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Abstract

Oral infection by Trypanosoma cruzi has been the primary cause of recent outbreaks of acute Chagas’ diseases. This route of
infection may involve selective binding of the metacyclic trypomastigote surface molecule gp82 to gastric mucin as a first
step towards invasion of the gastric mucosal epithelium and subsequent systemic infection. Here we addressed that
question by performing in vitro and in vivo experiments. A recombinant protein containing the complete gp82 sequence
(J18), a construct lacking the gp82 central domain (J18*), and 20-mer synthetic peptides based on the gp82 central domain,
were used for gastric mucin binding and HeLa cell invasion assays, or for in vivo experiments. Metacyclic trypomastigotes
and J18 bound to gastric mucin whereas J18* failed to bind. Parasite or J18 binding to submaxillary mucin was negligible.
HeLa cell invasion by metacyclic forms was not affected by gastric mucin but was inhibited in the presence of submaxillary
mucin. Of peptides tested for inhibition of J18 binding to gastric mucin, the inhibitory peptide p7 markedly reduced
parasite invasion of HeLa cells in the presence of gastric mucin. Peptide p7*, with the same composition as p7 but with a
scrambled sequence, had no effect. Mice fed with peptide p7 before oral infection with metacyclic forms developed lower
parasitemias than mice fed with peptide p7*. Our results indicate that selective binding of gp82 to gastric mucin may direct
T. cruzi metacyclic trypomastigotes to stomach mucosal epithelium in oral infection.
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Introduction

Orally transmitted infection by the protozoan parasite Trypano-

soma cruzi has been responsible for frequent outbreaks of acute

cases of Chagas’ disease in recent years [1,2]. In Brazil, after the

elimination of the domiciliary vector Triatoma infestans in many

endemic areas, and the control of the blood bank transmission, T.

cruzi infection by the oral route constitutes the most important

transmission mechanism [2]. The occurrence of Chagas’ disease

through food contamination, involving triatomine insects other

than T. infestans, has been reported in different geographical

regions. The incidence is higher in the Brazilian Amazon [1],

where more than half of acute cases of the disease reported in the

last 40 years can be attributed to microepidemics of orally

transmitted infection [2,3].

Studies on oral T. cruzi infection in the mouse model have shown

that the insect stage metacyclic trypomastigotes invade the gastric

mucosal epithelium and, following intracellular replication as

amastigotes, differentiate into trypomastigotes that are subsequently

released into circulation [4,5]. During oral infection, gastric mucosa

is uniquely targeted for metacyclic trypomastigote entry in order to

establish a systemic T. cruzi infection, with parasites being

undetectable elsewhere within the mucosa of the oropharynx or

esophagus [4]. There are several evidences that the metacyclic stage-

specific surface glycoprotein gp82 plays a critical role in the

establishment of T. cruzi infection by the oral route [6,7]. Gp82 is a

cell adhesion molecule that mediates metacyclic trypomastigote

entry into cultured human epithelial cells, by triggering the signal

transduction pathways leading to cytosolic Ca2+ mobilization in both

cells [8], an event essential for parasite internalization [9,10,11]. In

addition to cell invasion-promoting properties, gp82 has the ability to

bind to gastric mucin [6]. Through gp82-mediated interaction with

gastric mucin, a constituent of the luminal barrier that functions as a

first line of defense against invading pathogens, the parasites may

effectively be addressed to the target cells. Metacyclic forms of T.

cruzi strains deficient in gp82 expression are poorly infective when

administered orally into mice, although they efficiently invade host

cells in vitro by engaging gp30, a Ca2+ signal-inducing surface

molecule related to gp82 but devoid of gastric mucin-binding

property [7]. Unlike gp82-expressing strains, the gp82-deficient

strains have reduced capacity to enter cultured epithelial cells in the

presence of gastric mucin [7]. This reinforces gp82 binding to gastric

mucin as an important requirement for parasites reaching the

underlying target cells. Selective binding of gp82 to gastric mucin

could explain why parasite invasion is not found anywhere within the

oropharynx or esophagus [4]. Shigella dysenteriae, for instance, whose
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pathogenic potential correlates with its capacity to invade and

