actively inhibits the translation of Hh target genes.
Gli2FL is likely being completely degraded by the proteasome (Pan et al., 2006).

Binding  of  the  Hh  ligand  causes  Ptch  to  relieve  its  inhibition  on  Smo,  which  is  then
phosphorylated, allowing its’ translocation into the ciliary membrane (Figure 4) (Corbit et al., 2005;
Rohatgi et al., 2007; Goetz and Anderson, 2010). There Smo forms a complex with Evc2 and Evc in
the EvC zone of the cilium (Dorn et al., 2012; Yang et al., 2012). This active Hh signalling complex
relieves the inhibition of the Gli-proteins by PKA and Gli-Sufu complex is able to translocate to the
tip of the cilium (Dorn et al., 2012). Kif7 is thought to act as an anterograde motor in the cilium that
facilitates Gli-protein transport to the tip of the cilia. Kif7 is needed to form the Gli transcriptional
activators in the presence of Hh ligand (He et al., 2014). Evc2 further regulates the dissociation of
Gli and Sufu in the cilia. Gli-FLs then enter the nucleus where they are modified to transcriptional
activators of the Hh target genes (Huangfu and Anderson, 2006; Varjosalo and Taipale, 2007).
Gli2FL is more potent transcriptional activator compared to Gli3FL (Matise et al., 1998).

Dissociation from Sufu also results in an increased rate of Gli-protein degradation. In the
nucleus, GliFL binds to the MATH-BTB-domain-containing E3-ubiquitin ligase called Speckle-type
PDZ protein (Spop) that mediates its degradation. The balance between Gli-Sufu and Gli-Spop
formation is indicated to be important in regulation of the amount and activity of Gli-proteins (Chen
et al., 2009).

2 .2 .1 .2 	Syndr omes	caused	by	mut at ions	 in 	GLI 3 	
Mutations in GLI3 are responsible for five different autosomal dominant syndromes in humans
depending on the location of the defect. GCPS is caused by N-terminal, loss-of-function mutations
leading to haploinsufficiency of GLI3,  which  manifests  as  reduced  amount  of  both  GLI3R  and
GLI3FL, respectively (Kalff-Suske et al., 1999; Vortkamp et al., 1991). Features of GCPS include
preaxial polydactyly in feet and postaxial polydactyly of hands, as well as variable cutaneous
syndactyly and craniofacial abnormalities, such as hypertelorism, broad nasal bridge, macrocephaly
with frontal bossing, and rarely craniosynostosis (Johnston et al., 2005).  Central nervous system
(CNS) anomalies, agenesis of the corpus callosum, and cognitive impairment have also occasionally
been reported.

The extra-toes mouse (Gli3
Xt-J/Xt-J) was originally introduced by D.R. Johnson already in

1967 (Johnson, 1967). It was later shown to represent a Gli3 null allele, containing an intragenic
deletion of Gli3, and to model GCPS (Vortkamp et al., 1992; Hui and Joyner, 1993). As the name
implies, Gli3

Xt-J/Xt-J mice show fore and hind limb polydactyly, as well as syndactyly. They die at
birth having respiratory difficulties, kidney anomalies, severely abnormal brain morphology,
rudimentary eyes, neural tube closure defects, and high incidence of exencephaly.
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Pallister-Hall syndrome (PHS) is caused by mutations that lead to C-terminally truncated
GLI3 (Kang et al., 1997). Repressor function of Gli3 is thus increased in relation to the activator
function (Krauss et al., 2009). Common PHS features are central polydactyly, syndactyly,
imperforated anus, gastrointestinal, epiglottis and larynx defects, abnormal kidney development, and
absence of adrenal glands. Böse et al. have also generated a mouse model of PHS, which displays all
of these features (Böse et al., 2002).

GLI3 is  also  the  causative  gene  of  Preaxial  polydactyly  type  IV,  as  well  as  Postaxial
polydactyly type A and B, which only present as digit abnormalities. Fifth syndrome, diagnosed in
two patients with GLI3 mutations, is Acrocallosal syndrome characterised by postaxial polydactyly,
macrocephaly, agenesis of the corpus callosum, and severe developmental delay (Elson et al., 2002;
Speksnijder et al., 2013).

2.2.2 Role	of	Hh	signalling	during	calvarial	development	

Hh signalling has a significant role in development of the head. It is known to control the width of
the face and the skull (Bergmann et al., 2010). Loss-of-function mutations in SHH cause
holoprosencephaly in humans and mice, which is a cephalic disorder, where the forebrain does not
divide to form bilateral cerebral hemispheres, and it is also associated with midline facial
dysmorphism (Chiang et al., 1996). Humans and mice with inactivating mutations of the Hh
signalling repressor, GLI3, on the other hand, exhibit wider faces. It has been proposed that excessive
Hh signalling leads directly to increased proliferation of CNC cells, which contributes to the increase
in facial width (Bergmann et al., 2010; Tabler et al., 2013).

2 .2 .2 .1 	Loss	of 	Shh 	signa l l ing 	causes	holopr osencephaly	
Shh is vital for the patterning of the face and Hh signalling plays a crucial role in CNS development.
Decrease in Shh signalling has been associated with holoprosencephaly, cleft palate, and disrupted
tooth development. Shh null allele mice have severe deficiencies in head structures due to early
defects in the axial mesoderm (Chiang et al., 1996). This has prevented the analysis of possible later
roles for Shh in the regulation of calvarial morphogenesis. Inactivation of Shh in the CNC derived
cells leads to severe defect in the frontal bone development, and Shh was found to be essential for
developmental steps involving postmigratory CNC cells (Jeong et al., 2004). Intriguing novel data
also shows that significant population of the PM, from which calvarial mesenchyme is derived from,
are Hh-responsive Gli1-expressing cells. These cells express Gli1 transiently at E7.5 to E8.5. The
frontal bones develop from the CNC, but they have also been shown to receive contribution from the
Hh-responsive mesodermal lineage (Deckelbaum et al., 2012).

Deletion of Disp1 in mice leads to similar phenotype as lack of Shh. In Disp1 null allele mice
Hh ligand accumulates in the Hh-secreting cell causing a weak activation of Hh target genes, but
mice die already at E9.5 (Caspary et al., 2002; Kawakami et al., 2002). Tian et al. (2004) generated a
hypomorphic Disp1 mouse, which lacked parietal bone completely and also other skull bones
derived from cephalic PM were truncated or misshapen. These findings suggest that Shh also
contributes to patterning of the cephalic mesoderm.

Loss of Hh co-receptor Gas1 also causes mild holoprosencephaly in mice. Calvarial bones of
Gas1

-/- mice were normal and sutures patent at birth. Interestingly, genetic reduction of Shh from
Gas1

-/- mice (Gas1
-/-;Shh

+/-), not only caused more severe holoprosencephaly, as anticipated, but also
craniosynostosis of the coronal suture was detected (Seppälä et al., 2007). Cause of this premature
suture fusion was not investigated further, but the finding is intriguing considering the facts that
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neither Gas1
-/- nor Shh

+/- mice bare coronal synostosis, and that Shh null allele mice die before the
onset of calvarial development.

2 .2 .2 .2 	Role	of 	I hh 	in 	ca lvar ia l 	development 	
The role of Ihh during endochondral ossification is well established, but the data on its functions
during intramembranous ossification have been controversial. The original phenotype
characterisation of Ihh null allele mouse reported the surprising finding that although osteoblasts
failed to differentiate in endochondral bones, normal, albeit truncated, calvarial bones developed (St-
Jacques et al., 1999). Ihh is  expressed  in  the  OFs  and  it  is  known that  loss  of Ihh delays calvarial
ossification resulting in widened sutures, but the mechanism is debated on (Jacob et al., 2007).
Abzhanov et al. postulated that Ihh signals from more mature osteoblasts to preosteoblasts to repress
osteogenic lineage differentiation. In the absence of Ihh the preosteoblasts would differentiate faster
and the proliferation of preosteoblasts would decrease leading to smaller bones (Abzhanov et al.,
2007). On the other hand, there is increasing amount of evidence to suggest that the role of Ihh in the
calvaria is pro-osteogenic. Ihh has been shown to promote osteoblast differentiation of isolated
calvarial mesenchymal cells by activating Gli2, which physically interacted with Runx2 leading to
activation of Runx2 expression and function (Shimoyama et  al.,  2007).  In the same study Gli3 was
shown to inhibit Ihh-dependent osteoblastogenesis, but interaction between Runx2 and Gli3 was not
detected. Ohba et al., however, revealed that Gli3R competes for the same binding site with Runx2
and so inhibits expression of Runx2 target genes and thus ossification (Ohba et al., 2008). Loss of
Ihh has been shown to result in reduction of osteogenic marker expression in the calvaria. Bmp2 and
-4 expression was also downregulated, which indicates that Bmp2/4 lie downstream of Ihh in the
developing calvaria (Lenton et al., 2011). In zebrafish Ihh regulates outgrowth and shaping of a
craniofacial intramembranous bone called opercle by controlling location specific proliferation
(Huycke et al., 2012).

2 .2 .2 .3 	I ncr eased	Hh 	signal l ing	ca uses	cr aniosynostosis	
Mounting evidence links elevated Hh signalling with craniosynostosis in humans. Dominant
mutations in GLI3 cause Greig cephalopolysyndactyly syndrome (GCPS) characterised by frontal
bossing of the skull, hypertelorism, and in some cases, premature metopic suture fusion (Hurst et al.,
2011; McDonald-McGinn et al., 2010). Microduplication at the IHH locus is also associated with
craniosynostosis of the sagittal suture and cloverleaf skull. The critical duplicated region serves as a
long-range enhancer of IHH, specifically regulating IHH expression, causing increased Hh signalling
(Klopocki et al., 2011). RAB23 is a membrane-associated protein that regulates intracellular
trafficking. Rab23 has negative impact on Hh signalling, as it has been shown to promote Gli3R
production (Eggenschwiler et al., 2006). Recessive mutations in RAB23 cause Carpenter syndrome in
humans and some patients present premature synostosis of the metopic and sagittal sutures. In severe
cases cloverleaf skull has also been reported, where the lambdoid sutures are also fused (Jenkins et
al., 2007). Rab23 null allele mice are exencephalic and they die between E12.5-13.5 (Eggenschwiler
et al., 2001).

Nevoid basal cell carcinoma syndrome (NBCCS), also known as Basal Cell Nevus Syndrome
or Gorlin Syndrome, is caused by heterozygous mutation of PTCH1, which leads to increased
activation of Hh pathway. Craniofacial features include macrocephaly, frontal and parietal bossing,
hypertelorism, and intracranial ectopic calcification. Microdeletion causing NBCCS has also lead to
metopic craniosynostosis, but the causative gene could be other than PTCH1 (Muller et al., 2011).
Mouse models of NBCCS have not been very informative on the role of Ptch1 in calvaria
development, as Ptch1 null allele mice die at E9 with failure of the neural tube closer (Goodrich et
al., 1997; Hahn et al., 1998). Transgenic mice that overexpress Shh in the basal epithelium from early
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stages of embryogenesis, on the other hand, have almost complete absence of skull vault. Frontal
bones are very truncated due to neural crest cell sensitivity to abnormal Hh signalling levels.
Complete failure of mesodermal derived parietal and interparietal bone development may be
secondary to increased signalling in the dorsal neural tube and consequent brain overgrowth
(Cobourne et al., 2009). Novel ENU-induced recessive mouse model, however, represents a
hypomorphic allele of Ptch1 and these mice have a dome shaped calvaria, widened interfrontal
suture with heterotopic ossification and craniosynostosis of the lambdoid suture (Feng et al., 2013).

