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Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell di�erentiation, proliferation, and
apoptosis, and disturbances in GSH homeostasis are involved in the etiology and progression of many human diseases including
cancer. While GSH de�ciency, or a decrease in the GSH/glutathione disulphide (GSSG) ratio, leads to an increased susceptibility to
oxidative stress implicated in the progression of cancer, elevated GSH levels increase the antioxidant capacity and the resistance to
oxidative stress as observed in many cancer cells. 
e present review highlights the role of GSH and related cytoprotective e�ects
in the susceptibility to carcinogenesis and in the sensitivity of tumors to the cytotoxic e�ects of anticancer agents.

1. Introduction

Reactive oxygen species (ROS) are physiologically produced
by aerobic cells [1] and their production increases under con-
ditions of cell injury [2]. Physiological levels of ROS mediate
crucial intracellular signaling pathways and are essential for
cell survival. However, an excess of ROS formation generates
cell damage and death. To prevent the irreversible cell
damage, the increase of ROS induces an adaptive response,
consisting in a compensatory upregulation of antioxidant
systems, aimed to restore the redox homeostasis [3].

Oxidative stress has long been implicated in cancer
development and progression [4], suggesting that antioxidant
treatment may provide protection from cancer [5]. On other
hand, prooxidant therapies, including ionizing radiation and
chemotherapeutic agents, are widely used in clinics, based
on the rationale that a further oxidative stimulus added to
the constitutive oxidative stress in tumor cells should, in
fact, cause the collapse of the antioxidant systems, leading
to cell death [6]. However, this latter approach has provided
unsatisfactory results in that many primary tumors overex-
press antioxidant enzymes at very high levels, leading to a
resistance of cancer cells to drug doses [7].

Among the enzymatic systems involved in the mainte-
nance of the intracellular redox balance, a main role is played

by GSH [8] that participates, not only in antioxidant defense
systems, but also in many metabolic processes [9].

Elevated GSH levels are observed in various types of
tumors, and this makes the neoplastic tissues more resistant
to chemotherapy [10, 11]. Moreover, the content of GSH in
some tumor cells is typically associated with higher levels
of GSH-related enzymes, such as �-glutamylcysteine ligase
(GCL) and �-glutamyl-transpeptidase (GGT) activities, as
well as a higher expression of GSH-transporting export
pumps [11, 12]. 
erefore, it is not surprising that the GSH
system has attracted the attention of pharmacologists as
a possible target for medical intervention against cancer
progression and chemoresistance.


e main research in this �eld has been aimed at deplet-
ing GSH by a speci�c inhibition of GCL, a key enzyme of
GSH biosynthesis. In this context, buthionine sulfoximine
(BSO) is the most popular GSH-depleting agent studied in
both preclinical and early clinical trials, but limitation on
its availability has led to a search for alternatives [13, 14].
Recently, GSH analogues have been employed in order to
sensitize tumors to cytotoxic e�ects of anticancer agents, by
depleting GSH-related cytoprotective e�ects [15].

However, during the last decade, a new approach for the
regulation of GSH-utilizing enzymes has emerged. It is also
evident that many of the antioxidant enzymes are induced
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by GSH depletion at the transcriptional level which involves
the binding of the nuclear factor (erythroid-derived 2)-like
2 (Nrf2) transcription factor to the antioxidant response
element (ARE) in the promoter region of the genes encoding
GCL and glutathione S-transferases [16].

2. GSH Biosynthesis

Glutathione (GSH) is a tripeptide formed by glutamic acid,
cysteine, and glycine. 
e glutamic acid forms a particular
gamma-peptic bond with cysteine by its gamma glutamyl
group. Two forms of GSH are possible: the reduced form
(GSH) which represents the majority of GSH, reaching
millimolar concentration in the intracellular compartment,
and the oxidized form (GSSG) that is estimated to be less
than 1% of the total GSH. Intracellularly, the majority of
GSH is found in the cytosol (about 90%), whilemitochondria
contain nearly 10% and the endoplasmic reticulum contains
a very small percentage [17].


e synthesis of GSH from its constituent amino acids
involves two ATP-requiring enzymatic steps: (1) the �rst step
is rate-limiting and catalyzed by GCL which is composed
of two subunits: one catalytic (GCLC) and one modi�er
(GCLM):

GCL

MgATP

L-Glu L-Cys L-Glu L-Cys+

�-glutamylcysteine

MgADP + Pi

(2) 
e second step is catalyzed by GSH synthetase (GS)
[19]:

Gly

MgATP

L-Glu L-CysL-Glu L-Cys Gly

GSH
GS

+

�-glutamylcysteine

MgADP + Pi

Although GS is generally thought not to be important
in the regulation of GSH synthesis, accumulating evidence
suggests that GSmay play an important role, at least in certain
tissues and/or under stressful conditions [20].