multiply within cells of the colonic epithelium, adheres preferentially

to colonic mucin [12]. Although purified gp82, either in its native

form or as a recombinant protein, binds to gastric mucin, it remains

to be demonstrated that T. cruzi metacyclic forms bind selectively to

gastric mucin in gp82-dependent manner. Here we aimed at

addressing that question, at identifying the gp82 sequences involved

in gastric mucin-binding, and at investigating the effect of gp82-

based synthetic peptides on metacyclic trypomastigote infection in

vitro and on oral infection in mice.

Methods

Parasite and host cell invasion assay
T. cruzi strain CL [13] was used throughout. Parasites were

maintained cyclically in mice and in liver infusion tryptose

medium. Metacyclic trypomastigotes, generated in Grace’s

medium, were purified by passage through DEAE-cellulose

column, as described [14]. HeLa cells, the human carcinoma-

derived epithelial cells, were grown at 37uC in Dulbecco’s

Minimum Essential Medium, supplemented with 10% fetal calf

serum, streptomycin (100 mg/ml) and penicillin (100 U/ml) in a

humidified 5% CO2 atmosphere. Cell invasion assays were carried

out as detailed elsewhere [15], by seeding the parasites onto each

well of 24-well plates containing 13-mm diameter round glass

coverslips coated with 1.56105 HeLa cells. After 1 h incubation

with parasites, at multiplicity of infection 10:1, the duplicate or

triplicate coverslips were fixed in Bouin solution, stained with

Giemsa, and sequentially dehydrated in acetone, a graded series of

acetone:xylol (9:1, 7:3, 3:7) and xylol. Cell invasion assays in the

presence of gastric mucin were performed with mucin suspended

in culture medium.

Production and purification of recombinant proteins J18,
J18b, J18* and C03

The recombinant protein J18, containing the full-length T. cruzi

gp82 (GenBank accession number L14824) in frame with

gluthatione S-transferase (GST), was produced in E. coli DH5-a

by transforming the bacteria with a pGEX-3 construct comprising

the gp82 gene [16]. All steps for induction of the recombinant

protein J18 and its purification are detailed elsewhere [17]. J18b, a

construct containing the carboxy-terminal half of gp82, and J18*,

with deletion of 65 amino acids (residues 257 to 321), were

prepared as previously described [18,19] and purified in the same

manner as J18. In addition, from a cloned full-length gp82 cDNA

named C03 (GenBank accession number EF445668) we generated

the recombinant protein C03 containing histidine tail, as

previously described [17]. The amount of purified protein was

quantified by reaction with Coomassie Plus (Pierce) in 96 well

plates, and reading at 620 nm. To certify that the desired protein

was obtained, the purified samples were analyzed in SDS-PAGE

gel stained with Coomassie Blue, and by immunoblotting using

anti-GST antibodies.

Binding of recombinant proteins based on metacyclic
trypomastigote gp82 to mammalian mucin

Microtiter plates (96 wells) were coated with mucin from

porcine stomach (Type III, Sigma) or from bovine submaxillary

glands (Type I-S, Sigma) in PBS (10 mg/well). After blocking with

PBS containing 2 mg/ml bovine serum albumin (PBS/BSA) for

1 h at 37uC, the plates were sequentially incubated at 37uC for 1 h

with the recombinant protein J18, J18* or C03, with polyclonal

monospecific antibody directed to J18, C03 or GST, and with

peroxidase-conjugated anti-mouse IgG, all diluted in PBS/BSA.

The final reaction was revealed by o-phenilenediamine and the

absorbance at 492 nm read in a Multiscan MS ELISA reader. To

check the effective coating with mucin, the mucin-coated

microtiter plates (10 mg/well) were blocked with PBS/BSA and

incubated at 37uC for 1 h with anti-gastric mucin or anti-

submaxillary mucin antisera diluted 1:100 in PBS/BSA. Reaction

proceeded with peroxidase-conjugated anti-mouse IgG, as de-

scribed above. For coating with gastric mucin preparation at

pH 2.5 citrate buffer was used.