Ciliopathies entail pathological conditions caused by defects in primary ciliogenesis, which
lead to abnormal processing of Gli proteins. One syndrome caused by mutations in genes encoding
IFT proteins in humans is Sensenbrenner syndrome, and subpopulation of the patients have
premature synostosis of the sagittal suture (Sensenbrenner et al., 1975; Arts et al., 2011). Several
mouse models of ciliopathies have been generated with variable calvarial phenotypes. Partial
disruption of Ift144 in mice enhances Hh signalling and causes exencephaly. Frontal bones fail to
develop, and parietal, as well as interparietal bones are very truncated (Ashe et al., 2012). Deletion of
IFT gene called Kif3a from neural crest cells causes truncation of primary cilia leading to gain of Hh
signalling. The head of these mice are much wider in the frontal bone area; the frontal bones are
truncated and the interfrontal suture is widened. In the anterior part of the interfrontal suture ectopic
midline bones are detected (Bergmann et al., 2010).

Intriguing new evidence indicates that postnatally the role of Hh signalling in controlling
suture patency is somewhat the opposite compared to the embryonic stage. Zhao et al. (2015) have
recently shown that postnatally the calvarial sutures become a source of MSCs that express Gli1. Ihh,
secreted from the OFs, is an important regulator of the differentiation of these Gli1-positive cells.
Postnatal ablation of Gli1 in mice from one month of age causes a severe reduction of MSCs that
eventually leads to premature fusion of all of the calvarial sutures in two months. They also showed
that in a mouse model of Saethre-Chotzen syndrome (Twist

+/- mice),  in  which  the  coronal  suture
fuses postnatally, the Gli1-positive cells were reduced in all of the calvarial sutures. These results
implicate that postnatally occurring craniosynostosis may be caused by reduction of these MSCs,
which are regulated by Hh signalling (Zhao et al., 2015).

2.2.3 Role	of	Hh	signalling	during	endochondral	ossification	

In  this  thesis  we  have  studied  the  role  of  Ihh  and  Gli3  during  osteoblast  differentiation  in
intramembranous bones. As the role of Hh signalling during osteoblast differentiation in the
endochondral bone is well established, an overview is given here.

Most of the bones of the skeleton, including the long bones of the limbs, develop by
endochondral ossification. During limb development, mesenchymal cells originating from the lateral
plate mesoderm first condense and differentiate into chondrocytes, which form a cartilage anlage.
These chondrocytes proliferate and secret the ECM. Fibroblast-like cells surrounding the anlage form
the perichondrium. Initially all the chondrocytes in the anlage proliferate elongating the anlage. Then
cells residing in the middle exit the cell cycle and undergo cellular hypertrophy forming the
hypertrophic zone. After E14.5 three morphologically distinct groups of chondrocytes form the
embryonic growth plate. Distally are the round, low-proliferating, periarticular chondrocytes, which
differentiate into flat columnar chondrocytes that proliferate actively, while hypertrophic, non-
proliferating chondrocytes reside centrally (Figure 5). Osteoblasts first appear in the perichondrium
adjacent to the hypertrophic zone, where they form the bone collar. Vasculature from the
surrounding tissue then invades and triggers the removal of hypertrophic cartilage. Vasculature also
brings osteoblast precursors that initiate ossification and marrow formation form the primary
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ossification centres inside the bone, later forming a network of irregular spicules called the primary
spongiosa (Erlebacher et al., 1995).

Figure 5. Schematic diagram of the role of Hedgehog (Hh) pathway during endochondral
ossification of the limb. During endochondral ossification Ihh is expressed by hypertrophic chondrocytes.
It activates chondrocyte proliferation by stimulating the differentiation of distal chondrocytes into columnar
chondrocytes by downregulating Gli3R, which prevents distal to columnar chondrocyte differentiation and
proliferation. Ihh also signals to immature chondrocytes to inhibit the onset of chondrocyte hypertrophy by
activating PTHrP in the distal periarticular chondrocytes again by inhibiting Gli3R formation. Gli3R is an
inhibitor of PTHrP expression, while PTHrP, in turn, inhibits the proliferating columnar chondrocytes from
differentiating further. Ihh later induces ossification in the overlying perichondrium. Ihh accomplishes this by
repressing Gli3R formation, which inhibits Runx2 expression, and by activating Gli2A, which facilitates further
osteoblast differentiation. By activating Gli2A, Ihh also mediates vascularization of the hypertrophic cartilage.
Modified from Joeng and Long, 2009.
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Ihh is a key regulator of endochondral ossification mediating the linkage between
chondrocyte maturation and osteoblast differentiation (Figure 5). Ihh null allele mice exhibit reduced
chondrocyte proliferation, malposition of mature chondrocytes, and failure of osteoblast
differentiation in the endochondral bones (St-Jacques et al., 1999). Runx2 induces Ihh expression in
the prehypertrophic chondrocytes and the expression is sustained in hypertrophic chondrocytes
(Yoshida et al., 2004). Firstly, Ihh activates chondrocyte proliferation by stimulating the
differentiation of periarticular chondrocytes into columnar chondrocytes (Kobayashi et al., 2005).
Secondly, Ihh signals to immature chondrocytes to inhibit the onset of chondrocyte hypertrophy by
activating another secreted growth factor, Parathyroid hormone related protein (PTHrP), in the distal
periarticular chondrocytes. PTHrP, in turn, inhibits the proliferating columnar chondrocytes from
differentiating further. Ihh achieves these two steps by downregulating Gli3R, which prevents distal
to columnar chondrocyte differentiation and is also a strong inhibitor of PTHrP expression. Gli3 is
expressed by the distal and columnar chondrocytes. Genetic removal of Gli3 from Ihh

-/- mutant mice
rescues the chondrocyte proliferation and hypertrophy defects (Hilton et al., 2005; Koziel et al.,
2005).

Thirdly, Ihh later induces ossification in the overlying perichondrium (Kronenberg, 2003).
Both Gli3R and activator isoform of Gli2 (Gli2A) mediate this process. Activation of Gli2A in Ihh

null allele mice is sufficient to rescue vascularization of the hypertrophic cartilage (Joeng and Long,
2009). Osteoblast differentiation in the perichondrium, on the other hand, requires both; repression of
Gli3R formation by Ihh, as Gli3R inhibits Runx2 expression, as well as activation of Gli2A, which
facilitates further osteoblast differentiation (Joeng and Long, 2009; Kesper et al., 2010).

It is noteworthy that although Runx2 fails to be expressed in the perichondrium in the absence
of Ihh, forced expression of Runx2 alone does not rescue the osteoblast differentiation in Ihh

-/-

mutant mice (Tu et al., 2011). This indicates that Runx2 is not the only effector of Ihh. In effect, Ihh
has also been shown to induce canonical Wnt signalling in perichondrial cells (Hu et al., 2005). Even
though Gli2 and Gli3 evidently mediate all processes governed by Ihh during endochondral
ossification,  Gli-proteins  are  able  to  compensate  for  each  other.  Disruption  of  any  one Gli-gene in
mice has only minor consequences on endochondral ossification (Mo et al., 1997; Miao et al., 2004;
Koziel et al., 2005).

2.3 Fibroblast	growth	factor 	signalling	

In vertebrates at least 18 identified extracellular Fgf ligands and four Fgfrs have been implicated in
numerous developmental processes from early embryonic stages onwards (reviewed by Ornitz and
Itoh, 2015). Binding of Fgf ligand together with heparin sulphate activates these tyrosine kinase
receptors through homodimerization (Figure 6). This results in phosphorylation of cytoplasmic
tyrosine residues, which further activates three different cytoplasmic signal transduction pathways.

Ras/ERK pathway controls proliferation and differentiation, the Akt pathway is associated
with cell survival, while the protein kinase C (PKC) pathway regulates cell morphology and
migration. Fgfrs undergo alternative splicing in their extracellular domain to generate a wide variety
of receptors with different affinities for their ligands (Zhang et al., 2006). The genes encoding Fgfr1,
-2 and -3 use either exon IIIb or exon IIIc (Miki et al., 1992; Johnson and Williams, 1993). Cross talk
between mesenchymal and epithelial cells is facilitated by the differential expression of ‘b’ and ‘c’
isoforms in epithelia versus mesenchyme (Ornitz et al., 1996). For example, Fgfr2IIIb,
predominantly expressed in the epithelial cells, binds Fgfs 3, 7, 10 and 22, which are secreted by
mesenchymal cells.
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Figure 6. Schematic view of the Fgf pathway. Fgfr molecule is composed of an extracellular region
harbouring two or three immunoglobulin-like domains, a transmembrane element and an intracytoplasmic
tyrosine kinase domain, which become phosphorylated upon activation. Binding of Fgf ligand together with
heparin sulphate dimerizes the Fgfr molecule and triggers Fgfr signalling, which is transduced cytoplasmically
by PI3 kinase, PLC-pathways and Map kinases, which in turn regulate cell survival, cell morphology and
migration, and proliferation and cell fate determination, respectively. Modified from Wagner and Siddiqui,
2007.

Fgfr2IIIc, on the other hand, is expressed by the mesenchymal cells and binds Fgfs 2, 4, 6, 9 and 18
that are synthesized by the epithelial cells. In general, Fgfrb isoforms are more selective compared to
Fgfrc isoforms.

2.3.1 Role	of	Fgf	signalling	in	calvarial	development	
	

The significance of Fgf signalling during calvarial development is undebated as elevated Fgf
signalling causes craniosysnostosis. FGFR-related craniosynostosis syndromes are caused by
dominantly acting mutations in FGFR1, 2 and 3 and affect specific regions of the proteins. FGFR3

harbors the mutation underlying Muenke syndrome, the most common syndromic form of
craniosynostosis, and a rare variant of Crouzon syndrome associated with skin manifestations.
Thanatophoric dysplasia type II, also caused by mutations in FGFR3, is characterised by cloverleaf
skull, which involves a trilobar skull deformity usually caused by synostosis of coronal, lambdoid,
metopic,  and  sagittal  sutures,  as  well  as  dwarfism  (Langer  et  al.,  1987). FGFR1 mutations are
associated with Pfeiffer syndrome. Mutations in different regions of FGFR2-gene cause Pfeiffer
syndrome, Apert syndrome, Crouzon syndrome, Beare-Stevenson syndrome, FGFR2-related isolated
coronal synostosis and Jackson-Weiss syndrome, respectively. Muenke syndrome and FGFR2-
related isolated coronal synostosis are characterised only by uni- or bicoronal craniosynostosis; the
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remainder are characterised by bicoronal craniosynostosis or cloverleaf skull, distinctive facial
features, and variable hand and foot findings, as well as CNS abnormalities (reviewed in Rice,
2008b).

The reciprocal epithelial–mesenchymal system of Fgf–Fgfr signalling described above, does
not apply in the calvaria, as it is derived solely from mesenchyme. Fgfrc isoforms expressed in the
calvaria are activated by a large number of Fgf ligands and all Fgf ligands, except Fgf3, -4, -5, -6 and
-8 are expressed in mouse calvaria (Iseki et al., 1997; Hajihosseini and Heath, 2002). Fgf2 and Fgf9

are expressed in the sutural mesenchyme and in the OFs, while Fgf18 and Fgf20 are expressed solely
in the OFs (Rice et al., 2000; Hajihosseini and Heath, 2002). Fgf2 is also secreted by the dura mater,
which influences calvarial ossification (Warren et al., 2003). The receptors are expressed in the OFs.
Fgfr2 is expressed in the proliferating osteoprogenitors, while post-proliferative osteoblasts express
Fgfr1 (Iseki et al., 1999; Johnson et al., 2000). Fgfr3 is  expressed  at  low  levels  in  the  OF,
overlapping with the expression domains of Fgfr1 and Fgfr2 (Johnson et al., 2000).