However, under normal physiological conditions, the rate
of GSH synthesis is largely determined by two factors, that is,
cysteine availability and GCL activity. Cysteine is normally
derived from the diet, protein breakdown and in the liver,
from methionine via transsulfuration (conversion of homo-
cysteine to cysteine). Cysteine di�ers from other amino acids
because its sul�ydryl form, cysteine, is predominant inside
the cell whereas its disul�de form, cystine, is predominant
outside the cell [21].

3. Glutathione Functions


e chemical structure of GSH determines its potential func-
tions, and its broad distribution among all living organisms
re�ects its important biological role. Amajor function ofGSH
is the detoxi�cation of xenobiotics and some endogenous
compounds. 
ese substances are electrophiles and form

conjugates with GSH, either spontaneously or enzymatically,
in reactions catalyzed by GSH-S-transferases (GST) [22].
Human GSTs are divided into two distinct family mem-
bers: the membrane-bound microsomal and cytosolic family
members. 
e conjugates formed are usually excreted in the
bile, but can also undergo modi�cation to mercapturic acid.

Another important GSH function is the maintenance of
the intracellular redox balance and the essential thiol status
of proteins [21].


e reaction with the protein is as follows:

Protein-SSG + GSH←→ Protein-SH + GSSG. (1)


e equilibrium of this reaction depends on the con-
centrations of GSH and GSSG. 
e reversible thiolation
of proteins is known to regulate several metabolic pro-
cesses including enzyme activity, transport activity, signal
transduction and gene expression through redox-sensitive
nuclear transcription factors such as AP-1, NF-kappaB (NF-
kB) and p53 [21, 23]. In fact, DNA-binding activity of
transcription factors o�en involves critical Cys residues, and
the maintenance of these residues in a reduced form, at
least in the nuclear compartment, is necessary [24]. AP-1
is a transcription factor related to tumor promotion [25],
and its DNA-binding activity can be diminished if Cys-
252 is oxidized [26]. Tumor suppressor p53, known as the
“guardian of the genome,” contains 12 Cys residues in its
amino acid sequence [27], and oxidation of some of these
inhibits p53 function [28]. Moreover, GSH performs an
antioxidant function (Figure 1).

In addition, storage of cysteine is one of the most
important functions of GSH because cysteine is extremely
unstable extracellularly and rapidly autooxidizes to cystine in
a process that produces potentially toxic oxygen-free radicals
[29]. 
e �-glutamyl cycle allows GSH to be the main source
of cysteine (Figure 2).

4. Role of GSH in Regulating Cancer
Development and Growth

In many normal and malignant cells, increased GSH level is
associatedwith a proliferative response and is essential for cell
cycle progression [30, 31]. 
e molecular mechanism of how
GSHmodulates cell proliferation remains largely speculative.
A key mechanism for GSH’s role in DNA synthesis relates
to the maintenance of reduced glutaredoxin or thioredoxin,
which is required for the activity of ribonucleotide reductase,
the rate-limiting enzyme in DNA synthesis [32].

Furthermore, in liver cancer and metastatic melanoma
cells, GSH status is correlated with growth [33–35] and
it has also been demonstrated that a direct correlation
between GSH levels associated with cellular proliferation and
metastatic activity exists [33]. In fact, intrasplenic inoculation
of B16 melanoma (B16M) cells into C57BL/6J syngenic mice
induced metastatic foci formation by colonizing di�erent
organs. However, the number and size of metastases were
much higher when B16M cells with high GSH content were
inoculated in vivo [33]. A high percentage of tumor cells with
high GSH content were able to survive in the presence of
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Figure 1: Antioxidant function of GSH.
e hydrogen peroxide, produced during the aerobic metabolism, can be metabolized in the cytosol
by GSH peroxidase (GPx) and catalase in peroxisomes. In order to prevent oxidative damage, the GSSG is reduced to GSH byGSSG reductase
at the expense of NADPH, forming a redox cycle [17]. Organic peroxides can be reduced both by GPx andGSH-transferase (GST). In extreme
conditions of oxidative stress, the ability of the cell to reduceGSSG toGSHmay be less, inducing the accumulation of GSSGwithin the cytosol.
In order to avoid a shi� in the redox equilibrium, the GSSG can be actively transported out of the cell or react with protein sul�ydryl groups
(PSH) and form mixed disul�des (PSSG).