Competitive gastric mucin-binding between the
recombinant protein J18 and synthetic peptides

Wells of microtiter plates were coated with gastric mucin

(10 mg/well). After blocking with PBS/BSA, the plates were

incubated for 1 h at 37uC with J18 (10 mg/ml) in absence or in the

presence of individual synthetic peptides (200 mg/ml) correspond-

ing to the gp82 sequence spanning residues 224–333, synthesized

as described [19]. Following incubation with anti-GST antibodies

and peroxidase-conjugated anti-mouse IgG, the reaction was

revealed by o-phenilenediamine.

T. cruzi metacyclic trypomastigote binding to
mammalian mucin and inhibition by J18

Twenty four- well plates, containing 13 mm round glass

coverslips, were incubated overnight at 37uC with 100 ml of

gastric mucin or submaxillary mucin, at 400 mg/ml in PBS. After

washings in PBS, a metacyclic trypomastigote suspension in cell

culture medium (56107/ml) was added to each well and

incubation proceeded for 1 h at 37uC. Following washes with

PBS, the coverslips were fixed in methanol and Giemsa-stained for

microscopic visualization of parasites. ELISA assay for metacyclic

trypomastigote binding to mammalian mucin was performed as

follows: 96-well microtiter plates coated with gastric mucin or

submaxillary mucin, at varying concentrations in PBS, were

washed in PBS and then 50 ml of parasite suspension in cell culture

medium (56107/ml) were added. Following 1 h incubation at

37uC and washings in PBS, the parasites were fixed with 3.5%

Author Summary

Frequent outbreaks of acute Chagas’ disease by food
contamination with T. cruzi, characterized by high mortal-
ity, have been reported in recent years. In Brazil, oral
infection is currently the most important mechanism of T.
cruzi transmission. Studies on oral T. cruzi infection in mice
have shown that insect-stage metacyclic trypomastigotes
invade only the gastric mucosal epithelium and not other
areas of mucosal epithelia prior to establishing systemic
infection. Here we have shown that metacyclic trypomas-
tigotes bind selectively to gastric mucin, a property also
displayed by gp82, a metacyclic stage-specific surface
protein implicated in cell adhesion/invasion process. It is
also shown that the gastric mucin-binding property of
gp82 resides in the central domain of the molecule and
that the synthetic peptide p7, based on a gastric mucin-
binding sequence of gp82, markedly reduces parasite
invasion of cultured human epithelial cells in the presence
of gastric mucin. These results, plus the finding that mice
that received peptide p7 before oral infection with
metacyclic trypomastigotes had fewer parasites replicating
in the gastric mucosa and developed lower parasitemias
than control mice, lead us to suggest that gp82-mediated
interaction with gastric mucin may direct T. cruzi to
stomach mucosal epithelium in oral infection.

Mucin Binding of T. cruzi in Oral Infection
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formaldehyde for 20 min at room temperature. After washings in

PBS, the parasites were sequentially incubated with a monoclonal

antibody to T. cruzi surface glycoprotein gp35/50, and peroxidase-

conjugated anti-mouse IgG, all of them diluted in PBS/BSA. The

final reaction was revealed by o-phenilenediamine. The same

protocol was used for inhibition of parasite binding to gastric

mucin, in which microtiter plates coated with gastric mucin

(10 mg/well) were incubated with metacyclic forms in absence or

in the presence of varying concentrations of the recombinant

protein J18 or GST.

Parasite migration assay through mucin layer
Polycarbonate transwell filters (3 mm pores, 6.5 mm diameter,

Costar) were coated with 50 ml of a preparation containing

10 mg/ml gastric mucin or submaxillary mucin in water. T. cruzi

metacyclic trypomastigotes, in 600 ml PBS were added to the

bottom of 24-well plates (7.56107 parasites/well) and incubated

for 1 h at 37uC. Thereafter, the mucin-coated transwell filters

were placed onto parasite-containing wells, and 100 ml PBS were

added to the filter chamber. At different time points of incubation

at 37uC, 10 ml were collected from the filter chamber for

determination of parasite number and the volume in this chamber

was corrected by adding 10 ml PBS.

