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Abstract

The melibiose permease of Salmonella typhimurium (MelBg,) catalyzes symport of melibiose with
Nat, Lit or H*, and bioinformatics analysis indicates that a conserved Gly117 (helix IV) is part of
the Na*-binding site. We mutated Gly117 to Ala, Pro, Trp or Arg; the effects on melibiose
transport and binding of cosubstrates depended on the physical-chemical properties of the side
chain. Compared with WT MelBg;, the Gly117— Ala mutant exhibited little difference in either
cosubstrate binding or stimulation of melibiose transport by Na* or Li*, but all other mutations
reduced melibiose active transport and efflux, and decreased the apparent affinity for Nat. The
bulky Trp at position 117 caused the greatest inhibition of melibiose binding, and Gly117— Arg
yielded less than a 4-fold decrease in the apparent affinity for melibiose at saturating Na* or Li*
concentration. Remarkably, the mutant Gly117— Arg catalyzed melibiose exchange in the
presence of Na* or Li*, but did not catalyze melibiose translocation involving net flux of the
coupling cation, indicating that sugar is released prior to release of the coupling cation. Taken
together, the findings are consistent with the notion that Gly117 plays an important role in cation
binding and translocation.
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The melibiose permease of Salmonella typhimurium (MelBg,) catalyzes cotransport of
galactoside with Na*, Li* or H*.! MelBg;, belongs to the glycoside/pentoside/
hexuronide:cation family?2, a subgroup of the major facilitator superfamily (MFS) of
membrane transport proteins. MelB of Escherichia coli (MelBg,) is the best-studied member
among all MelB orthologues.3~14 Recently, MelB homologues in human and mouse (called
the major facilitator superfamily domain-containing proteins, MFESD) have been
reported.’>~17 Among them, MESD2A protein, which is expressed in many cells, plays a
role in adaptive thermogenesis;!? it has been also identified as a human lung tumor
suppressor!© and responsible for tunicamycin sensitivity in mammalian cells.!” MFSD2A
shares ~15% identity and ~54% similarity of primary sequence with MelBg;, and the
positions essential or important for melibiose transport in MelB are functionally conserved
in MFSD2A.!7
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MelB utilizes the free energy from the downhill translocation of one cosubstrate to drive
uphill translocation of the other,!8-22 and all three cations compete for a common binding
pocket.23-25 A previous threading model,!3 basing on the crystal structures of a MFS
permease, the H*-coupled lactose permease (LacY),20-28 predicts that MelBg, is organized
into two pseudo-symmetrical six-helix bundles connected by a long middle loop surrounding
an internal cavity facing the cytoplasm. A similar overall fold for other MelB orthologues
has also been proposed from threading analysis.!3 In contrast to LacY, the residues
important for cation binding in MelB are located in the N-terminal helix bundle (Fig. 1),
whereas the H*-binding site in LacY is located primarily in the C-terminal helices.?8 Based
on the location of the sugar-binding site in LacY, the melibiose-binding site is proposed to
lie within the internal cavity (Fig. 1).!3 This model is consistent with numerous biochemical
and biophysical results,!!- 2936 a5 well as low-resolution EM structures of MelBg,.37- 38
The organization of the protein into two separate helix bundles, as well as the location of
cosubstrates, are consistent with the alternating-access transport model, which has been
recognized as a fundamental mechanism for many other secondary transporters.20: 39-46

MelBg; shares 86% identity and 96% similarity of primary sequence with MelBg.
(Supplemental Information, Fig. S1). All non-conserved and 82% of the conserved
variations occur in the C-terminal domain and the middle loop. Bioinformatics analysis
suggests that the internal cavities including two cosubstrate-binding sites are well conserved
between the two MelB permeases (Fig. 1), implying similarity in function, which is
supported by previous studies of melibiose transport and cation binding.! The docked sugar
is surrounded by potential H-bonding partners and aromatic residues (Fig. 1),!13 which share
common features for sugar binding.*!- 4750 A Na* has been proposed to bind between
helices IT and IV13. A large body of experimental data, including those from mutagenesis,
biochemistry and FTIR spectroscopy, indicates that the carboxyl groups of conserved Asp55
and Asp59 (helix II) contribute to Na* binding to MelBg,.!#4 29734 Helix IV is in the center
of a charge/H-bond network involved in the binding of the two cosubstrates (Fig.
1).13.30.34.51 Gly117 is in the middle of helix IV, and the carbonyl oxygen may participate
in Na* coordination (Fig. 1).13