GSH

GSH

aa

DP

Cysteinyl-
glycine

aa5-Oxoproline

GGT

Glycine Cysteine

Cysteine
Protein

Sulfate + taurine�-Glutamyl-aa

�-Glutamyl-aa

Figure 2: �-Glutamyl cycle. In the �-glutamyl cycle, GSH is released from the cell and the ectoenzyme GGT transfers the �-glutamyl moiety
of GSH to an amino acid (aa, the best acceptor being cysteine), forming �-glutamyl-aa and cysteinyl-glycine. 
e �-glutamyl-amino acid can
then be transported back into the cell and once inside can be further metabolized to release the aa and 5-oxoproline, which can be converted
to glutamate and used for GSH synthesis. Cysteinyl-glycine is broken down by dipeptidase (DP) to generate cysteine and glycine. Once inside
the cell, the majority of cysteine is incorporated into GSH, some being incorporated into protein, and some degraded into sulfate and taurine
[18].

the nitrosative and oxidative stress, thereby representing the
main task force in the metastatic invasion [36]. 
erefore,
it is plausible that maintenance of high intracellular levels
of GSH could be critical for the extravascular growth of
metastatic cells. Moreover, maintenance of mitochondrial
GSH homeostasis may be a limiting factor for the survival
of metastatic cells in the immediate period following intra-
sinusoidal arrest and interaction with activated vascular
endothelial cells. Mitochondrial dysfunction is a common
event in the mechanism leading to cell death [37], and,
recently, it has been found to be an essential step for the killing
of non-small-cell lung (NSCLC) carcinomas which are resis-
tant to conventional treatments [38].
us, the impairment of
GSH uptake by mitochondria may be important to sensitize
invasive cancer cells to prooxidant compounds capable of
activating the cell death mechanism.

As previously reported, GSH is e�uxed by cells through
GGT-mediated metabolism, allowing a “GSH-cycle” to take
place, which is implicated in tumor development [39]. In
fact, GGT-positive foci were found in animals exposed to
prooxidant carcinogens, suggesting the hypothesis of GGT
as an early marker of neoplastic transformation [40, 41].
Moreover, increased levels of GGT have been observed in
cancers of the ovaries [42], colon [43], liver [44], melanoma
[45], and leukemias [46]. In studies on melanoma cells in
vitro and in vivo, elevated GGT activity has been found
to accompany an increased invasive growth [45, 47, 48],
and a positive correlation has been described between GGT
expression and unfavourable prognostic signs in human
breast cancer [49].


e prooxidant activity of GGT has also recently been
shown to promote the iron-dependent oxidative damage of
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DNA in GGT-transfected melanoma cells, thus potentially
contributing to genomic instability and an increased muta-
tion risk in cancer cells [50]. GGT/GSH-dependent prooxi-
dant reactions has been shown to exert an antiproliferative
action in ovarian cancer cells [51], while other studies inU937
lymphoma cells have shown that basal GGT-dependent pro-
duction of hydrogen peroxide can represent an antiapoptotic
signal [52].
emodulatory e�ects of GGT-mediated prooxi-
dant reactions could contribute to the resistance phenotype
of GGT-expressing cancer cells by regulating both signal
transduction pathways involved in proliferation/apoptosis
balance, as well as by inducing protective adaptations in the
pool of intracellular antioxidants.

5. GSH Depletion as an Experimental
Approach to Sensitize
Tumor Cells to Therapy

Cancer cell lines containing low GSH levels have been
demonstrated to be much more sensitive than control cells
to the e�ect of irradiation [18]. In fact, GSH depletion
obtained by BSO, the irreversible inhibitor of GCL, is the
most frequently used approach and it is associated withmany
chemotherapeutic agents [53–57]. However, molecular sig-
naling of BSO-induced apoptosis is poorly understood, and,
recently, it has been demonstrated that in di�erent leukaemia
and lymphoma cells, the death receptor-mediated apoptotic
pathway, induced by arsenic trioxide plus BSO, is triggered
via JNK activation [58]. Moreover, in neuroblastoma cells
susceptible to BSO treatment, DNA damage and apoptosis
was triggered via PKC-� activation and ROS production [59,
60].