Oral infection
Four to five week-old female Balb/c mice, bred in the animal

facility at Universidade Federal de São Paulo, were used. All

procedures and experiments conformed with the regulation of the

institutional Ethical Committee for animal experimentation, and

the study was approved by the Committee. Mice were infected

with T. cruzi metacyclic forms by oral route (46105 parasites per

mouse), using a plastic tube adapted to a 1 ml syringe. Starting on

day 10 post-inoculation, parasitemia was monitored twice a week

by examining 5 ml blood samples collected from the tail, at the

phase contrast microscope. For detection of parasites in the gastric

mucosal epithelium, the stomach of mice inoculated orally with

metacyclic forms was collected, fixed with 10% neutral formalde-

hyde for 24 h. After processing by gradual dehydration in a

graded series of ethanol solution, followed by xylene immersion

and embedding in parafilm, serial 5 mm tissue sections were cut

and stained with hematoxylin and eosin.

Antibodies
Six to eight week-old Balb/c mice were used for immunization

with J18, C03, GST, gastric mucin or submaxillary mucin to

generate specific antibodies. Mice received the first dose of antigen

(10 mg/mouse) adsorbed in Al(OH)3 (0.5 mg/mouse) and after

two weeks received three additional doses of the antigen plus the

same adjuvant at one week interval. Ten days after the last

immunizing dose, the mice were bled by heart puncture and the

serum collected.

Statistical analysis
To determine significance of data by Student’s t test, the

program GraphPad InStat was used.

Results

T. cruzi metacyclic trypomastigotes selectively bind to
gastric mucin, traverse the gastric mucin layer and
invade the underlying target cells

To address the question why, upon oral inoculation into mice,

T. cruzi metacyclic forms invade the gastric mucosa but not the

mucosa of the oropharynx [4], we examined the possibility that

metacyclic forms bind to gastric mucin but not to submaxillary

mucin. Assays were performed by incubating microtiter plates

coated with varying amounts of gastric or submaxillary mucin with

parasites at 37uC for 1 h, followed by fixation. Reaction with a

monoclonal antibody to T. cruzi surface glycoprotein gp35/50

revealed that metacyclic trypomastigotes bound to gastric mucin in

a dose-dependent manner whereas binding to submaxillary mucin

was negligible at all concentrations tested (Fig. 1A). Effective

coating with mucins was ascertained by reaction with antibodies

specific for gastric or submaxillary mucin (Fig. 1B). To determine

whether metacyclic surface molecule gp82 was implicated in

binding to gastric mucin, assays were also performed in the

presence of a recombinant protein containing the full length gp82

sequence fused to GST (J18). Metacyclic trypomastigote binding

to gastric mucin was inhibited in a dose-dependent manner by J18

but not by GST (Fig. 1C), consistent with a role for gp82. Parasites

bound to gastric mucin were visualized by microscopic examina-

tion in parallel assays using coverslips coated with gastric mucin

(Fig. 1D), as described in the methods section. In addition, the

ability of metacyclic forms to traverse a mucin layer was examined

in microtiter plates with transwell filters coated with gastric or

submaxillary mucin, by counting the number of parasites that

translocated through the mucin layer at varying time points. As

shown in Fig. 1E, the number of parasites that traversed the gastric

mucin layer was significantly higher than the number of parasites

that traversed the submaxillary mucin layer. Next, we determined

the ability of metacyclic forms to enter host cells in the presence of

gastric or submaxillary mucin, in an attempt to mimic the in vivo

situation in which the parasites interact with and traverse the

mucous layer before reaching the underlying epithelial cells.

Mucin, at 2 mg/ml in culture medium, was added to HeLa cells

15 min before addition of parasites. Following 1 h incubations

with parasites, the cells were fixed, stained, and the number of

intracellular parasites was counted. The rate of metacyclic

trypomastigote internalization was comparable in the absence or

in the presence of gastric mucin, but was drastically reduced in the

presence of submaxillary mucin (Fig. 1F). Even at 20 mg/ml,

gastric mucin did not exhibit any inhibitory effect on parasite entry

into HeLa cells.