Fgf pathway has an early role in neural crest cell migration. It is also important in
condensation formation and maintenance. Fgf ligands promote ossification in several ways. Fgf2
regulates cell fate decisions of mesenchymal stem cells between adipocyte and osteoblast
differentiation (Xiao et al., 2010). Indeed, many Fgf ligands (Fgf2, -4, -8, -18) have been shown to
stimulate Runx2 expression through Fgfr activation (Zhou et al., 2000; Kim et al., 2003). Fgf2 and -
18 also activate Runx2 protein through protein kinase C pathway (Kim et al., 2003). Fgf2 can also
interact directly with Runx2 to influence osteoblast proliferation via effects on the ECM (Teplyuk et
al., 2009; Marie, 2012). Fgf2 and Fgf18 enhance Bmp activity through modulation of Runx2

expression and by suppressing expression of the Bmp antagonist Noggin (Warren  et  al.,  2003;
Reinhold et al., 2004; Choi et al., 2005). Fgf2 also stimulates osteoblasts differentiation in part by
activating Wnt/β-catenin signalling (Fei et al., 2011).

Fgf2 is also proposed to have an inhibitory effect on calvarial ossification as implanting Fgf2-
soaked beads into calvarial explants have shown to induce Twist1 expression (Rice et al., 2000).
Relationship  of  Fgf  signalling  and  Twist1  is  complex  as  Twist1  also  regulates  the  expression  of
Fgfr2. Twist1/E-protein heterodimers repress Fgfr2 expression in the sutural mesenchyme, while
Twist1 homodimers activate Fgfr2 expression in the OFs (Connerney et al., 2006; Connerney et al.,
2008).

Null allele Fgfr1 or Fgfr2 mice die before gastrulation (Arman et al., 1998; Yamagouchi et
al., 1994). To investigate the function of these receptors during calvarial development Fgfr-genes
have been conditionally disrupted. An Fgfr1 hypomorph revealed that mainly IIIc isoform of this
gene is essential already at the initial stage of calvarial development, during paraxial mesoderm
induction and patterning (Partanen et al., 1998). Deletion of the Fgfr2c isoform in mice causes a
delay of calvarial bone differentiation and mineralization at E14.5, but somewhat incoherently these
mice later show a premature fusion of medial part of the coronal suture at postnatal day 14
(Eswarakumar et al., 2002). Conditional inactivation of Fgfr2 in the osteoblast and chondrocyte
lineages, on the other hand, did not lead to craniosynostosis (Yu et al., 2003). However, both of these
studies  came  to  the  same  conclusion  as  Iseki  et  al.  (1999); Fgfr2 is essential for osteoblast
proliferation but not differentiation. Low level of Fgf signalling activates Fgfr2 (Iseki et al., 1999).

Fgfr1 activation through increased level of Fgf signalling, on the other hand, is required for
osteoblast differentiation. Mouse model of Pfeiffer syndrome, Fgfr1

250/+, supports these experimental
findings  by  Iseki  et  al.  (1999).  Synostosis  of  the  sagittal  and  coronal  sutures  in  these  mice  is
associated with accelerated osteoblast differentiation. Premature expression of Runx2 suggests that
Fgfr1 signalling is upstream of Runx2 (Zhou et al., 2000). Hajihosseini et al. (2004) have
demonstrated a dosage effect of Fgfr1 expression on osteogenic differentiation in the calvarial
sutures directly by introducing variable copy numbers of a hypermorphic Fgfr1 mutation carried by a
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bacterial artificial chromosome (BAC). They showed that increased severity of the sutural fusions
correlated with increasing the BAC copy number. In conclusion, at the OFs is an Fgf gradient that at
least in part controls the increasing maturation of osteoblasts from proliferating osteoprogenitors
expressing Fgfr2 to post-proliferative osteoblasts expressing Fgfr1. Mature osteoblasts express
neither receptor (Iseki et al., 1999; Johnson et al., 2000).

The prevailing hypothesis is that increased FGF signalling leads to craniosynostosis by
triggering a switch from FGFR2 expression  and  proliferation  to FGFR1 expression and
differentiation (Morriss-Kay and Wilkie, 2005). Evidence from several studies has elucidated the
mechanisms by which the mutations in FGFR-genes increase FGF signalling. Pfeiffer syndrome
patients who have a mutation in exon IIIc acceptor splice site, as well as Apert syndrome patient with
Alu insertions both show ectopic expression of the FGFR2IIIb isoform in the calvaria (Oldridge et
al., 1999). Furthermore, mutant FGFR2IIIc splice form receptors acquired from Apert syndrome
patients show novel binding to the FGFR2IIIb-specific ligand FGF10 (Yu et al., 2000). Hajihosseini
et al. (2001) generated a mouse with heterozygous abrogation of Fgfr2 exon IIIc to  model  this
splicing switch. Additional deletion of Fgf10 from these mice was able to rescue the coronal
synostosis, which highlights the surprising role Fgf10 has in the calvaria in pathological situations
(Hajihosseini et al., 2009).

In most mouse models of Fgfr-related craniosynostosis the coronal suture fusion is reported
to occur postnatally. Holmes et al. (2009) used Fgfr2

S252W/+ mice to study the effects of increased Fgf
signalling on earlier embryonic calvarial development. Coronal suture changes were detected already
at E13.5. The mutated osteoprogenitor cells were shown to both proliferate and differentiate faster in
the OF and invade the area where normally the presence of undifferentiated mesenchyme marks the
coronal suture (Holmes et al., 2009).

The coronal suture and the OF of the frontal bone mark the PM/CNC boundary, respectively.
Ectopic cell mixing causing disruption of this lineage border between mesoderm and neural crest has
been proposed to be one mechanism of coronal suture fusion. However, Fgf signalling does not seem
to have a role in maintaining this boundary. Holmes and Basilico (2012) generated mice that
expressed the gain-of-function Fgfr2

S252W allele solely in the mesoderm or neural crest, respectively.
Interestingly, coronal synostosis only occurred when Fgfr2

S252W was expressed in the mesoderm.
(Holmes and Basilico, 2012)

Function of Fgfr3 signalling in the cranial sutures is not known. Fgfr3 null allele mice are
viable. Although they show excessive growth of long bones, caused by increased proliferation of the
growth plate chondrocytes, no calvarial abnormalities were detected (Colvin et al., 1996; Deng et al.,
1996). A Muenke syndrome mouse model has a P244R mutation in Fgfr3. However, these mice very
rarely bear craniosynostosis (Twigg et al., 2009).
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3. AIMS	OF	THE	STUDY	

Hh signalling is known for its fundamental role in craniofacial development and in endochondral
ossification, respectively. However, very little is known about the Hh pathway in the
intramembranous ossification of the calvarial bones.

The aims of this thesis were to:

1. Study the role of Hh-Gli3 signalling during calvarial bone development.

2. Investigate the interaction of Fgf and Hh-Gli3 pathway in calvarial development.

3. Attempt to rescue craniosynostosis induced by loss of Gli3 by downregulating Runx2.
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4. MATERIALS	AND	METHODS	

4.1 	Mating	and	genotyping	

All animal experiments were approved by the University of Helsinki, Helsinki University Hospital,
and the Southern Finland Council animal welfare and ethics committees.

NMRI wild-type (Wt) mice (Jackson Laboratories, USA) were maintained in Helsinki
University, Experimental animal unit.

Fgfr2b null allele mice were obtained from mating heterozygous Fgfr2b mice, maintained on
a pure C57BL/6 background and supplied by Dr. Clive Dickson’s laboratory, Cancer Research, UK
(De Moerlooze et al., 2000). For genotyping see De Moerlooze et al. (2000).

Fgf10
-/- and Wt littermates were also kindly provided by Dr. Clive Dickson’s laboratory,

Cancer Research, UK (Min et al., 1998).
Gli3

Xt-J mice were obtained from The Jackson Laboratory (stock No. JR0026: The Jackson
Laboratory, Bar Harbour, ME) and maintained on a pure C57BL/6 background. Genotyping has been
previously described by Maynard et al. (2002).

Runx2
+/- mice, maintained on mixed NMRI/C57BL/6 background, were provided by Prof.

Irma Thesleff’s laboratory (University of Helsinki, Finland). For maintenance and genotyping see
Åberg et al. (2004). Gli3;Runx2 compound mutant mice were generated by mating Gli3

+/Xt-J;
Runx2

+/- mice.
The age of the embryos was determined by the day of the appearance of the vaginal plug (E0)

and by morphological criteria.

4.2 	Tissue	culture	and	bead	implantation	assays	

E15.5 calvaria were dissected from embryos, and the brain and the skin were removed. The explants
were placed on Nucleopore polycarbonate filters supported by grids and cultured in Dulbecco’s
minimal essential medium (DMEM) (Sigma) supplemented with 10% bovine calf serum (Sigma),
glutamax and penicillin/streptomycin (Sigma).

For bead assays heparin-coated acrylic beads (Sigma) were incubated in 25 ng/µ l
recombinant human FGF2, FGF10 (R&D Systems) or bovine serum albumin (BSA) at 37 °C for 40
minutes before being placed on the explant. Bead assays were cultured from 24 hours up to 4 days.

4.3 	Histological	analyses	

For all the histologic staining embryonic tissue were fixed either in 4% paraformaldehyde (PFA) or
10% neutral buffered formalin (pH 6.8) at 4 °C overnight, embedded in paraffin and sectioned at 7
µm intervals. Before staining according to specific protocol, slides were dewaxed with Xylene and
rehydrated in ethanol series.

4 .3 .1 	Haematoxyl in 	and	eosi n 	sta ining 	
Slides were stained with Mayer’s Haematoxylin (Merck) for 30 seconds, followed by running water
for 15 minutes. Then slides were washed with 95% ethanol and stained for 90 seconds in 1% EosinY
solution. Slides were then dehydrated and mounted.
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4.3 .2 	Al izar in 	r ed 	
Slides were stained with 2% Alizarin red S solution (pH 4.2) for 2 minutes followed by dehydration
and mounting.

4.3 .3 	Alcian 	blue 	
Sections were stained with 1% Alcian blue 8GX solution (pH 2.5) (Sigma) for 30 minutes at room
temperature following counterstaining by nuclear fast red.

4 .3 .4 	VonKossa 	
Slides  were  treated  with  5%  silver  nitrate  solution  (AgNO3) under 60W bulb until black stain
appeared in the bone matrix (for approximately 1 hour), rinsed with distilled water followed by 5%
sodium thiosulphate for 3 minutes and rinsed again. The slides were counterstained with nuclear fast
red.

4.3 .5 	Toluidine	blue 	
Slides were rinsed in distilled water followed by 10 minute staining with 1% Toluidine blue and
rinsed again.

4 .3 .6 	Alka l ine	phosphat ase	
Sections were washed first in phosphate buffered saline (PBS) and circled with Dako pen (Dako).
Slides  were  then  washed  three  times  with  NTMT  and  then  stained  with  NBT/BCIP  (BM  Purple,
Roche) in the dark until the blue colour developed. The colour reaction was terminated by washing
slides in PBS.