We know little about the role of Gly117, but it was observed that the G117D mutation
rescued the function of inactive mutant D55S in MelBg, 2 which supports the notion that
Gly117 is in close proximity to Asp55.13-52 In addition, in mutant G117C MelBg, the
conformational equilibrium was displaced towards the outward-facing conformation.> In
MelBg;, site-directed mutagenesis has not been used to study the binding sites for
cosubstrates so far. In this study, we mutated Gly117 of MelBg; to four different residues--
Ala, Pro, Trp or Arg. The effects of the mutations on cosubstrate binding and transport
depend on the physical and chemical properties of the side chain. Our studies indicate that
Gly117 plays an important role in cation binding and translocation, which is consistent with
our threading model.

Materials and Methods

Materials

[1-3H]Melibiose was custom synthesized by PerkinElmer (Boston, MT). The 2'-(N-
dansyl)aminoalkyl-1-thio-b-p-galactopyranoside (D*G) was kindly provided by Drs. H.
Ronald Kaback and Gérard Leblanc. Monensin and carbonyl cyanide m-
chlorophenylhydrazone (CCCP) were purchased from Sigma-Aldrich. 2-(4'-
maleimidylanilino)-naphthalene-6-sulfonic acid was purchased from Invitrogen.
Oligodeoxynucleotides were synthesized by Integrated DNA Technologies. MacConkey
agar media (lactose free) was from Djfco. All other materials were reagent grade and
obtained from commercial sources.
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Bacterial strains and plasmids

E. coli DW2 strain (melA*t, AmelB, AlacZY), obtained from Dr. Gérard Leblanc, was used
for the functional characterization. E. co/i XL.1 Blue cells were used for DNA
manipulations. The expression plasmid pK95 AAH/MelBg,/CHis," 3 which encodes the
full length MelBg; with L5—M and a His-tag at the C-terminus (the wild type) was used
as the template. Four individual mutants with residue Ala, Pro, Trp or Arg at position
Gly117 were constructed by QuickChange™ Site-Directed Mutagenesis Kit from
Stratagene. All mutants have been confirmed by DNA sequencing.

Growth of cells and protein overexpression

E. coliDW2 cells (melA*, melB,lacZY) containing a given plasmid were grown in Luria-
Bertani (LB) broth with 100 mg/L of ampicillin in a 37-°C shaker overnight. The overnight
cultures were diluted by 5% to LB broth supplemented with 0.5% glycerol and 100 mg/L of
ampicillin, and constitutive overexpression was obtained by shaking at 30 °C for 5 h.

Preparation of right-side-out (RSO) membrane vesicles

RSO membrane vesicles were prepared from E. coli DW2 cells by osmotic lysis, !> 9% 33
extensively washed and resuspended in 100 mM KP; (pH 7.5) at a protein concentration of
~25-30 mg/ml, frozen in liquid N,, and stored at —80 °C.

Preparation of crude membranes

The 5-hour cultures with the expressed MelBg, were washed with 20 mM Tris-HCI (pH 7.5)
once, re-suspended and adjusted with the same buffer to Aggg ~20. Approximately 100 pL
of cells from each sample were sonicated in an ice-cold water bath (Branson 2510) for 5
min, three times; and centrifuged at 20,816 g for 15 min at 4 °C. The supernatant (80 pL)
was subjected to ultracentrifugation at 384,492 g (TLA-100 rotor, Beckman Optima™ Max
Ultracentrifuge) for 20 min; the pellets were resuspended in 70 pL of 20 mM Tris-HCI (pH
7.5).

SDS-12% PAGE and Western blotting

After protein assay using Micro BCA™ Protein Assay Kit (Pierce), ~15 g of total
membranes were loaded onto each well of SDS-12%PAGE. The gel was transferred onto the
PVDF membrane by the 7rans-Blot Turbo transfer system (Bio-Rad) at 1.3 A, 25 V for 15
min. The blocked PVDF membrane was then reacted with the penta-His horseradish
peroxidase conjugate and washed according to the protocols provided in the Penta-His HRP
Conjugate Kit (Qiagen). MelBg, proteins were detected using the SuperSignal West Pico
chemiluminescent substrate ( 7hermo Scientific) after exposing it to the X-ray film (Kodak
BioMax XAR film).