Binding of J18 to gastric mucin is specific and requires
the central domain of the molecule

To ascertain that the metacyclic trypomastigote surface

molecule gp82 bound preferentially to gastric mucin when

compared to submaxillary mucin, ELISA assays were carried

out using J18, the recombinant protein containing the full-length

gp82 sequence, previously shown to bind to gastric mucin in the

same manner as the native molecule [6]. J18 bound to gastric

mucin in a dose-dependent and saturable manner whereas binding

to submaxillary mucin was minimal (Fig. 2A). As gp82 is encoded

by a multigene family [20], we asked whether another member of

the family also possessed gastric mucin-binding property. When

compared to J18, the gastric mucin-binding ability of the

recombinant protein C03, which shares 59.1% sequence identity

with J18 [17] was negligible (Fig. 2B). Other metacyclic surface

molecules, such as gp90 and gp35/50, were devoid of gastric

mucin binding capacity (data not shown). A question that was also

examined concerned the effect of pH on J18 binding to gastric

mucin. It has recently been reported that pH affects the association

behavior of pig gastric mucin in aqueous solutions, with large

interchain aggregates being detectable at pH 2 by dynamic light

scattering [21]. Gastric mucin preparations at pH 7.2 and at

pH 2.5, which is close to the pH of the gastric milieu, were used to

Mucin Binding of T. cruzi in Oral Infection
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coat microtiter plates for J18 binding assays. As shown in Fig. 2C,

J18 bound efficiently to gastric mucin regardless of the pH. To

determine the gastric mucin-binding domain of the gp82 molecule,

two other recombinant proteins were used: J18b, containing the

carboxy-terminal half of gp82 and J18*, lacking 65 residues (amino

acids 257 to 321) corresponding to the gp82 domain required for

host cell adhesion (Fig. 2D). J18* did not bind to gastric mucin, in

contrast to J18 and J18b (Fig. 2E).

Figure 1. Selective binding of T. cruzi metacyclic trypomastigotes to gastric mucin. A) Microtiter plates coated with varying amounts of
gastric or submaxillary mucin were incubated with metacyclic forms for 1 h and processed for detection of bound parasites by ELISA. Values are the
means of triplicates of one representative assay out of three. Variation between triplicates was ,5%. B) Microtiter plates coated with gastric (G) or
submaxillary (S) mucin (10 mg/well) were processed for ELISA using antibodies specific for gastric or submaxillary mucin at 1:100 dilution. Values are
the means of triplicates (variation ,5%). C) Metacyclic forms were added to microtiter plates coated with gastric mucin (10 mg/well) and incubated in
absence or in the presence of the indicated amounts of the recombinant protein J18 or GST and processed for ELISA. Values are the means of
triplicates. (variation ,10%). D) Metacyclic trypomastigotes were added to gastric mucin-coated coverslips and, following the procedure described in
the methods section, the Giemsa-stained parasites were visualized under the microscope. E) Transwell filters coated with gastric or submaxillary
mucin were placed onto wells containing metacyclic forms. At different time points, samples from the filter chamber were collected and the number
of parasites counted. Values represent the means 6 standard deviation of three independent experiments. The difference in parasite translocation
through gastric and submaxillary mucin layer was significant (*), with P,0.05. F) Gastric or submaxillary mucin was added to HeLa cells before
addition of metacyclic trypomastigotes. After 1 h at 37uC, the cells were fixed and Giemsa-stained. The number of internalized parasites was counted
in a total of 250 cells. Values correspond to means 6 SD of 4 independent experiments. There was a significant difference between invasion in
absence and in the presence of submaxillary mucin (*), P,0.01.
doi:10.1371/journal.pntd.0000613.g001