4.4 	Skeletal	staining	

4 .4 .1 	Alcian 	blue	al izar i n 	r ed 	skelet a l 	st a ining 	
Prior  to  fixation  in  95%  ethanol  (overnight)  the  skin  is  removed  from  the  embryos.  For  cartilage
staining the embryos were incubated overnight in alcian blue staining solution (1 volume glacial
acetic acid, 4 volumes 95% ethanol and 150 µg/ml of alcian blue 8GX (Sigma)). Samples were then
washed in 95% ethanol for 1 hour and then cleared in 2% KOH for 1-4 hours depending on the age.
Tissues were transferred into alizarin red staining solution (1% KOH, 75 µg/ml alizarin red-S) for 2-
15 hours to stain the bones. Samples were then cleared in 20% glycerol, 1% KOH and then stored in
50% glycerol, 50% ethanol.

4 .4 .2 	Alizar in 	r ed	sta ining	for 	ca lvar ia l 	explants	
Explants were fixed overnight in 95% ethanol and then bone was stained with 1% KOH with 75
µg/ml alizarin red.  Explants were then cleared in 1% KOH in 20% glycerol for up to 3 hours.  The
stained explants were stored in 50% glycerol 50% ethanol.

4.5 	BrdU	incorporation	

Measurement  of  the  incorporation  of  the  modified  nucleotide  (BrdU)  during  DNA  synthesis  was
used to assay cell proliferation. For BrdU incorporation, pregnant females were injected
intraperitoneally with 1 ml/100 g body weight of undiluted BrdU solution (Zymed). After 2 hours the
mothers were sacrificed and the embryos collected, fixed in 10% neutral buffered formalin and
embedded into paraffin.



40

For organ culture explants, BrdU solution was added to the medium (1:200) for 3 hours
before fixation and paraffin embedding.

The BrdU staining kit (Invitrogen) was used, where BrdU incorporated cells were detected
using biotinylated monoclonal anti-BrdU and visualized with streptavidin-biotin staining system
according to the manufactures instructions. Sections were counterstained with haematoxylin.
BrdU-positive cells were counted in an area defined by a grid.

4.6	In	situ	hybridisation	

4 .6 .1 	3 5S	in 	si t u 	hybr idisa t ion 	
Paraffin section (7 µm) were deparaffinised in xylene and rehydrated in ethanol series. Tissue
sections were permeabilised with 7 µg/ml proteinase K and fixed with 4% PFA for 20 minutes. To
prevent background and non-specific binding of probes to the slides, the slides were treated with
acetic anhydride. Tissues were hybridised overnight at 52 °C with 35S-UTP labelled riboprobes
(Table 1). Hybridisation was followed by high stringency washes; 30 minute in Wash 1 (5xSSC, 10
nM DDT) at 50 °C and 1 hour in Wash 2 (50% deionised formamide, 2xSSC, 20 mM DTT) at 65 °C.
Slides  were  then  washed  in  NTE  (500  nM  NaCl,  10  mM  Tris-HCl,  5  mM  EDTA)  at  37  °C  and
treated with ribonuclease A (20 ng/ml in NTE) to remove non-specifically bound and excess probe.
Following 30 minutes in Wash 2, and then 2xSSC and 0.1xSSC 15 minutes each, the tissue was
dehydrated in ethanol series. The slides were coated with autoradiography liquid emulsion NTB
(Kodak) diluted 1:1 with H2O and exposed in a dark box for 10-18 days at 4 °C. The slides were
developed and fixed (Kodak) in a dark room and then counterstained with haematoxylin.

4 .6 .2 	Whole	mount 	in 	si tu 	hybr idisa t ion 	
Calvaria were dissected from E15.5 aged embryos and fixed in 4% PFA overnight. Explants were
bleached in 6% H2O2 for 1 hour and then treated with 10 µg/ml proteinase K (Sigma) in PBT for 10
minutes at 37 °C. Tissues were then washed in 2 mg/ml glycine in PBST followed by PBST and then
fixed in 4% PFA for 20 minutes. Tissues were prehybridised in PBST and hybridisation buffer (1:1)
and then in hybridisation buffer (50% deionised formamide, 5xSSC pH5, 1% SDS, 50 µl/ml yeast
tRNA, 50 µg/ml heparin in sterile DEPC treated H2O) for 2 hours. The aliquot of Digoxigenin-
labelled probe was denatured at 80 °C for 5 minutes and chilled on ice before mixed with
hybridisation  buffer  at  a  concentration  of  1  µg/ml  (Table  1).  Tissues  were  hybridised  at  64  °C
overnight followed by stringency washes; first three times for 30 minutes at 70 °C in Wash 1 (50%
deionised formamide, 5xSSC pH4.5, 1% SDS) and then three times for 30 minutes in Wash 2 (50%
deionised  formamide,  5xSSC  pH4.5).  Next,  explants  were  washed  three  times  in  MABT  for  5
minutes and pre-blocked with 2% BBR (Roche), 10% heat activated goat serum and 200 mM
levamisole in MAB for 3 hours at room temperature. Then tissues were washed in 2% BBR, 1% goat
serum, 200 mM levamisole and anti-Dig-antibody coupled to alkaline phosphatase (Roche) at a
dilution of 1:2000 with MAB overnight at 4 °C. Tissues were washed in MABT for 3 x 5 minutes
followed by 5 x 1 hour and then left in MABT at 4 °C overnight. The following day the explants
were washed three times in NTMT (100 mM).
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Table 1. Probes used in in situ hybridisations in Studies I-V.

Probe Reference Used in

Bmp2 Åberg et al., 1997 IV
Dhh Rice et al., 2006 I
Dlx5 Liu et al., 1997 IV
Fgf3 Kettunen et al., 2000 III
Fgf7 Kettunen et al., 2000 III
Fgf10 Kettunen et al., 2000 III
Fgfr2IIIb Kettunen et al., 1998 III
Fgfr2IIIc Kettunen et al., 1998 III
Gli1 Rice et al., 2006 V
Gli2 Rice et al., 2006 IV, V
Gli3 Rice et al., 2006 I, IV, V
Gli3_whole mount I I
Ibsp Rice et al., 1999 I, II
Ihh Rice et al., 2006 I, IV, V
Msx2 Rice D et al., 2003 IV
Noggin McMahon et al., 1998 IV
Oc Rice D et al., 2003 IV, V
Osx Rice D et al., 2003 V
Ptch1 Rice et al., 2004 I, IV, V
Runx2 Rice D et al., 2003 I, II, IV, V
Runx2-I IV IV
Shh Rice et al., 2004 I
Twist1 Rice et al., 2000 I

4.7 	Protein	isolation	and	immunoblotting	

Calvaria were dissected from E15.5 Wt embryos and tissue samples taken from OFs of the frontal
bone and from interfrontal suture respectively. Tissue samples were pooled from three calvaria of the
same litter. Brain tissue of same aged Wt and Gli3

Xt-J/Xt-J embryos  were  used  as  controls.  Samples
were lysed in radio-immunoprecipitation assay buffer (RIPA, Sigma-Aldrich) supplemented with
Complete protease inhibitor mixture (Roche Diagnostics). Protein concentration was determined with
Pierce  BCA  protein  assay  kit  (Thermo)  and  10  µg  of  each  sample  was  probed  for  anti-GLI3
polyclonal antibody (AF3690, R&D Systems, Minneapolis, MN), anti-GLI1 monoclonal antibody
(Cell Signalling) and anti-α-tubulin antibody (DM1A, Sigma-Aldrich). The signals were quantified
by Odyssey detection system (LI-COR).	
4.8 	Immunohistochemistry		
Whole  heads  of  embryos  aged  E15.5  were  dissected,  fixed  with  4%  PFA  at  4  °C  overnight,  and
sectioned at 7 µm intervals. Tissue sections were deparaffinised and rehydrated. Sections were
heated in the microwave in citric acid (pH 6.0). Sections were then washed in PBS and endogenous
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peroxidase activity was blocked with H2O2 in methanol for 30 minutes at room temperature. Sections
were then incubated with primary antibody: Polyclonal anti-phospho-Smad1/Smad5/Smad8
(Ser463/465) antibody (Millipore, Temecula, CA) overnight at 4 °C followed by the secondary
antibody: anti-rabbit biotinylated. Immunoreactivity was visualized with Vectastain ABC kit (Vector
Laboratories, Burlingame, CA) following the manufacturer’s instructions. Sections were
counterstained with haematoxylin.

4.9 	Calvarial	osteoblasts	and	siRNA	treatment			
E15 NMRI mouse calvaria were dissected and separated from the overlying skin and the underlying
meninges. Calvarial cells were isolated by four sequential trypsin-treatments. After 15 minutes
0.25% trypsin incubation, the first patch of cells was discarded, and the cells from the following
trypsin treatments were pooled and cultured in T75 cell culture bottles in DMEM (Lonza,
supplemented with  100 M Na-pyruvate, 2 mg/l L-glutamine, 1% penicillin-streptomycine, 10%
FBS). At passage 2 the cells were transfected with control siRNA (Ambion Silencer Select control
#1 siRNA, 4390843) and anti-RUNX2 siRNAs (Ambion Runx2 Silencer Select Pre-designed siRNA,
4390771) using Lipofectamine RNAiMAX reagent (Life Technologies, 13778) according to the
manufacturer’s instructions. Cells were kept in the siRNA transfection complex for three days, after
which the medium was changed to osteogenic medium (DMEM (Lonza) supplemented by  100 M
Na-pyruvate (Lonza), 2 mg/l L-glutamine (Lonza), 10% FBS, 10 mM -glycerophosphate  (Sigma) ,
50 g/ml ascorbic acid (Sigma), and 100 ng/ml BMP2 (R&D Systems)) for 24 hours. For western
blotting the cell samples were lysed in radio-immunoprecipitation assay buffer (RIPA, Sigma-
Aldrich) with Complete protease inhibitor mixture added (Roche Diagnostics).

4.10 	Statistical	analyses	

One-way ANOVA and independent samples t-test were used for the statistical analysis of normally
distributed samples. When ANOVA was used for multiple comparisons, in order to determine which
groups were different from which, Post Hoc tests were performed using the Bonferroni corrections in
order to adjust from an inflated probability of a type I error. Mann-Whitney tests were chosen for
non-normal samples. A p-value of less than 0.05 was considered statistically significant.
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Table 2. Methods used in this study.

Method Used in

BrdU incorporation I, III, IV

Calvarial osteoblasts and siRNA treatment V

Histological analyses

            Alcian blue I

            Alizarin red I

            Alkaline phosphatase II

            Haematoxylin Eosin staining I, III

Toluidine blue II

VonKossa I

In situ hybridisation

        Preparation of probes I, IV

           Radioactive I, II, III, IV, V

            Whole mount I, IV, V

Immunohistochemistry IV

Mating and genotyping I, II, III, IV, V

Protein isolation and immunoblotting IV, V

Skeletal staining I, II, IV, V

Statistical analyses I, II, III, IV, V

Tissue culture and bead implantation assays I
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5. RESULTS	AND	DISCUSSION	

5.1 	Expression	of	Hh	signalling	pathway	members	in	the	Wt	mouse	calvaria	( I,	IV,	
V) 	

The fundamental role of Hh signalling during endochondral ossification prompted us to investigate
its  role  during  intramembranous  ossification  of  calvarial  bones.  We  studied  the  expression  of  Hh
pathway members during the embryonic development of the mouse calvaria by in situ hybridisation
(I, III, IV) (Figure 7). Ihh was the only Hh ligand detected, Shh and Dhh were not expressed (I). At
E13.5 expression patterns were investigated at the frontal bone primordia. Ihh expression was seen as
a narrow strip at the medial edge of the frontal bone primordia.