[1-3H]Melibiose transport assay

E. coli DW?2 cells expressing MelBg; in the absence of melibiose were washed with 50 ml of
100 mM KP; (pH 7.5, so-called Na*-free buffer) twice, followed by washing with 50 ml 100
mM KP;, pH 7.5, 10 mM MgSOy. The cell pellets were resuspended with the latter buffer,
adjusted to an Agpp = 10 (~0.7 mg protein/ml). Melibiose transport at a final concentration
of 0.4 mM and a specific activity of 10 mCi/mmol was assayed as described.!

Melibiose fermentation

The DW2 cells (melAt, AmelB, AlacZY) were transformed with a given plasmid, plated on
MacConkey agar plates3> containing ~100 mM Na* with supplement of 1-30 mM melibiose
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(the sole carbohydrate source) and 100 mg/L of ampicillin, and incubated at 37 °C. After 18
h, the plates were viewed and photographed immediately.

Melibiose efflux and exchange

RSO membrane vesicles containing MelBg; in 100 mM KP;, pH 7.5, 10 mM MgSQO4 were
concentrated to 25-30 mg/ml, and pre-equilibrated overnight on ice with melibiose (20 mM,
10 mCi/mmol), 0.75 .M monensin, and 10 uM CCCP22, in the absence or presence 20 mM
NaCl or LiCl. Aliquots (2 pL) were diluted 200 fold into a given buffer in the absence
(efflux) or presence (exchange) of 20 mM unlabeled melibiose, and reactions were
terminated by dilution and rapid filtration at a given time.!

FRET (Trp—D2G)

Fluorescence was measured with an AMINCO-Bowman Series 2 Spectrometer. Steady-state
measurements were performed in a 3-mm quartz cuvette (Starna Cells, Inc) with RSO
membrane vesicles at a protein concentration of ~0.5 mg/ml in 100 mM KP;, pH 7.5. With
excitation wavelength at 290 nm, the FRET intensity was recorded for 60 sec at 500 nm with
slit widths of 2 mm for both excitation and emission.

Determination of apparent cation-stimulation constants (Kp 5N2* and Kj 5L1*) of the D2G

FRET

NaCl or LiCl was consecutively added into a 3-mm quartz cuvette containing RSO vesicles
after an addition of 10 uM DG (a Kp value for the WT). Water at identical volume was
used for the control. The FRET signals were recorded for 60 sec at each condition and mean
values were used for further calculation. The increase in intensity (AINa+orLi+) ‘the
difference before (I) and after successive additions of cation solution (INator Lity ' yyaq
expressed as the percentage of the I (AIN+orLi+/[) FRET stimulation at each cation
concentration was corrected by subtracting corresponding IV€'/I, value, and then plotted as
a function of Na* or Li* concentration. The Kj 5™+ o Li+ yalues are determined by fitting
the data to a hyperbolic function.

Determination of the melibiose concentration corresponding to half-maximal displacement
of bound D2G (ICs)

RESULTS

Melibiose was added stepwise to a 3-mm quartz cuvette containing RSO vesicles after the
additions with DG (10 1M) and NaCl or LiCl (20 mM or 200 mM) until no change
occurred in fluorescence emission at 500 nm. An identical volume of water was added at
each point as a negative control. FRET signals were recorded for 60 sec after each addition,
and mean values were calculated. The decrease in intensity after each addition of melibiose
(APMely was corrected by subtracting the emission change obtained with water (AFW3r),
and plotted as a function of melibiose concentration. The IC5( values were determined by
fitting the data to a hyperbolic function.