Mucin Binding of T. cruzi in Oral Infection
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Figure 2. Specific binding of the recombinant protein J18 to gastric mucin through its central domain. A) The recombinant protein J18,
containing the full length T. cruzi gp82 peptide sequence, was added to microtiter plates coated with gastric or submaxillary mucin at the indicated
concentrations. Values are the means of triplicates of one representative assay out of three. Variation between triplicates was ,5%. (B) C03, a
recombinant protein of T. cruzi gp82 family with 59.1% identity with J18, was used for gastric mucin-binding assay. C) Gastric mucin preparations at
pH 2.5 and pH 7.2 were used to coat microtiter plates and then binding of J18 was performed. In (B) and (C), the values are the means of triplicates
(variation ,5%). D) Schematic representation of recombinant proteins based on gp82 molecule. Shown are the GST-fused constructs containing the
full-length gp82 sequence (J18) or lacking either the amino-terminal portion (J18b) or the central domain spanning residues 257–321 (J18*). E)
Binding of J18, J18b and J18* to gastric mucin was compared. Values are the means of triplicates (variation ,10%).
doi:10.1371/journal.pntd.0000613.g002

Mucin Binding of T. cruzi in Oral Infection
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Gp82 sequences spanning amino acid residues 284–303
(p7) and 314–333 (p10) constitute the main gastric
mucin-binding sites

To determine more precisely the gp82 sequence involved in binding

to gastric mucin, we performed assays of competition between the

recombinant protein J18 and synthetic peptides spanning the gp82

central domain. Gastric mucin-coated microtiter plates were incubat-

ed with J18 (10 mg/ml) in absence or in the presence of each of the 20-

mer peptides with 10 overlapping residues, spanning amino acids 224–

333 (Fig. 3A), and the reaction proceeded as in conventional binding

assays. Peptides p7 and p10 inhibited J18 binding to gastric mucin by

.70%, inhibition by p5 was on the order of ,46% and by p1,20%,

whereas other peptides showed no effect (Fig. 3B).

Host cell invasion by metacyclic trypomastigotes is
inhibited by peptide p7 in the presence of gastric mucin

We tested whether the synthetic peptides p7 and p10, which

displayed the highest inhibitory effect on J18 binding to gastric

Figure 3. Determination of T. cruzi gp82 sequences implicated in binding to gastric mucin. A) Amino acid composition of peptides
corresponding to gp82 central domain. Shown are the 20-mer peptides with an overlap of 10 residues. B) Effect of peptides shown in (A) on J18
binding to gastric mucin. Values are the means of triplicates of representative assays (variation between triplicates ,10%).
doi:10.1371/journal.pntd.0000613.g003

Mucin Binding of T. cruzi in Oral Infection
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mucin (Fig. 3B) could interfere with target cell invasion by

metacyclic forms. In absence of gastric mucin, neither of these

peptides affected the parasite internalization, but in the presence of

gastric mucin peptide p7, and to a lesser degree p10, had a

significant inhibitory activity while peptides p6 and p8 used as

controls had no effect (Fig. 4A). The inhibitory effect of p7 was

dose-dependent (Fig. 4B). To ascertain the sequence-specificity of

that effect, a peptide with the same amino acid composition of p7

but with a scrambled sequence (LADLAGWLSPSDVGGAINST),

designated p7*, was also tested in cell invasion assays. As shown in

Fig. 4C, peptide p7* was devoid of inhibitory activity.

Peptide p7 affects the course of oral T. cruzi infection in
mice

To examine whether peptide p7 affected the in vivo metacyclic

trypomastigote infectivity, Balb/c mice were administered with

peptide p7 or p7* (20 mg/mouse) 15 min before oral infection with

metacyclic forms (46105 parasites/mouse), and the parasitemia

levels were monitored. Mice that received peptide p7 developed

significantly lower parasitemias than those that received the

control peptide p7* (Fig. 5A). To determine whether the difference

in the parasitemia levels between the two groups resulted from

differential invasion of gastric mucosal epithelium, the stomach of

some mice was collected 4 days post-inoculation and processed for

histological preparations. As shown in Fig. 5B, the number of

parasites replicating in the gastric mucosa, visualized as amastigote

nests in the stomach sections, was significantly lower in mice that

received peptide p7 as compared to control mice that were given

peptide p7* before parasite inoculation.