In fact, BSO in combination with melphalan [14, 61],
is currently undergoing clinical evaluation in children
with neuroblastoma (NCT00002730; NCT00005835) and in
patients with persistent or recurrent stage III malignant
melanoma (NCT00661336). Recently, it has been demon-
strated that a combination of azathioprine with BSO is useful
for localized treatment of human hepatocellular carcinoma
[62].


erefore, BSO clinical use is restricted by its short
half-life, with the consequent need for prolonged infusions
resulting in its nonselective e�ect of GSH depletion on both
normal and malignant cells [63].

6. Role of GSH in Chemoresistance


e increase in GSH levels, GCL activity and GCLC gene
transcription is associated with drug resistance in tumor cells
[64, 65].


e increase inGSH is amajor contributing factor to drug
resistance by binding to or reacting with, drugs, interacting
with ROS, preventing damage to proteins or DNA, or by
participating in DNA repair processes. In melanoma cells,
GSH depletion and GGT inhibition signi�cantly increased
cytotoxicity via oxidative stress [66]. In addition, it has
been demonstrated that GGT-overexpressing cells were more

resistant to hydrogen peroxide [67] and chemotherapics, such
as doxorubicin [68], cisplatin [64], and 5-�uorouracil [69].

Moreover, it has been found that the human multidrug
resistance protein (MRP), a member of the superfamily of
ATP-binding cassette membrane transporters, can lead to
resistance to multiple classes of chemotherapeutic agents [70,
71]. Several studies have shown coordinated overexpression
of GCLC and MRP in drug-resistant tumor cell lines, in
human colorectal tumors and in human lung cancer speci-
mens a�er platinum exposure [70, 71].


ree mechanisms have been proposed for the role of
GSH in regulating cisplatin (CDDP) resistance: (i) GSH may
serve as a cofactor in facilitating MRP2-mediated CDDP
e�ux in mammalian cells; (ii) GSH may serve as a redox-
regulating cytoprotector based on the observations thatmany
CDDP-resistant cells overexpress GSH and �-GCS; and (iii)
GSH may function as a copper (Cu) chelator.

Moreover, overexpression of speci�c GSTs can also a�ect
chemoresistance, whereas polymorphisms that decrease GST
activity are associated with a high risk of developing can-
cer [72]. An elevated expression of GSTs, combined with
high GSH levels, can increase the rate of conjugation and
detoxi�cation of chemotherapy agents, thus reducing their
e�ectiveness [73]. In addition to the transferase function,
GSTs have been shown to form protein-protein interactions
with members of the mitogen activated protein (MAP)
kinases. By interacting directly withMAPKs, including c-Jun
N-terminal kinase 1 (JNK1) and apoptosis signal-regulating
kinase 1 (ASK1), GSTs bind the ligand in a complex structure,
preventing interactions with their downstream targets [74].
Many anticancer agents induce apoptosis via activation of
MAP kinases, in particular JNK and p38 [75, 76]. 
is novel,
nonenzymatic role for GSTs has direct relevance to the GST
overexpressing phenotypes of many drug-resistant tumors.
As an endogenous switch for the control of intracellular
signaling pathways, an elevated expression of GST can alter
the balance of kinases during drug treatment, thereby causing
a potential selective advantage for tumor growth.


e promoter regions encoding GSTs and �GCL possess
binding sites for transcriptional regulators such as NF-kB,
AP-1, AP-2, and the Nrf2/Kelch-like ECH-associated protein
1 (Keap1) system. A�er exposure to oxidative stimuli, Nrf2
dissociates from Keap1, its negative regulator, and translo-
cates into the nucleus where it heterodimerizes with small
Maf proteins [77] and binds to antioxidant responsive ele-
ment (ARE) sequences, triggering a cytoprotective adaptative
response. 
is response is characterised by upregulation of
several cytoprotective and detoxi�cation genes, including
ferritin, GSH-�-reductase (GSR), GST, GCLM, and GCLC,
phase-I drug oxidation enzyme NAD(P)H:quinone oxidore-
ductase 1 (NQO1), MRP, and heme oxygenase-1 (HO-1) [78,
79].

However, in numerous types of cancer, Nrf2 is upregu-
lated and takes on a protumoral identity since the above-cited
cytoprotective genes, not only give tumors an advantage, but
also lead to drug resistance [80–82].