Construction and protein expression of Gly117 mutants

Gly at position 117 in MelBg; was changed by site-directed mutagenesis to four different
residues: Ala (small volume); Pro (a helix destabilizer); Trp (aromatic ring); or Arg (positive
charge). Membrane proteins were separated by SDS-PAGE, and the proteins were detected
by both silver nitrate and Western blot using anti-His antibody (Supplemental Fig. S2).
Compared to the WT, most of the mutants had similar levels of membrane expression, with
the exception of G117R, which had a reduced expression.
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Melibiose active transport in intact cells

In a nominally Na*-free buffer, the WT catalyzes melibiose transport at an almost linear rate
for 15 s to 80 nmol/mg protein at 2 min (Fig. 2), which was significantly stimulated by Na*
or Li* as shown previously.!- ¢ Addition of the protonophore CCCP abolished transport,
indicating that the primary driving force for transport is the electrochemical H* gradient.
Furthermore, when unlabeled melibiose was added at each time point during transport, with
al0-min incubation prior to the filtration, the entire internal pool of melibiose was
exchanged with extracellular melibiose (Supplemental Information, Fig. S3). Thus, there is
little or no hydrolysis or chemical alteration of the accumulated intracellular melibiose.

The mutant G117A catalyzed Na*- or Li*-dependent melibiose transport similar to the WT
(Fig. 2) with somewhat lower H*-coupled transport activity (i.e., in the absence of Na*t or
Li*). All other mutants (P, W or R) exhibited H*-coupled melibiose transport at a level
indistinguishable from CCCP-treated WT or non-transformed DW?2 cells, and showed no
response to addition of Nat or Li*.

Melibiose fermentation

On MacConkey agar plates containing 1-30 mM melibiose, untransformed DW-2 cells
formed pale/white colonies with a translucent background, denoting little or no melibiose
translocation across the membranes. At >10 mM melibiose, DW2 cells, containing the
chromosome-encoded a-galactosidase and recombinantly overexpressing WT MelBg;,
formed magenta colonies on a hazy background indicating melibiose fermentation and
therefore downhill melibiose influx catalyzed by MelBg; (Fig. 3). At 5 mM melibiose, few
colonies were pink, whereas at 2.5 mM or lower, the colonies were pale yellow/brown.
Mutant G117A exhibited similar color to WT. Mutant G117P exhibited red or pink colonies
only at high concentrations of melibiose, indicating limited melibiose influx and
fermentation. Mutants G117R and G117W formed colonies that were indistinguishable from
untransformed cells even at 30 mM melibiose, indicating no fermentation.

Melibiose efflux and exchange

In the absence of Na* or Li*, RSO membrane vesicles containing WT MelBg; exhibited a
slow rate of melibiose efflux down a concentration gradient and a slightly faster rate of
equilibrium exchange (Fig. 4). Whereas the efflux rate was stimulated by Na* or Li™, the
exchange rate was enhanced by Na* but inhibited by Li*.! In the presence of Na*, 96% of
the intravesicular melibiose exchanged with the extracellular unlabeled melibiose within 5
min (data not shown). Consistent with the results in intact cells, little or no melibiose
hydrolysis occurred within the RSO vesicles.

The G117W mutant did not catalyze either melibiose efflux or exchange in the presence of
H*, Na* or Li*. The G117P mutant catalyzed significantly reduced rates of efflux and
exchange. Strikingly, mutant G117R exhibited little or no efflux but catalyzed a relatively
fast rate of exchange in the presence of Na* or Li*, but not H*.

Ko 5N2+ or Ky 5L+ for D2G FRET

FRET from endogenous Trp residues to the dansyl moiety of bound D2G has been
demonstrated with MelBg.* 37 and MelBg;.! Thus, WT MelBg; exhibits FRET upon the
addition of D2G, which is stimulated by addition of Na* or Li* and reversed by melibiose.
The difference in intensity observed before and after melibiose addition reflects the D2G
bound specifically to MelBg;. At saturating Na* or Li*, the WT MelBg; exhibits K for D2G
of ~10 uM.! The Na* or Li* enhancement of FRET (difference in intensity before and after
cation addition, AINa* or Li+) regylts from combined effects of an increase of D2G binding
per se and a conformational change (distance and/or environment) induced by Na* or Li*
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binding.!> # Mutations may affect Na*- or Li*-induced intensities by (a) decreasing the
binding affinity for either or both cosubstrates, and/or (b) modifying the micro-environment
surrounding donor Trp residue(s), and/or (c) restricting the conformational change. Thus, the
same concentrations of Na*- or Lit-bound ternary complex from different mutants may not
yield the same Al/Ij value.