Discussion

We had previously suggested that upon oral T. cruzi infection

the metacyclic trypomastigote-specific surface molecule gp82

could play a key role in directing the parasites to the gastric

mucosa, by promoting adhesion to mucin molecules that are the

main constituent of the mucous layer, which would be traversed

driven by ATP [22]. The results herein described provide support

to that hypothesis.

Metacyclic trypomastigotes bound to gastric mucin in vitro and

were capable of efficiently traversing the gastric mucin layer to

invade the underlying epithelial cells. By contrast, the binding to

mucin from submaxillary glands was minimal and the parasite

ability to translocate through the submaxillary mucin layer, as well

as the infectivity towards host cells in the presence of submaxillary

mucin, were reduced. These results, in addition to the observations

that metacyclic forms do not invade cells of the oropharynx after

oral inoculation into mice [4], indicate that binding of metacyclic

forms to gastric mucin is an important determinant in addressing

the parasites to gastric mucosal epithelial cells. Metacyclic

trypomastigotes of T. cruzi strains that bind poorly to gastric

mucin have poor capacity to invade epithelial cells in vitro in the

presence of gastric mucin and in infecting mouse by the oral route

[7]. Selective binding to mucin molecules, as a prerequisite for the

establishment of infection by other pathogenic microorganisms of

the gastrointestinal tract have been reported. Helicobacter pylori,

which colonizes gastric mucosa, binds to human gastric mucin

[23], Shigella, which invades and multiplies within cells of the

colonic epithelium, binds specifically to human colonic mucin but

not to small intestine mucin [24].

Existing evidence suggests that binding of T. cruzi metacyclic

trypomastigotes to gastric mucin is mediated by the surface

molecule gp82. Binding of metacyclic forms to gastric mucin was

inhibited by a recombinant protein based on gp82 in a dose-

dependent manner. This finding, plus the previous observations

that invasion of cultured epithelial cells by metacyclic forms of T.

cruzi strains deficient in gp82 expression was reduced in the

presence of gastric mucin [7] reinforce the idea that the gastric

mucin-binding property of gp82 plays a key role in infection.

Consistent with the in vitro findings, gp82-deficient metacyclic

forms were poorly infective when administered orally into mice

[7]. However, gp82 may not be the sole surface molecule that

interacts with gastric mucin. We cannot rule out the possibility that

Figure 4. Peptide p7 inhibits host cell invasion by metacyclic
trypomastigotes in the presence of gastric mucin. A) Parasites
were incubated with HeLa cells in absence or in the presence of gastric
mucin, plus the indicated peptides at 200 mg/ml. After 1 h incubation,
the cells were fixed and stained with Giemsa for quantification of
internalized parasites. Values are the means 6 SD of 4 independent
experiments. The inhibitory effect of peptide was significant (*) for p7,
P = 0.005, and for p10, P,0.05. B). Metacyclic trypomastigotes were
incubated with HeLa cells in the presence of gastric mucin, plus peptide
p7 at the indicated concentrations and the reaction proceeded as
above. Values are the means 6 SD of 3 independent experiments. The
difference in invasion rate in absence and in the presence of p7 was
significant (*) at all concentrations, P,0.05. C) HeLa cells were
incubated with metacyclic forms in the presence of gastric mucin, plus
peptide p7 or p7* which has the same composition of p7 but a
scrambled sequence. Values are the means 6 SD of 4 independent
assays performed in duplicate or triplicates.
doi:10.1371/journal.pntd.0000613.g004
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other as yet unidentified metacyclic trypomastigote surface

molecules bind to gastric mucin, albeit to a lesser extent.