To date, numerous mutations have been found of both
Keap1 and Nrf2 in various human cancers resulting in the
constitutive expression of prosurvival genes. Most of Nrf2
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somatic mutations have led to the impairment of their recog-
nition site for Keap1, which then has led to the continuous
activation of Nrf2. Moreover, it has been observed that the
prognosis of patients with either Nrf2 or Keap1 mutations is
much lower than patients with no mutation [83].

Among Nrf2-regulated genes, HO-1 is the most well
known as a stress protein that can have both antioxidative and
anti-in�ammatory e�ects [84]. It catalyzes the rate-limiting
step in the catabolism of the prooxidant heme to carbon
monoxide, biliverdin, and free iron [85].

Recent experimental evidence has shown the involve-
ment of HO-1 in cancer cell biology. On one hand, HO-
1 protects healthy cells from transformation into neoplastic
cells by counteracting ROS-mediated carcinogenesis and, on
the other hand, HO-1 protects cancer cells, enhancing their
survival and their resistance to anticancer treatment [86].
In addition, high levels of HO-1 have been observed in
various human solid tumors, such as renal [87], prostatic [88],
and pancreatic cancers [89]. Moreover, HO-1 expression in
tumor cells can be further increased by anticancer treatments
(chemo-, radio-, and photodynamic therapy) [90], and it has
been hypothesized that HO-1 and its products may have an
important role in the development of a resistant phenotype.
In this context, it has been recently demonstrated that BSO
and/or the inhibition of the Nrf2/HO-1 axis is able to increase
the sensitivity of neuroblastoma cells to etoposide [91, 92].

7. Therapeutic Potential of GSH and
GSH-Modulating Agents


e modulation of the GSH-based antioxidant redox system
(GRS), the major determinant of the cellular redox status
[93], might represent a promising therapeutic strategy for
overcoming cancer cell progression and chemoresistance.

However, GSH itself cannot be administered clinically
with any e�ect, and for this reason, a variety of precursors or
chemically modi�ed analogues have been generated in order
to mimic glutathione’s various physiological or pharmaco-
logical e�ects.N-acetylcysteine (NAC;Mucomyst) represents
the earlier GSH analogue, and YM737, a monoester of GSH,
recently discovered, has been favourably compared to NAC
[94]. AnotherGSHanalogue approach is cysteine-substituted
S-nitrosoglutathione [95].

Since abundant levels of GST [96] have been identi�ed
in resistant tumors, GSH analogues, that di�erentially inhibit
GST isoforms, have been developed. Telcyta (TLK-286) is
a GSH analogue utilized in combination with cytotoxic
chemotherapies such as platinum, taxanes, and anthracy-
clines in a variety of tumors with very high levels of
glutathione �-transferase pi-1-gene (GST-P1-1) [97]. Telintra
(TLK199) is another small molecule inhibitor of GST-P1-1
developed for the potential prevention of myelosuppression
in blood diseases, namely, myelodysplastic syndrome [98].
A�er a phase 1 clinical trial [99] and a phase 2 using an oral
formulation, TLK199 appeared to be well tolerated and with
some e�cacy in the myeloplastic syndrome treatment [100].

In addition, the implication of GGT activity in the
resistance phenotype of cancer cells suggests a potential use of
GGT inhibitors associated with chemotherapeutics in order

to deplete intracellular GSH and/or to inhibit extracellular
drug detoxi�cation. Di�erent GGT inhibitors are known
[101–103], but, unfortunately, these molecules are toxic and
cannot be used in humans.

Moreover, drugs that target S-glutathionylation have
direct anticancer e�ects since they act on a wide range of
signalling pathways [57]. Among the agents thatmediate their
e�ects through S-glutathionylation, NOV-002 has been most
extensively studied, with a phase III trial (NCT00347412)
completed in advancedNSCLC [104], and data available from
phase II trials in breast and ovarian cancers [105]. NOV-
002 is a product containing oxidized glutathione that alter
the GSH :GSSG ratio and induces S-glutathionylation [106].
NOV-002-induced S-glutathionylation has been shown to
have inhibitory e�ects on proliferation, survival, and invasion
of myeloid cell lines and signi�cantly increased the e�cacy of
cyclophosphamide chemotherapy in amurinemodel of colon
cancer [107].

In a randomized phase II trial, NOV-002 in combination
with standard chemotherapy has shown promising e�ects in
patients with stage IIIb/IV of NSCLC [108]. Positive results
were also obtained from a phase II trial in patients with
neoadjuvant breast cancer therapy [109].