In order to quantify cation binding to MelBg, mutants, AINa*+ or Li+ /1 wag measured as a
function of Na* or Li* concentration (Fig. 5, upper panels). The stimulation constants

(Ko sN#* and K; sHi*) for D2G FRET in WT MelBg; were 0.9 mM and 1.5 mM, respectively,
and the mutant G117A yielded similar values (Table 1). K sN2* and K s“i* values for
G117P were 25-and 6-fold higher than those for the WT, respectively. With mutant G117R,
both Kj 5 values increased by 12 fold. The K s-i* for G117W was only 2.5-fold higher than
obtained for WT, but no Nat stimulation was observed even at 500 mM (data not shown). In
all three mutants, the maximum stimulations by Na* or Lit were largely reduced implying
that either the micro-environment and/or distance between DG and donors are changed, or
that the number of bound D2G molecules is reduced by lower sugar affinity. In either case,
the constant (K s+ o Li+) reflects the cation-binding affinity.

ICsq for melibiose displacement of bound D2G

In order to quantify melibiose binding to MelBg;, 10 uM D?G, Na* or Li*, and then the
titrate melibiose were consecutively added to RSO vesicles. ICsg values for WT MelBg; of
3.8 mM or 1.7 mM were observed at 20 mM Na™* or Li™, respectively, and 2.2 mM or 1.8
mM at 200 mM Na™ or Li*, respectively (Fig. 5, bottom panels; Table 2). The ICs for
mutant G117A was about 2-fold higher than that of the WT at 20 mM Na* or Li*. In the
presence of 20 mM or 200 mM of Li*, IC5( values for mutant G117W were 50 mM or 14.1
mM, respectively, and for mutant G117P were 11.3 mM or 7.5 mM, respectively. Mutant
G117R exhibited IC5 of 5.6 mM or 4.7 mM in the presence of 200 mM Nat or Li*. FRET
intensities for mutants G117W or P, with Na* as the cosubstrate, were too weak to allow the
determination of ICs( value.

DISCUSSION

An ordered-binding model for cation/melibiose symport in MelBg. has been

suggested.!!- 13- 14 An extended model for the melibiose efflux mechanism is proposed for
MelBg; here (Fig. 6). In this simplified scheme, melibiose efflux down a sugar concentration
gradient consists of 8 steps (black solid arrows): [ Step-1, Na*-bound inward-facing state, or
Pp:Na* state] Binding of a Na* to the inward-facing conformer; [Step-2, Na*- and melibiose-
bound inward-facing state, or P;:Na* :Mel state] Binding of a melibiose from the
cytoplasmic cavity; [Step-3, occluded Nat-and melibiose-bound state, or P:(Na*:Mel) state)
Formation of a ternary-complex intermediate that is occluded on both sides; [ Step-4, Na'*-
and melibiose-bound outward-facing state, or Py:Na* :Mel state] Opening of the periplasmic
cavity; [Step-5, Nat-bound outward-facing state, or Py:Na* state] Release of the melibiose at
the outer surface; [Step-6, empty outward-facing state, or Po.empty state] Release of Na*
from an outward-facing conformer; [ Step-7, occluded empty state, or P:(empty) state)
Formation of an unloaded intermediate occluded on both sides; [ Step-§, empty inward-
facing state, or Pi:empty state] Opening of the cytoplasmic cavity. The melibiose efflux
involves the whole cycle, and melibiose exchange reaction involves only steps /-5.

Previously, we have experimentally determined! that the extracellular release of cation is the
rate-limiting step for melibiose efflux catalyzed by MelBg,, and melibiose is released from
MelBg; extracellularly prior to the release of Nat. These results are consistent with what
observed in MelBg..22 Here, we provide further evidence to support this notion. Cells
expressing mutant G117R neither ferment melibiose nor catalyze melibiose active transport
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or efflux. Remarkably, however, this mutant catalyzes Na*- or Li*- but not H*-coupled
equilibrium exchange. Thus, in the presence of 20 mM melibiose and Na* or Li* on both
sides of the membrane, the mutant can undergo the global conformational change involved
in an alternating access-type mechanism but is defective in releasing Na* or Li* (Fig. 6, step
6), implying that Gly117 plays an important role in the cation translocation mechanism. This
behavior of mutant G117R, similar to that of E325A LacY>%: 3, strongly supports the
ordered-binding mechanism as postulated (Fig. 6).