The gastric mucin-binding domain of gp82 was found to be

localized in the central domain of the molecule, and the peptide

sequence PTAGLVGLLSNSASGDAWID was determined as

being the most important for invasion of epithelial cells under

the gastric mucin coat. In the presence of the synthetic peptide p7,

based on that sequence, not only was the gastric mucin-binding of

the recombinant gp82 inhibited but also the metacyclic trypo-

mastigote invasion of epithelial cells coated with gastric mucin was

reduced. Although displaying a similar inhibitory effect as p7 on

gastric mucin-binding of the recombinant gp82, the peptide p10

(NAVKVHDGFKFTGFGSGAIW) affected parasite entry into

target cells to a lesser degree than p7. One interesting possibility is

that metacyclic trypomastigote binding to gastric mucin through

the p7 defined region of gp82 facilitates host cell adhesion, but that

adhesion is also dependent upon co-operation from other regions

of gp82. The main cell adhesion site of gp82 is the sequence

LARLTEELKTIKSVLSTWSK represented by peptide p4 [19],

from which the p7 sequence is separated by 5 residues. Of note is

that the isoelectric point of p4 is 9.71 and that of p7 is 3.23. The

relevance, if any, of such a difference for target cell attachment is

not known. In a previous study, a recombinant construct

corresponding to the complete gp82 sequence, but without the

two glutamic acid residues contained in p4 sequence, had reduced

capacity to bind to HeLa cells [19]. Our speculative view is that

metacyclic trypomastigotes bound to gastric mucin through the

gp82 sequence p7 would have the p4 sequence-mediated

interaction with host cells reinforced. If this is the case, the

effective gp82-medianted parasite entry into target cells could be

more than the result of independent contributions of diverse gp82

functional sites, p7 sequence acting in the early step of gastric

mucin-binding and p4 sequence in the subsequent step of cell

attachment.

It should be pointed out that the central domain of metacyclic

trypomastigote gp82, where the p7 sequence resides, shares

considerable sequence similarity with other glycoproteins of

gp85 family and trans-sialidase, which are all members of the

same superfamily. Analysis using BLASTP to search for sequences

homologous to peptide p7 revealed proteins of gp85/trans-

sialidase superfamily; therefore, it is possible that a motif similar

to that represented by p7 may also be implicated in gastric mucin-

binding and be responsible for the low proportion of cases in

which cell invasion of metacyclic forms is not inhibited by p7 in

the presence of gastric mucin (Fig. 4C). Another interesting

possibility, unrelated to p7 sequence, is that metacyclic trypomas-

tigote trans-sialidase binds to gastric mucin sialic residues, an

interaction that is not inhibitable by peptide p7.

The importance of gp82-mediated binding to gastric mucin

through the p7 sequence in the establishment of T. cruzi infection

by the oral route was tested in the mouse model. Mice

administered orally with peptide p7 prior to metacyclic trypomas-

tigotes developed low parasitemia levels, in contrast to animals

that received the control peptide p7*, with the same composition

as p7 but with a scrambled sequence, which developed high

parasitemias. The presence of much fewer nests of amastigotes

replicating in the stomach epithelium in mice that were given p7,

as compared to the number of amastigote nests in mice that

received p7*, is an indication that fewer parasites invaded the

gastric mucosal epithelium. What possibly occurs is that the

presence of p7 interferes with gp82-binding to gastric mucin,

precluding the parasite traversal of the mucus layer towards the

target cells. Therefore, the gastric mucin-binding property of gp82

may be as critical for T. cruzi infection by the oral route as its cell-

binding capacity.
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Figure 5. Inhibitory effect of peptide p7 on oral T. cruzi
infection. A) Balb/c mice were divided in control (n = 5) and
experimental (n = 5) groups, peptide p7* were given orally to control
mice and peptide p7 to experimental animals 15 min before infection
with metacyclic trypomastigotes by the oral route and the number of
circulating parasites counted. Variations in the parasitemia levels
between mice are indicated. B) Histological sections of the mouse
stomach, collected 4 days after infection, were stained by hematoxylin
and eosin and the number of amastigote nests (white arrow) was
counted in 7 equivalent tissue sections. The representative results are
shown, with bars corresponding to the variation in the number of
parasites nests between sections.
doi:10.1371/journal.pntd.0000613.g005
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