Figure 7. Schematic diagram of the expression pattern of Hedgehog (Hh) pathway members
E13.5 in the frontal bone primordia at E13.5 (A) and in the sagittal suture at E15.5 (B).
A: At E13.5 Ihh is expressed in the border of the frontal bone primordia. Gli1 and Ptch1 are detected across
the frontal bone primordia, while Gli2 and Gli3 are expressed in the frontal bone primordia as well as in the
undifferentiated mesenchyme apically.
B: At E15.5 Ihh is detected again at the border of osteogenic front by restricted group of cells. Gli1 and Ptch1

are expressed across the whole osteogenic front. Gli2 and Gli3 are detected in the osteogenic front, as well as
across the whole sutural mesenchyme.
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The transmembrane receptor Ptch1 and transcription factor Gli1 were intensely expressed across the
whole frontal bone primordia. At E15.5 Ihh was  expressed  at  the  OFs  of  the  calvarial  bones.
Compared to Ptch1 and Gli1, also expressed in the OF, the expression domain was again restricted to
a small group of cells.

mRNA levels of Hh pathway members that we detected are concise with results previously
described by Abzhanov et al. (2007). They showed that in dermal bones/mandible Ihh is expressed
by more mature osteoblasts, while Ptch1 and Gli1 are detected in preosteoblasts.

We also investigated expression of the important mediators of Hh signalling: Gli2 and Gli3.
Both Gli2 and Gli3 had a diffuse expression pattern. At E13.5 they were detected across the frontal
bone primordia, but expression was also seen more apically, in the undifferentiated mesenchymal
cells. Two days later Gli2 and Gli3 were detected in the OFs as well as in the suture mesenchyme,
where Gli3’s expression was more intense. Furthermore, expression of Gli3 was strongest in the
interfrontal suture and at the lateral edges of the interparietal bone (I).

In conclusion, Ihh was expressed by restricted group of more mature osteoblasts, but Ihh
protein affects preosteoblasts in the frontal bone primordia at E13.5 and in the OF at E15.5 as Ptch1

and Gli1,  the  direct  transcriptional  targets  of  Hh  signalling,  are  expressed  by  these  cells.  The
expression of Gli2 and Gli3, on the other hand, extends to a broader area indicating that they function
in cells that are devoid of the Hh signal, in less differentiated mesenchymal cells. It is known that
Gli2 and Gli3 are not direct targets of Hh signalling, but what activates their transcription remains
ambiguous. There is evidence that Wnt signalling is able to activate Gli3 transcription in the spinal
cord and in the retina (Alvarez-Medina et al., 2008; Yu et al., 2008; Borday et al., 2012).

5.2 	Loss	of	Gli3	causes	craniosynostosis	in	mice	( I ,	I I ,	IV,	V) 		

Elevated Hh signalling is associated with craniosynostosis in humans as loss-of-function mutations
in Hh-repressor RAB23 cause carpenter syndrome representing premature suture fusion as a feature
(Jenkins et al., 2007). Recent evidence also indicates that GCPS caused by loss-of-function
mutations in GLI3 occasionally features premature fusion of the metopic suture (McDonald-McGinn
et al., 2010; Hurst et al., 2011). To investigate effects of disturbed Hh signalling in the calvaria we
used Gli3

Xt-J/Xt-J mouse as a model (I, II, IV, V). Interestingly, on the contrary to the human patients,
bilateral craniosynostosis of the lambdoid suture was a 100% penetrant feature of Gli3

Xt-J/Xt-J mice.
Premature fusion of this suture was detected from E16.5 onwards (I, IV, V). The interfrontal suture
was also abnormal. Paradoxally, the frontal bone margins remained wider apart, but ectopic
ossification was detected in the interfrontal suture from E16.5 onwards.  In some specimens this lead
to premature fusion of the interfrontal suture by E18.5 (II). As Gli3

Xt-J/Xt-J mice die at birth we could
not verify if additional high percentage of the interfrontal sutures would fuse later. The coronal
suture remained patent in Gli3

Xt-J/Xt-J mice. The sagittal suture was wider compared to Wt samples.
The morphology of all the calvarial bones was abnormal in Gli3

Xt-J/Xt-J mice. The size of the
interparietal bone was larger compared to the Wt sample and lateral margins of the bone extended
more ventrally. The architecture of the frontal bones differed significantly, overall bone area being
greater compared to the Wt sample. The shape of the parietal bones was also abnormal, the size
being fractionally smaller. In conclusion the morphology of the whole calvaria was altered in Gli3

Xt-

J/Xt-J mice. The integrity of the lambdoid and interfrontal sutures was lost and the shape as well as the
size of all the bones was abnormal.

In many aspects Gli3
Xt-J/Xt-J mice model GCPS (Vortkamp et al., 1992). In regard to the

calvarial development, recent evidence indicates that craniosynostosis of the metopic suture is an
occasional feature of GCPS (McDonald-McGinn et al., 2010; Hurst et al., 2011). Craniosynostosis
of the lambdoid suture, which is a fully penetrant feature of Gli3

Xt-J/Xt-J mice,  is  not  seen  in  GCPS
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patients. This might be explained by the very early fusion of the intramembranous squamous part of
the occipital bone (interparietal) with the endochondral supraoccipital bone. In study II we show that
Gli3

Xt-J/Xt-J mice present heterotopic ossification also in the interfrontal suture that in severe cases
leads to its premature fusion. As in humans, the phenotype in mice varies; at E18.5 only part of the
interfrontal sutures were fused. The phenotype in mice varies depending on the amount of
heterotopic ossification in the interfrontal suture, but in all of the studied Gli3

Xt-J/Xt-J mice the frontal
bone morphology was abnormal and heterotopic ossification was seen in all samples at E18.5.
Premature metopic suture fusion in GCPS patients may have also been underdiagnosed as metopic
suture fuses early in humans, beginning already at 1 year of age.

Heterotopic ossification detected in the interfrontal suture of Gli3
Xt-J/Xt-J mice resemble

Wormian bones, which arise from abnormal ossification centres in the calvaria that develop in
addition to those present normally. Recent evidence indicates that Wormian bones may be associated
with craniosynostosis and it is thus possible that the heterotopic ossification seen in the interfrontal
suture is secondary phenomenon caused by the lambdoid synostoses. Studies, however, suggest that
that Wormian bones always develop in a specific site in relation to the synostosis. In  case  of
unilateral lambdoid synostosis, for example, Wormian bones are detected on the contralateral side. In
case of midline metopic synostosis, Wormian bones form along the midline of the calvaria (Sanchez-
Lara et al., 2007).

5.2.1 	Gli3 	affects	both	proliferation	and	differentiation	of	osteoblasts	( I,	I I ,	IV) 		
Osteoprogenitor proliferation affects the size of the calvarial bones. We found that loss of Gli3

significantly increased proliferation of cells in the OFs as well  as in the suture mesenchyme of the
interfrontal and lambdoid sutures in mice at E15.5 (I, IV). In concordance, the size of the frontal as
well as interparietal bones was also enlarged (V). Gli3 is thus needed to restrict proliferation in the
calvaria and uncontrolled proliferation contributes to the abnormal calvarial bone size and shape.

Increased proliferation of CNC cells as well as PM cells already at the patterning stage may
also contribute to the size of the bones in Gli3

Xt-J/Xt-J mice and could be further investigated.
Excessive Hh signalling has been shown to lead directly to uncontrolled proliferation of neural crest
cells causing hypertelorism; widely set eyes (Brugmann et al., 2010). Hypertelorism is a feature of
GCPS as well as Gorlin syndrome, caused by mutations in PTCH1 or SMO leading to ectopic Hh
pathway activation (Aszterbaum et al., 1998; Xie et al., 1998). In fact, during mouse limb
development, Gli3 has been shown to directly restrict the expression of regulators of the G1–S cell-
cycle transition and constrain S phase entry (Lopez-Rios et al., 2012).

We detected ectopic osteoblast differentiation in the sutural mesenchyme of interfrontal and
lambdoid sutures at all stages of ossification studied. During frontal bone development ALP; an early
marker of ossification was ectopically detected apically in relation to the frontal bone primordia in
Gli3

Xt-J/Xt-J mice already at E13.5 (II). Later on at E15.5 Runx2-II, Dlx5, Osx, Ibsp and Oc were all
expressed ectopically in the interfrontal suture (II, IV, V). In the lambdoid suture aberrant Runx2-II

and Dlx5 expression was also detected at E15.5, while Twist1, a repressor of Runx2, was
downregulated (I, IV). Expression of Runx2-I was reduced especially in the interfrontal suture of
Gli3

Xt-J/Xt-J mice at E15.5 indicating that the process of forming ectopic bones had already started at
E15.5, one day before ectopic bones appeared (IV).
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5.2.2 	Abnormal	cartilage	formation	in	Gli3Xt-J/ Xt-J	mice	( I,	IV) 	
	
We found abnormalities in cartilage formation to be associated with premature interfrontal and
lambdoid suture fusion. Primary cartilage, ectocranial to the lambdoid suture, was thicker compared
to the Wt specimens (I). Ectopic secondary cartilage was also detected in association with ectopic
ossification of the interfrontal suture (II).

Transient cartilage formation has been associated previously with normal intramembranous
ossification of calvarial bones, and chondrocyte markers Sox9 and type II collagen are normally
detected in the calvaria (Markens, 1975; Åberg et al., 2005). Sahar et al. (2005) have shown that the
posterior section of the interfrontal suture fuses postnatally by endochondral ossification. Posterior
frontal  suture  fusion  is  not  possible  to  study  in Gli3

Xt-J/Xt-J mice as they die at birth. Cartilage
formation has, however, also been identified in pathological situations. Heterotopic cartilage has
been reported in sagittal suture of Apert syndrome mouse model (Fgfr2

+/S252W) prior to premature
suture fusion (Wang et al., 2005). Altered mechanical forces in the dura mater have also been related
to transient secondary cartilage rod formation (Solem et al., 2011). However, Gli3 may directly
affect chondrocyte differentiation in the calvaria as during endochondral ossification Gli3 represses
chondrocyte differentiation by restricting the amount of proliferating chondrocytes (Koziel et al.,
2005).

5.2.3 	Abnormal	brain	morphology	of	Gli3Xt-J/ Xt-J	mice	(I I) 	
	
Gli3 has a well-established role in CNS development (Tole et al., 2000; Blaess et al., 2008). We
investigated if the abnormal brain morphology correlated with the calvarial anomalies at E16.5 (II).
Compared to the Wt brain we detected the following macroscopic morphological changes; the
olfactory bulbs had failed to develop completely, the dorsomedial telencephalon was truncated and
the diencephalon extended more anteriorly. The midbrain was expanded and the cerebellum was
larger extending more ventrally.

We found the calvarial bone anomalies to correlate with the abnormal brain morphology. The
frontal bones normally reside superior to the cerebral hemispheres and the interfrontal suture forms
between the two frontal bones superior to the falx cerebri that separates the cerebral hemispheres.
Frontal sections across the frontal bone area of Gli3

Xt-J/Xt-J mice confirmed that the falx cerebri was
absent from between the cerebral hemispheres. Frontal bones were developing lateral to the
forebrain, but no clear interfrontal suture was detected and ossification was observed across the
midline. The sutural architecture is completely lost in the interfrontal suture. The enlarged and
ventrally further extending cerebellum also corresponds with the wider interparietal bone.