The rate of exchange is believed to correlate with the binding affinity. Accordingly, at
saturating Na* or Li* concentration, the ICs for melibiose displacement of bound D2G
exhibits only a 2.5-fold increase (Table 2). If we assume that the mutation has a similar
effect on DG and melibiose, then it can be estimated that the apparent binding constant
(Ky) for melibiose is increased by less than 4 fold, implying that sugar binding is only
slightly affected by the Arg at position 117, and therefore Gly117 may not coordinate
melibiose directly.

In WT MelBg,, we have been observed previously! that Li* stimulates melibiose efflux and
an outwardly directed Li* gradient increases exchange; however, at equal Li* concentrations
on both sides of the membrane, the melibiose exchange rate is slower than the efflux rate. In
MelBg,,2%0 Li* also inhibits melibiose exchange, but not methyl-B-o-thiogalactoside
exchange. Although the mechanism of inhibition is still not clear, it is possible that MelB/
Li*/melibiose complexes favor an occluded state (Fig. 6, step 3) in which there is no
exchange between free and bound sugars.! In the presence of Li*, the Gly117—R mutation
inhibits melibiose efflux but stimulates exchange at a rate even faster than that obtained with
WT MelBg;. It is likely that the mutation may decrease the stability of the MelB/Lit/
melibiose complexes at step 3, thus facilitating melibiose exchange at a rate similar to that
obtained in the presence of Na*t.

Six of eight endogenous Trp residues are located in the N-terminal helix bundle. Trp64
(helix IT) and Trp299 (IX) of MelBg, are responsible for 80% of the DG FRET, and
apparently Trp116 does not contribute significantly to the FRET.23 Thus, it seems unlikely
that the inserted Trp at position 117 could serve as an efficient FRET donor or significantly
quench the Trp64 and Trp299 emission directly. Mutant G117W specifically blocked Na*-
induced D2G FRET (AI), but the apparent affinity for Li* did not change significantly (< 3-
fold increase in K s-i*, Table 1). Thus, lack of Na*-induced D2G FRET (AI) may be
mainly due to a large decrease in Na* binding.

While in most Gly117 mutants there are reductions in binding of Na*, Li* and melibiose, the
effect on Na* binding is more severe than those on Li* and melibiose. The MelB orthologue
of Klebsiella pneumoniae (MelBgp) couples melibiose transport with H* and Li* but not
Na*.6! It has been demonstrated that Asn58, which is adjacent to Asp59, is important for
Na™ recognition, and MelBg,, has Ala at position 58.31 It seems likely that selective
elimination of Na* binding in MelB could be achieved by a minor modification around the
cation-binding site. In addition, the effective inhibition of melibiose binding in mutant
G117W (Table 2) may be due to a steric effect of the bulky side chain, which may also
partially account for the effects of other mutations on sugar binding.

Gly is known to destabilize a-helices, and the replacement with Pro, another a-helix
destabilizer that may alter the tilt in helix IV, partially inhibits both efflux and exchange
reactions, as well as impairs affinity for the cosubstrates to a similar extent. Thus, the data
support the notion that the melibiose/cation symport mechanism requires precise positioning
of helix IV.
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If the carbonyl oxygen at position 117 is a part of the cation-binding site, then a small
neutral replacement should not have a significant effect. Accordingly, placement of Ala at
position 117 has little or no effect on Na*- or Lit-coupled melibiose transport (Fig. 2) or the
apparent affinity for Na*, Lit or melibiose (Tables 1 & 2). Taken as a whole, our findings
show that the placement of Arg or Trp at position 117 abolishes melibiose uphill transport,
efflux, and fermentation; G117R and P greatly decrease apparent affinities for Nat and Li*.
Remarkably, the mutant G117R retains significant sugar affinity and catalyzes melibiose
exchange, a partial reaction, with bound Na* or Li*, but does not catalyze melibiose
translocation involving net flux of the coupling cation. In conclusion, Gly117 plays an
important role in cation binding and translocation of MelBgt, which is consistent with our
threading structure.!3

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS
MelBg melibiose permease of Salmonella typhimurium
MelBg. MelB of Escherichia coli
LacY lactose permease of E. coli
melA gene encoding a-galactosidase
LB broth Luria-Bertani broth
DG 2'-(N-dansyl)aminoalkyl-1-thio-p-p-galactopyranoside
CCCP carbonylcyanide-m-chlorophenylhydrazone
KogNator Li+ the Na* or Li* stimulation constant for D2G FRET
1Cso the melibiose concentration corresponding to half-maximal displacement

of bound D?G.
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Fig. 1.