Other therapeutic agents include phenolic antioxidants
(�-naptho�avone, butylated hydroxyanisole, and tert-butyl
hydroquinone), synthetic antioxidants (ethoxyquin, oltipraz,
and phorbol esters), triterpenoid analogue (oleanolic acid
derivatives, sesquiterpenes), and isothiocyanates (sulfor-
aphane). Sulforaphane (SF) is the strongest natural inducer
of Nrf2 and phase II detoxifying enzymes and it has a potent
anticarcinogenic and chemopreventive e�ect by inducing
apoptosis and cell cycle arrest [110].

On the other hand, the inhibition of Nrf2 signalingmight
be employed to enhance the sensitization of chemoresistant
tumors to cytotoxic agents, and in this context, it has
recently been reported that brusatol, a compound found in
a plant extract, acts as inhibitor of this pathway and may
exhibit therapeutic utility [111]. Another e�ective approach to
increasing cancer cell sensitivity to chemotherapeutic drugs
would be to silence bothNrf2 andKeap1 simultaneously [112].
Related to Nrf2, a potential target for redox chemotherapy is
HO-1. HO-1 inhibitors, including zinc protoporphyrin and
more soluble pegylated derivatives (PEG-ZnPP), have been
successfully used to improve chemosensitization of cancer
cells [113]. Moreover, HO-1 inhibitors administered intra-
venously, displayed cytotoxic activity in a murine hypoxic
solid tumor model [114].

Moreover, disul�ram (DSF) does not cause depletion of
total GSH, but shi�s the ratio of GSH/GSSG towards the
oxidized state. DSF induces apoptosis of human melanoma
cells [115], and this apoptogenic e�ect has encouraged ongo-
ing clinical phase I/II studies in humanmetastatic melanoma
(NCT00256230).

Arsenic trioxide (As2O3) is a prooxidant chemothera-
peutic compound combined with agents that deplete cellular
GSH [116]. As2O received FDA approval in 2000 for the
treatment of nonacute promyelocytic leukemia and is used
in patients who have relapsed or are refractory to �rst-line
intervention using retinoid and anthracycline chemotherapy.
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As2O inhibits GPx and mitochondrial respiratory func-
tion that leads to increased ROS leakage contributing to
antileukemia activity. Another piece of evidence suggests that
the irreversible inhibition of thioredoxin reductase is the
key mechanism underlying As2O-induced breast cancer cell
apoptosis [117]. Importantly, As2O3 sensitivity is associated
with low levels of GSH in cancer cells and GSH depletion,
obtained by BSO or ascorbate treatment, contributes to sen-
sitizing cells toward apoptosis [118].
e potentiation of As2O
chemotherapeutic e�cacy using BSOwas demonstrated in an
orthotopic model of prostate cancer metastasis [119].

8. Conclusions


e modulation of cellular GSH is a double-edged sword,
both sides of which have been exploited for potential ther-
apeutic bene�ts [120]. Enhancing the capacity of GSH and
its associated enzymes, in order to protect cells from redox-
related changes or environmental toxins, represents a persis-
tent aim in the search for cytoprotective strategies against
cancer. On the contrary, the strategy of depleting GSH and
GSH-related detoxi�cation pathways is aimed at sensitizing
cancer cells to chemotherapy, the so-called chemosensitiza-
tion [121]. In this context, it has been reported that GSH
and GSH enzyme-linked systemmay be a determining factor
for the sensitivity of some tumors to various chemother-
apeutic agents. In particular, GST is a relevant parameter
for chemotherapy response, and it may be utilized as a
useful biomarker for selecting tumors potentially responsive
to chemotherapeutic regimens.

However, the attempts to deplete GSH have been limited
by the nonselective e�ects of BSO and have stimulated the
research of new GCL inhibitors.

Since it is well known that GSH depletion leads to
the upregulation of antioxidant genes, many of which are
under Nrf2 control and, that in several types of tumors,
Nrf2 is constitutively activated [122, 123], a new and indirect
approach for cancer therapy may be used to modulate
the Nrf2-ARE pathway. Based on this, Nrf2 creates a new
paradigm in cytoprotection, cancer prevention, and drug
resistance.

In summary, the involvement of GSH in the carcino-
genesis and in the drug resistance of tumor cell is clear,
but further studies, aimed at understanding the GSH-driven
molecular pathways, might be crucial to design new thera-
peutic strategies to �ght cancer progression and overcome
chemoresistance.
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