On one hand, initially it was thought that the CNS defects of craniosynostosis patients were
ultimately caused by compression due to the premature suture fusion. On the other hand, it has been
suggested that the craniosynostosis could be secondary to the brain defects and caused by mechanical
pressure changes transmitted by the dura mater (Faro et al., 2006). Several recent studies have
attempted to shed light to this controversy by looking at craniosynostosis syndromes caused by
elevated activation of Fgfr mouse models. These syndromes are characterised by both
craniosynostosis and CNS anomalies. Comparison of mouse models of the two major Apert
mutations found no correlation between brain phenotypes and the extent or pattern of coronal suture
fusion (Aldridge et al., 2010). Holmes and Basilico (2012) further showed that coronal suture
synostosis occurs when Apert syndrome causing mutation is limited to the PM indicating aetiological
independence from the CNC derived dura mater. These findings suggest surprisingly high level of
independence in the development of these organelles. However, our findings indicate clear
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correlation between these structures. This tempts us to speculate that the development of the brain
and the skull are synchronised at a very early stage during patterning of the tissues. Ablating Gli3

conditionally either from the CNS or the calvarial mesenchyme by using Gli3
flox mutant mice that

harbour loxP sites  flanking  exon  8  of Gli3 (Gli3
tm1Alj/J) would provide us with a valuable tool in

studying the role of these individual organelles in calvarial development (Blaess et al., 2008).
Novel findings on the role of Gli3R in the midbrain during palatal development reveal an

early link between brain and face development. Fuzzy (Fuz) is responsible for normal trafficking of
the retrograde intraflagellar transport, carried out by IFT43, for example (Gray et al., 2009; Brooks
and Wallingford, 2012). Fuz null allele (Fuz

-/-) mice obtain a high-arched-palate. The palate develops
from the first branchial arch formed by the CNC that arises from the posterior mesencephalon and
rhombomere 1, where Fgf8 controls neural crest cell number (Osumi-Yamashita et al., 1994; Creuzet
et al., 2004). Distal tip of the primary cilia is lost in Fuz

-/- mice leading to attenuated Gli3 processing
and subsequently to absence of Gli3R (Tabler et al., 2013). Gli3R is necessary to suppress Fgf8

expression in the midbrain (Aoto et  al.,  2002).  Loss of Gli3R disturbs palate development in Fuz
-/-

mice from the initial stage onwards as hindbrain fates and Fgf8 expression domain are expanded.
Consequently, elevated numbers of neural crest cells migrate to the BA1, and subsequently form
enlarged maxillae. Furthermore, Fuz

-/- mice display craniosynostosis, which is also linked to
increased Fgf signalling (Tabler et al., 2013). Fuz

-/- mice are reported to have fusion of the coronal
suture as do mice and humans with hyperactive Fgf signalling. Interestingly, although calvarial
phenotype was not the focus of Zhang et al. (2011) study of the on Fuz

-/- mice, they published an
image of the skeletal stained E18.5 aged calvaria, where the interparietal bone and lambdoid suture
area show high resemblance to Gli3

Xt-J/Xt-J mice. Excessive Fgf8 transcription and increased amount
of neural crest cells may also have an effect in Gli3

Xt-J/Xt-J mice. Specifically the bones that arise from
the CNC, the frontal and interparietal bones, showed increased ossification in Gli3

Xt-J/Xt-J mice.
Koyabu et al. noted that in many species the interparietal bone fuses early to adjacent bones;

either  the  supraoccipital  or  the  parietal  (Koyabu  et  al.,  2012). Furthermore, they suggested that
enlargement of the brain in relation to the body size among species coupled to the earlier fusion of
the interparietal bone may be caused by changes in Tgfb and/or Fgf signalling. Both pathways
contribute to brain development and increased signalling of both pathways cause premature suture
fusion. The same criteria apply for Hh signalling. Mounting evidence suggests that increasing Hh
signalling by disruption of Hh-repressors causes suture fusion and, interestingly, in mice this
specifically affects the interparietal bone.

5.3 	Interaction	of	Gli3 	and	Fgf	signalling	during	calvarial	development	( I,	I I I ) 	

Gli3 participates in tissue patterning and differentiation by regulating Fgf pathway. Gli3 controls
patterning of the isthmus and cerebellum by restricting Fgf8 expression domain (Blaess et al., 2008).
During mammary gland development Gli3 induces and patterns the mammary placodes by activating
Fgf10, which in turn stimulates canonical Wnt signalling through Fgfr2IIIb. Veltmaat et al. were able
to rescue abnormal mammogenesis in Gli3

Xt-J/Xt-J mice by application of exogenous Ffg10 (Veltmaat
et al., 2006). We therefore investigated if Fgf signalling acted downstream of Gli3 in the developing
calvaria.
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5.3.1	 Role	of	Fgf	signalling	pathway	in	the	calvaria	( II I ) 	

Fgf signalling is involved in several stages of calvarial ossification. Activating mutations of FGFR1,
-2 and  -3 cause premature fusion of the coronal suture (reviewed by Passos-Bueno et al., 2008).
Several Fgf ligands are expressed in the calvaria. In study III we investigated the role of Fgfr2 splice
variants; Fgfr2IIIb and Fgfr2IIIc, during craniofacial development. Fgfr2IIIb and its ligand Fgf10
govern tooth and palate development, while Fgfr2IIIc and an important ligand Fgf2 have a role in
calvarial development. We show in study III that both receptor variants of Fgfr2 and their ligands
Fgf2 and Fgf10 are, however, all expressed in the frontal bone primordia of Wt calvaria at E13.5.
Although, in physiological situation Fgf2 is the predominant ligand in the calvaria, which signals
through the receptor Fgfr2IIIc, in pathological situations Fgf10 is present and can utilize the
ectopically expressed receptor Fgfr2IIIb.

5.3.2 			Fgf2 	rescues	craniosynostosis	in	the	Gli3Xt-J/ Xt-J	calvaria	( I) 	

To examine if Fgf signalling acted downstream of Gli3 in the developing calvaria we applied Fgf2
and Fgf10 impregnated beads in the lambdoid suture of Gli3

Xt-J/Xt-J mice aged E15.5 in tissue culture.
Fgf2 was, indeed, able to prevent the lambdoid suture synostoses of Gli3

Xt-J/Xt-J mice, while Fgf10 or
BSA-control beads had no effect. Fgf2 was able to reduce elevated osteoblastic progenitor
proliferation in Gli3

Xt-J/Xt-J lambdoid suture to a normal level. We  also  showed  by in situ

hybridization that Fgf2 additionally prevented osteoblastic differentiation by restoring Twist1

expression in the lambdoid suture. Our results suggest that in the lambdoid suture Gli3 inhibits
osteoblast differentiation by activating Fgf2, which in turn represses Runx2 activation by inducing
Twist1 expression.

The effects of Fgf signalling on osteoblast differentiation depend on the differentiation stage
targeted. In immature calvarial osteoblasts Fgf2 decreases calvarial mesenchymal proliferation and
inhibits osteoblastic differentiation, while Fgf applied on OFs, on the other hand, accelerates suture
closure as the cells targeted are already partially differentiated into osteoblasts. Rice et al. (2000)
have previously shown that Fgf2 has an inhibitory effect on calvarial ossification by activating
Twist1 expression.

We suggest that in the lambdoid suture Gli3 interacts, either directly or indirectly, with
Twist1 to inhibit osteoblastic differentiation as Twist1 binds to the Runt DNA-binding domain of the
Runx2 protein to inhibit its function (Bialek et al., 2004). Gli3 and Twist1 are known to co-operate
also during limb patterning as Twist1

+/-;Gli3
+/Xt-J compound mutant mice display a more severe

polydactyly than that seen in either Twist1
+/- or Gli3

+/Xt-J single mutant mice (O´Rourke et al., 2002).
Furthermore, Twist1 is also required to inhibit Shh expression in the anterior limb bud (Zhang et al.,
2010). This suggests that Twist1 may also have a role in restricting Hh ligand (Ihh) activation during
calvarial ossification.

5.4 	Genetically	reducing	Runx2	expression	from	Gli3Xt-J/ Xt-J	mice	prevents	
premature	suture	fusion	( IV) 	

Abnormal expression pattern of Runx2 was identified in the lambdoid suture of Gli3
Xt-J/Xt-J mice in

the  study  I. Gli3
Xt-J/Xt-J calvaria is characterised by excess ossification, while Runx2

+/- mice have
truncated calvarial bones. Runx2 and Gli family proteins are also known to interact during
ossification. Runx2 has been shown to physically interact with Gli2, and Ihh promotes osteoblast
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differentiation by initiating Runx2 expression, which is mediated by Gli2 (Shimoyama et al., 2007).
Gli3R, on the other hand, has also been shown to inhibit the function of Runx2 by competing for the
same DNA binding site (competitive inhibition) (Ohba et al., 2008).

This prompted us to investigate if Gli3 is necessary in restraining Runx2 function in the
calvaria, and if Runx2 dosage is important in maintaining the correct balance of osteogenesis in OFs
of calvarial bones. We generated Gli3

Xt-J/Xt-J;Runx2
+/- compound mutant mice to reduce the dosage of

Runx2 in the calvaria. Interestingly, lambdoid as well as interfrontal sutures remained patent in these
mice at E18.5. The frontal, parietal and interparietal bones all showed more hypoplasia compared to
Runx2

+/- calvaria (IV). As anticipated, osteoblasts failed to differentiate in Gli3
Xt-J/Xt-J;Runx2

-/- mice,
similar to Runx2

-/- mice.
Runx2 has a fundamental role in controlling lineage-specification as well as cell proliferation

during ossification (Young, et al. 2007). We found that increased proliferation detected in Gli3
Xt-J/Xt-J

lambdoid and interfrontal sutures was indeed reduced to a normal level in corresponding Gli3
Xt-J/Xt-

J;Runx2
+/- sutures. Furthermore, ectopic expression of genes related to osteoblast differentiation:

Runx2, Dlx5 and Oc, seen in Gli3
Xt-J/Xt-J lambdoid and interfrontal sutures, was also absent in Gli3

Xt-

J/Xt-J;Runx2
+/- mice (IV).

It is noteworthy that premature activation of Runx2 expression in cranial mesenchyme using
the paired related homeobox 1 promoter, which directs the transgene expression to limb bud and
cranial mesenchyme from E9.5 onwards, causes early onset of mineralization, as well as complete
destruction of the calvarial morphology and craniosynostoses of multiple sutures and fontanelles by
E18.5 (Maeno et al., 2011). Increased number of RUNX2 alleles also in humans has been reported to
cause multiple craniosynostoses involving the coronal, sagittal and lambdoid sutures (Varvagiannis
et al., 2013; Greives et al., 2013).

5.4.1 	Gli3 	acts	as	a	gatekeeper 	to	control	the	differentiation	of	osteoprogenitors	by	
regulating	Bmp	signalling	cascade	( IV) 	

Elevating Bmp signalling in the calvaria, either by deleting Noggin or by constitutively activating
BMP type IA receptor in the CNC, causes craniosynostosis (Warren et al., 2003, Komatsu et al.,
2013). Gli3R, on the other hand, has been shown to directly repress Bmp2 transcription during
osteoblast differentiation (Garrett et al., 2003). Evidently, Bmp2 and Bmp4 specifically induce
activation of Dlx5, which in turn activates Runx2-II expression. As we found Dlx5, as well as Runx2-

II, to be ectopically expressed in the affected sutures of Gli3
Xt-J/Xt-J calvaria,  and  removal  of  one

allele of Runx2 from Gli3
Xt-J/Xt-J mice normalized expression of both of these genes, we next

investigated Bmp signalling in these mice (IV). We found Bmp2 and Bmp4 to be also ectopically
expressed in the interfrontal and lambdoid sutures of Gli3

Xt-J/Xt-J mice. Furthermore, higher
phosphorylation of Smad1/5/8, which indicates elevated Bmp signalling, was detected in the
corresponding locations. Ectopic Bmp expression, as well as elevated phosphorylation of Smad1/5/8,
was normalized in Gli3

Xt-J/Xt-J;Runx2
+/- sutures (IV).