Putative cosubstrate-binding sites of MelB viewed from the cytoplasmic side. The N-and C-
terminal helix bundles are shown in green and blue, respectively. The residues essential
(D55 and D59) or important (N58) for Na* binding in MelBg, are shown as yellow sticks.
Residues colored in cyan (D19, D124, R52, R149, and K377) and pink (Y26, Y113, W116,
and Y120) are important for melibiose binding/transport in MelBg.. The Gly117 is shown
by backbone (yellow) and labeled in red. Important loops between helices IV-V and X-XI
are labeled as Loop4_5 and Loop(_ 1, respectively. A melibiose molecule is shown in
green.!3
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Fig. 2.

Melibiose transport in intact cells. E. coli DW2 cells were washed and resuspended with 100
mM KP;, pH 7.5, 10 mM MgSQy, and adjusted to 0.7 mg/ml of protein. Transport was
initiated by adding melibiose (0.4 mM, 10 mCi/mmol) in the absence or presence of 20 mM
NaCl or LiCl. Intracellular melibiose is plotted as a function of time. The cells expressing
WT MelBg; were treated with 10 pM CCCP prior to the transport assay.
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1 2.5 5 10 20 30 Melibiose

Fig. 3.

Melibiose fermentation. E. coli DW?2 (lacY~Z melA* B") cells were transformed with a
plasmid encoding the WT or a MelBg; mutant, and plated on MacConkey agar (lactose free)
containing concentrations of melibiose ranging from 1 mM to 30 mM, and incubated at 37
°C for 18 h.
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Melibiose efflux and exchange. Melibiose efflux (open symbols) was measured by diluting
the preloaded vesicles without (squares) or with 20 mM NaCl (circles) or LiCl (triangles) in
a buffer containing 100 mM KP;, pH 7.5, without or with 20 mM NaCl or LiCl, respectively.
Melibiose exchange (filled symbols) was assessed in the same way except for the presence
of 20 mM unlabeled melibiose in the dilution buffer. For a negative control, RSO vesicles
containing WT MelBg, were treated with 3.6 mM 2-(4'-maleimidylanilino)-naphthalene-6-
sulfonic acid for 5 hr at 23 °C (szars), and diluted into 100 mM KP;, pH 7.5 in the absence of
melibiose.! Intracellular melibiose was expressed as a percentage of the zero-time point.

Error bars indicate S.D.
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Fig. 5.

Apparent affinity. RSO vesicles (0.5 mg/ml, 100 mM KP;, pH 7.5) containing WT or a
MelBg; mutant were used for DG FRET assay at excitation and emission wavelengths of
290 and 500 nm, respectivley. ( Top panels): Determination of Ky sNa* and Ky 5™+ for the
D? 0.5 G FRET. With 10 pM DG, Na* or Li* was added at increasing concentrations. The
normalized emissions were plotted as a function of Na* (circles) or Li* (triangles)
concentration. Ky 5Nt or Kj sMi* value was determined by fitting a hyperbolic function to
the data. (Bottom panels). Determination of ICs for melibiose displacement of bound D%G.
With D?G (10 uM) and Na* or Li*at a given concentration, melibiose were added stepwise
until the displacement of the bound D?G is complete. After correction for the water dilution
effect, the change in intensity (AF) was plotted as a function of melibiose concentration. The
IC5( value was determined by fitting a hyperbolic function to the data obtained in the
presence of 20 mM Na' (circles with dashed lines), 200 mM Na™ (circles with solid lines),
20 mM Li* (triangles with dashed lines), or 200 mM Li* (triangles with solid lines).
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An ordered-binding model for melibiose/Na* efflux catalyzed by MelBg; (see text). The N-
and C-terminal domains of MelBg; molecule are colored in green and blue, respectively.

Sugar and Na* are shown as black hexagons and red spheres, respectively. P| or Pg

represents the permease at an inward-facing or outward-facing conformation, respectively.
P:(Na*:Mel) or P:(empty), cosubstrates-bound or unloaded permease at the occluded state,

respectively.
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