Mounting evidence indicates that Gli3 is able to restrict Runx2 function, but the question that
remains is how is Runx2-II isoform ectopically activated in Gli3

Xt-J/Xt-J calvaria? Our results indicate
that Gli3 acts as a gatekeeper to restrict the progenitors of osteoblasts from differentiating in the
calvaria by regulating Bmp-dependent activation of Dlx5 and Runx2-II. Bmp signalling is required
for CNC derived mesenchyme to commit to osteogenic pathway (Abzhanov et al., 2007). Dlx5 also
regulates determination of CNC cell fate and in the calvaria CNC contributes to the affected frontal
and interparietal bones. Although Dlx5

-/- mice develop truncated calvarial bones in which Runx2 is
expressed, if both Dlx5 and Dlx6 are deleted, calvarial bones fail to form indicating redundancy in



51

Dlx-gene function (Depew et al., 2005). Just recently, Dlx5 has been shown to bind directly to an
enhancer that specifically directs Runx2-II expression to osteoblast lineage cells. Furthermore,
Smad1 as well as Dlx5 are part of the enhanceosome that activate this enhancer (Kawane et al.,
2014). It is noteworthy that expression of Dlx5 and Bmp2 are both downregulated in the Runx2

+/-

calvaria and Runx2
-/- mouse does not express Dlx5 nor Bmp2, which could affect decreased

expression of these genes in Gli3
Xt-J/Xt-J;Runx2

+/- mice. However, the significant finding is that
ectopic activation of Runx2-II corresponds with the Gli3 expression pattern.  In study I  we showed
that Gli3 expression is strongest in the interfrontal suture and at the lateral edges of the interparietal
bone, and in study IV ectopic Runx2-II activation was specifically detected at these locations in
Gli3

Xt-J/Xt-J mice. Furthermore, by genetically reducing Runx2 from Gli3
Xt-J/Xt-J mice we were able to

specifically prevent the ectopic expression of Runx2-II at the interfrontal and lambdoid sutures.
Increasing evidence indicates that Hh signalling controls Bmp signalling. Lenton et al. (2011)

have showed that loss of Ihh leads to a reduction of Bmp signalling in the calvaria. This is in
concordance with our results concerning the increased Bmp signalling in the absence of Gli3, as
when  Ihh  is  not  present  the  amount  of  Gli3R  compared  to  Gli3FL  is  increased,  and  so  Bmp
signalling is hindered. In the limb bud Gli3 also regulates digit patterning by influencing Bmp
signalling pathway. Gli3 inhibits the expression of the Bmp antagonist Gremlin1 to  allow  the
proliferating progenitors to exit toward Bmp-dependent chondrogenic differentiation (Lopez-Rios et
al., 2012).

5.5 	Evidence	that	Gli3R	–	Runx2	–	Ihh	–feedback 	loop	controls	intramembranous	
ossification	of	calvarial	bones	(V) 	

We and others have identified Ihh as the only Hh ligand present during embryonic calvarial bone
development (I; Jacob et al., 2007; Kim et al., 1998). We thus wanted to study the interaction of Ihh
and Gli3 during calvarial development.

5.5.1 	Genetically	reducing	the	dose	of	Ihh	does	not	alter 	the	Gli3Xt-J/ Xt-J	calvarial	
phenotype	(V) 	

Absence of Ihh causes delayed calvarial ossification (Abzhanov et al., 2007; Lenton et al., 2011). Ihh
has been shown to activate Runx2 expression during ossification (Shimoyama et al., 2007), while in
study IV we were able to rescue craniosynostosis in Gli3

Xt-J/Xt-J mice by reducing Runx2 dosage. This
prompted us to investigate whether by deleting Ihh from Gli3

Xt-J/Xt-J mice we could mimic the effect
of partial Runx2 deletion. We performed skeletal staining on Gli3

Xt-J/Xt-J, Ihh
-/- and Gli3

Xt-J/Xt-J;Ihh
-/-

mice aged E16.6, E17.5 and E18.5. Calvarial bones of Ihh
-/- mice were smaller and the calvarial

sutures wider compared to the Wt samples at all stages studied. Surprisingly, additional deletion of
Ihh from Gli3

Xt-J/Xt-J mice had no effect on the calvarial phenotype. Lambdoid and interfrontal
sutures fused prematurely in Gli3

Xt-J/Xt-J;Ihh
-/- mice and morphology as well as size of calvarial bones

was similar to that in Gli3
Xt-J/Xt-J mice (V).

We also studied osteoblast differentiation in the frontal bones at a tissue level by looking at
expression patterns of early osteoblast markers; Runx2 and Osx and late osteoblast markers; Ibsp and
Oc in Gli3

Xt-J/Xt-J, Ihh
-/- and Gli3

Xt-J/Xt-J;Ihh
-/- mice at E15.5. Osteoblasts differentiated normally in all

of these mice as all markers were expressed. All of the markers were also detected in the ectopic
bones of Gli3

Xt-J/Xt-J and Gli3
Xt-J/Xt-J;Ihh

-/- mice already at this early stage. This also infers that the
molecular toolbox used to control osteoblast development and therefore bone development of the
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heterotopic bone is normal (V). These sections also confirmed that the frontal bones of Ihh
-/- mice

were small and interfrontal suture was wide compared to the Wt sample.
The analogous phenotype of Gli3

Xt-J/Xt-J and Gli3
Xt-J/Xt-J;Ihh

-/- mice  prompted  us  to  examine
Ptch1 and Gli1 expression in the calvaria of Ihh

-/-, Gli3
Xt-J/Xt-J and Gli3

Xt-J/Xt-J;Ihh
-/- mice to establish

the level of Hh signalling (V). Expression of Ptch1 and Gli1 is considered the read-out of Hh
signalling. mRNA of Ptch1 and Gli1 was detected in the frontal bones of Wt mouse at E15.5. In Ihh

-

/- calvaria Ptch1 and Gli1 were not expressed, confirming that Ihh is the only Hh ligand present in the
calvaria at this stage. In Gli3

Xt-J/Xt-J mice Ptch1 and Gli1 expression was comparable to the Wt,
although they were ectopically expressed also in the ectopic bones seen in the interfrontal suture.
Interestingly, in the double mutant mice, Ptch1 and Gli1 mRNA were not detected indicating that Hh
signalling does not have a role in the aetiology of craniosynostosis during the stage of osteoblast
differentiation.

Shh has a fundamental role in patterning of the head. Although Shh is not expressed in the
calvarial tissue during the foetal period of the ossification phase, it is known that Shh affects early
events of calvarial development as deletion of Shh from  neural  crest  cells  disrupts  frontal  bone
development (Jeong et al., 2004). Furthermore, an interesting recent finding indicates that calvarial
mesenchymal progenitor cells express Gli1 transiently from E7.5 to E8.5 (Deckelbaum et al., 2010).
It  is  thus  probable,  that  calvarial  development  of Gli3

Xt-J/Xt-J mice is also affected by reduced
repression of molecular pathways regulated by Shh signalling during early stages of head
development. Calvarial phenotype of Gli3

Xt-J/Xt-J;Shh
-/- mice has not been published, but additional

deletion of Gli3 from Shh
-/- mice has a considerable, positive impact on head development (Rallu et

al., 2002; Litingtung and Chiang, 2000). Interestingly, additional deletion of the Hh co-receptor Gas1

from Shh
+/- mice (Gas1

-/-;Shh
+/- mice) causes premature fusion of the coronal suture, which is not

seen in Gas1
-/- mice (Seppälä et al., 2007), indicating that reduction of Shh activity may also have an

effect on suture patency. Heterozygous Shh mice have not been reported to have calvarial
abnormalities.

Gli1 is a direct transcriptional target of Hh signalling. Our results indicate that absence of
Gli1 from the calvaria during prenatal calvarial ossification has no effect on embryonic suture
patency as neither Ihh

-/- nor Gli3
Xt-J/Xt-J;Ihh

-/- mice express Gli1 in the embryonic calvaria (V).
Interestingly, recent data by Zhao et al. (2015) show that ablation of Gli1 in mice at one month of
age postnatally leads to fusion of all calvarial sutures in two months. This is evidently due to the loss
of MSCs originating from the postnatal sutures. From one month of age Gli1 expression is restricted
to the midsutural cells and Ihh, secreted from the OFs, regulate differentiation of these Gli1-positive
MSCs. They further propose that craniosynostosis is caused by loss of these MSCs from the calvarial
suture (Zhao et al., 2015). These data indicate that embryonic and postnatal regulation of suture
patency differs profoundly, which further highlights the diverse aetiology of craniosynostosis.

5.5.2 	Gli3R	regulates	osteogenic	fate	at	the	periphery	of	the	osteogenic	front	( IV,	V) 	

During endochondral ossification Gli3R does not function in physiological situation as Ihh has an
indispensable role in inhibiting Gli3R formation. In pathological situations, i.e. in the absence of Ihh,
Gli3R is responsible for many aspects of endochondral ossification defects (Koziel et al., 2005).
During limb patterning, on the other hand, Gli3R functions independently, prior to Shh activation (te
Welscher et al., 2002). The fact that additional deletion of Ihh from Gli3

Xt-J/Xt-J mice did not affect
the calvarial phenotype as well as absence of Hh signalling in Gli3

Xt-J/Xt-J;Ihh
-/- mice corresponded to

the findings concerning the limb bud patterning in Shh
-/-;Gli3

-/- mice (te Welscher et al., 2002; Hill et
al., 2009), prompted us to hypothesise that Gli3R has a significant role in the calvaria. Furthermore,
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in the mouse model of PHS, a syndrome caused by mutations in GLI3,  where  only  the  level  of
Gli3FL is reduced, while Gli3R is unaffected, calvarial sutures remain patent (Böse et al., 2002).

As  Gli3  isoform  switching  occurs  at  a  post-transcriptional  level  the  distribution  of  the
isoforms is not possible to study at mRNA level. In study IV we found Gli3R to be the predominant
isoform present in the calvaria by Western blot analysis using an antibody that recognises both the R-
and the FL-isoforms. The presence of Hh ligand determines Gli3 isoform distribution and the
expression pattern of Ptch1 and Gli1, considered the read-out of Hh signalling, indicated that Gli3 is
in the FL-form in the OFs. Early preosteoblasts that reside further away from Ptch1/Gli1 expression
domain, in the sutural mesenchyme, also expressed Gli3 (I, V). These cells should obtain Gli3 in the
R-isoform. In study V we confirmed this by comparing Gli3-isoform distribution in explants
obtained from frontal bone OFs and interfrontal sutural mesenchyme, respectively, by Western blot
analysis. Gli3R was present in higher levels in the sutural mesenchyme of the interfrontal suture
compared to the OFs of the frontal bones (V).

Our  results  suggest  that  Gli3R  functions  prior  to Ihh activation in the primary stage of
osteoblast differentiation at the very edge of the mesenchymal condensations, where mesenchymal
cells are committed to an osteogenic fate, in the periphery of the OFs. In these initial, very early
preosteoblasts Gli3R restricts proliferation and refrains further differentiation possibly by activating
Fgf2 expression (I), repressing Bmp2 expression (IV), as well as by restraining Runx2-I isoform
from binding to DNA (Ohba et al., 2008).

Ihh, on the other hand, is expressed in the OFs of calvarial bones, but only by a subpopulation
of cells: in more mature osteoblasts (Abzhanov et al., 2007; V). Ihh acts as a gatekeeper at the
boarder of mature bone and the OF, like Abzhanov et al. (2007) postulated, from where it signals to
the cells of the OF to allow them to differentiate into osteoblasts (Jacob et  al.,  2007; Lenton et  al.,
2011). We propose that Ihh does this ultimately by inhibiting the processing of Gli3 into the R-
isoform. Our findings draw individual and somewhat contradicting findings together in building a
unifying model of the role of Ihh during calvarial ossification.

Hh controls cell patterning and cell differentiation in many embryonic tissues by acting as a
long-range morphogen. Briscoe and Thérond state in a recent review that Gli activity, controlled by
Hh signalling, is responsible for patterning many tissues. It is necessary to regulate both the level and
the  timing  of  Gli  activity  to  influence  when  and  where  genes  are  activated.  Different  Hh  ligand
concentrations result in a Gli activity gradient, which has been postulated to contribute to tissue
patterning  activity.  The  level  of  the  R  to  FL  ratio  of  Gli  proteins  activates  different  genes.  The
duration of Hh signalling is also important (Briscoe and Thérond, 2013).

Several mouse models that have recently been published also underline the fundamental role
of Gli3R in calvarial morphogenesis. Feng et al. (2013) introduced an ENU-induced recessive mouse
model, Ptch1

DL,  in  which  DL  represents  a  hypomorphic  allele  of Ptch1. These mice show very
similar calvarial phenotype as Gli3

Xt-J/Xt-J mice. Reduction of Ptch1 function leads to decrease in
Gli3R as Hh signalling is activated in the absence of Hh ligand. Fuz

-/- mouse is another example of
reduced production of Gli3R causing craniosynostosis (Tabler et al., 2013). Loss-of-function
mutations in RAB23 also cause craniosynostosis in humans (Jenkins et al., 2007). Rab23 is a negative
regulator of Hh signalling possibly by precisely promoting the generation of Gli3R (Eggenschwiler
et al., 2006). Regard et al. (2013) have shown that deletion of Gnas from mice causes heterotopic
ossification. Gnas encodes Gαs, which is a physiological activator of PKA, also an inhibitor of Hh
signalling.  They  show that  Hh signalling  activation  due  to  loss  of  Gαs signalling is both necessary
and sufficient for heterotopic ossification through the intramembranous mechanism and also
speculate that intramembranous bone formation in the calvaria may be promoted by ligand-
independent activation of Hh signalling (Regard et al., 2013).
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Transcriptional control of Gli3 in the calvaria remains elusive.  In the spinal cord as well  as
the retina Wnt signalling has been shown to repress Hh signalling by activating Gli3 expression
(Alvarez-Medina et al., 2008; Yu et al., 2008; Borday et al., 2012). Furthermore, primary cilia have
also been linked to Wnt signalling. Brugmann et al. (2010) found that the loss of Kif3a caused
truncated primary cilia on CNC cells associated with downregulated ß-catenin-dependent Wnt
signalling, as well as reduced Gli3 expression levels. They further speculated if primary cilia would
integrate Wnt and Hh signals, thereby regulating Gli expression (Brugmann et al., 2010).
Interestingly, it has also been proposed that Wnt activation is required for calvarial suture patency,
while Wnt inhibition results in ectopic bone formation within the suture mesenchyme and suture
closure (Behr et al., 2010).

5.5.3 	Runx2 	is	able	to	activate	Ihh	expression	in	the	calvaria	(V) 	
	
During chondrocyte maturation Runx2 enhances chondrocyte proliferation by directly inducing Ihh

expression (Yoshida et al., 2004). Gli3R, on the other hand, interacts with Runx2 at many levels to
inhibit its function (Ohba et al., 2008; I; IV). This prompted us to examine the possibility that Runx2
would activate Ihh expression also during calvarial intramembranous ossification as Runx2

expression precedes Ihh expression in the differentiating osteoblast lineage. We isolated E15.5
calvarial primary osteoblasts and restricted Runx2 expression in these cells by anti-Runx2 siRNA
while inducing osteoblast differentiation. We found Ihh protein levels significantly downregulated in
these cells compared to the control group (V).

We propose that in the OFs of calvarial bones Ihh-Gli3-Bmp2-Dlx5-Runx2-Ihh feedback
loop regulates ossification. Gli3R restricts osteoblast differentiation in the sutural margin of the OF
by repressing bone specific Runx2-II by inhibiting Bmp2 expression. Mature osteoblasts at the border
of mature bone and the OF express Ihh,  which  acts  as  a  morphogen  to  the  cells  of  the  OF.  Ihh
reduces  the  amount  of  Gli3R in  these  cells  and  thus  allows Bmp2 expression that further activates
Runx2-II by Dlx5-dependent manner, while also activates proliferation. Runx2-II, on the other hand,
activates Ihh expression in the final stages of osteoblast differentiation.

As osteoblasts differentiate normally in the absence of Ihh, it is clear that other parallel
pathways control osteoblast differentiation in the OF. Our model also fails to explain what sustains
Gli3R function once the OFs of the opposing bones have come close enough so that Ihh can diffuse
across the suture. Is suture patency maintained simply by many parallel inhibitory factors, such as
Gli3R, Twist1, Axin2, Noggin that all act in integrated fashion? Or is suture mesenchyme non-
osteogenic and completely independent from the OFs that need to be apoptopically eliminated prior
suture fusion? Is this suture mesenchyme missing from sutures that fuse prematurely?

It is noteworthy that Msx2 also controls Ihh expression during chondrocyte maturation
(Amano et al., 2008). Msx2 is expressed in the OFs of calvarial bones and may co-operate with
Runx2 in regulating Ihh expression. Increased activation of Msx2 in humans and mice also causes
craniosynostosis (Liu et al., 1995; Liu et al., 1999).
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6. CONCLUSIONS	AND	FUTURE	PERSPECTIVES	

The aim of this thesis was to unravel the role of Hh signalling, specifically of the transcription factor
Gli3 and Hh ligand Ihh in the regulation of calvarial bone development. In addition, we also set out
to reveal interactions of Hh signalling pathway with other molecular regulators of calvarial
development.

We found that Hh signalling pathway participates in calvaria development and elevated Hh
signalling causes craniosynostosis in mice. Recent findings indicate that specifically Gli3R has a
critical  role  in  calvarial  development  (IV;  V;  Tabler  et  al.,  2013).  We have  shown that  deletion  of
Gli3 in  mice  causes  craniosynostosis  of  the  lambdoid  as  well  as  the  interfrontal  suture  (I  and  II).
Gli3R maintains suture patency by several mechanisms (Figure 8). Gli3 is expressed in
differentiating osteoblasts from early until late maturation stages. At the edge of osteogenic
condensation, between the sutural mesenchymal cells and the OF, the mesenchymal progenitor cells
and early preosteoblasts express Gli3. As Ihh, expressed by more mature osteoblasts, does not reach
these cells, Gli3 is in the R-isoform. Gli3R inhibits osteoblast differentiation from proceeding by
activating Fgf2, which further activates Twist1 expression (I). Twist1 inhibits Runx2 function in
early preosteoblasts (Bialek et  al.,  2004).  Ohba et  al.  have also shown that Gli3R is able to inhibit
Runx2 function directly by competing for the same DNA binding site on the osteocalcin promoter
(Ohba et al., 2008). Gli3R also inhibits Bmp2 expression in these cells, which leads to attenuation of
Dlx5 and osteoblasts specific Runx2-II expression in the early stages of osteoblast differentiation (II).
Ihh, expressed at the border of mature bone and OF, acts as a long-range morphogen and reaches the
cells of the OF, confirmed by Ptch1 and Gli1 expression. Gli3 is in the FL-form in these cells and
Gli3R is not there to inhibit osteoblast differentiation from proceeding further (V). Our results also
suggest that Runx2 activates Ihh expression in the mature osteoblasts (V) and Ihh-Gli3-Bmp2-Dlx5-
Runx2-Ihh feedback loop regulates ossification of calvarial bones in the OFs.

Figure 8. Schematic diagram of the role of Hedgehog signalling during calvarial
intramembranous ossification (refer to the text for details).
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The studies included in this thesis have focused on the role of Hh signalling in the stages of
calvarial intramembranous ossification from E12.5 onwards when osteoblastic markers are first
detected. We have provided evidence as to why calvarial bones of Gli3

Xt-J/Xt-J mice are large in size
and how Hh signalling regulates ossification in the OFs. During this thesis project new intriguing
findings concerning the earlier role of Hh signalling in determining calvarial mesodermal cells, as
well as the effect of Gli3R in cranial neural crest cell population size point to an earlier role of Gli3
in calvarial patterning. Possibly we could find answers to questions that this thesis did not address:
Why do only certain sutures fuse in Gli3

Xt-J/Xt-J mice? Our data indicate that Gli3 expression is
stronger in the interfrontal suture and at the lateral edges of the interparietal bone at E15.5 compared
to other calvarial sutures, which may of course have an effect. It is, however, also noteworthy that
the lambdoid and interfrontal sutures are the only sutures where all the components that form the
suture are exclusively derived either from PM or CNC, respectively (Jiang et  al.,  2002; Yoshida et
al.,  2008;  Figure  1).  The  coronal  and  sagittal  sutures  that  remain  patent  are  composed  of  both  PM
and CNC derived tissues.

Gli3 mutant mouse could serve as a good model to clarify more universal questions
concerning craniosynostosis. What happens to the sutural mesenchymal tissue in craniosynostosis? Is
the pressure of the overgrowing calvarial bones enough to eliminate the sutural mesenchyme or does
the sutural mesenchymal tissue fail to differentiate in the first place? What makes two bones fuse?
Do they fuse simply when two bone ends come into close enough proximity? Research on calvarial
bone development has also focused, to a large extent, on frontal and parietal bones and the coronal
suture that unites them. The details on interparietal bone development and how lambdoid suture is
established are scarce. Gli3 mutant mouse provides an excellent model to study earlier stages of
interparietal bone development in more detail.

Head development involves the integrated formation of the calvaria, facial skeleton, cranial
base, and the brain, all of which express Gli3. Furthermore, all of these tissues suffer varying degree
of malformation in craniosynostotic syndromes as well as in Gli3

Xt-J/Xt-J mice. It is not, however,
known how craniosynostosis may depend on changes elsewhere in the affected skull, and how
changes in the major subdivisions of the skull contribute to the final dysmorphic phenotype. Lineage-
specific or developmental stage-specific expression of Gli3 would allow us to assess the influence of
these separate regions on calvarial suture fusion during embryonic development. This would also
circumvent the lethality of Gli3 null  allele  mice  at  birth  and  would  allow  assessment  of  postnatal
growth. Thorough understanding of how development of different tissues of the head is integrated
could have a huge impact on management of pathological conditions involving the head, such as
craniosynostosis.

In  study  V  we  found  new  evidence  that  Runx2  would  regulate  expression  of Ihh during
calvarial development. Our data is preliminary and requires more thorough investigation, but if this
is the case, it is interesting as during endochondral osteoblast differentiation the situation is exactly
the opposite: Ihh governs transcriptional control of Runx2 (Kronenberg, 2003). On the other hand,
during earlier stage of endochondral ossification, during chondrogenesis, Runx2 specifically
activates Ihh expression (Yoshida et  al.,  2004).  In fact,  intramembranous ossification may relate to
endochondral chondrogenesis more intimately than yet realised and comparison of these processes
could entail interesting novel findings concerning intramembranous ossification.

Results of this thesis have provided valuable knowledge on the role of Gli3 and Hh signalling
during calvarial intramembranous ossification. Increasing evidence shows that aberrant Hh signalling
is  behind  human  craniosynostosis  and  specifically  Gli3R  plays  a  pivotal  role.  Basic  research  on
understanding the cause of the disease is a vital first step in creating more elaborate treatment options
for patients in the future.
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