
Role of Heat Shock Proteins in Atherosclerosis
Qingbo Xu

Abstract—Heat shock proteins (HSPs) are present in most cells, serving as molecular chaperones, and they play a role in
cell protection from damage in response to stress stimuli. However, accumulating data indicate the involvement of HSPs
in the pathogenesis of diseases. The aim of this article is to update the progress concerning the role of HSPs in
atherosclerosis. It has been demonstrated that HSPs are highly expressed in the atherosclerotic lesions of humans,
rabbits, and apolipoprotein E–deficient mice. Risk factors for atherosclerosis, eg, infections, oxidized low density
lipoprotein, oxidative stress, hypertension, and biomechanical stress, evoke HSP overexpression in endothelial cells,
macrophages, and smooth muscle cells via activation of heat shock transcription factor 1. Interestingly, HSPs, normally
localized within the cell, have been found as a soluble form in the blood, which is positively correlated with
atherosclerosis in humans. Recently, several groups have reported that soluble HSPs specifically bind to the Toll-like
receptor 4/CD14 complex, initiating an innate immune response, including the production of proinflammatory cytokines
by macrophages and adhesion molecules in endothelial cells via nuclear factor-�B activation. Furthermore, the titers of
autoantibodies against HSPs are significantly elevated in patients with atherosclerosis, and T lymphocytes specifically
responding to HSPs have been found in atherosclerotic plaques. These proinflammatory responses and autoimmune
reactions to HSPs in the vessel wall can contribute to the initiation and perpetuation of atherosclerosis. Thus, HSPs have
a general role in the response of the arterial wall to stress and may serve as a mediator/inducer of atherosclerosis in
particular circumstances. (Arterioscler Thromb Vasc Biol. 2002;22:1547-1559.)
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Atherosclerosis is a slowly progressing disease that begins
in childhood but does not becoming manifest until

middle age or later. Data from different laboratories have
recently provided evidence that the first steps of atheroscle-
rosis are inflammatory in nature.1,2 The discovery of adhesion
molecule expression on endothelial cells, including intercel-
lular adhesion molecule-1, vascular adhesion molecule-1,
E-selectin, activated T lymphocytes, mast cells and macro-
phages in atherosclerotic lesions, detection of HLA class II
antigen expression, and secretion of several cytokines, has
revealed an involvement of immune and inflammatory mech-
anisms in the pathogenesis of atherosclerosis.3,4

Heat shock proteins (HSPs), previously called stress pro-
teins, belong to a group of �2 dozen proteins and cognates
showing highly homologous sequences between different
species, from bacteria to humans.5 In response to stress
stimuli, including heat shock, oxidized LDL (oxLDL), me-
chanical stress, infections, surgical stress, oxidants, and
cytokine stimulation, cells produce high levels of HSPs to
protect themselves against these unfavorable conditions.6,7

HSPs have been found to be highly expressed in cardiovas-
cular tissues and to induce inflammatory responses, and they
may be expressed as autoantigens in the development of

atherosclerosis.8,9 The present review will provide an update
on the role of HSPs in atherosclerosis, with particular focus
on mechanistic studies.

HSP Families and Their Functions
HSPs are multigene families that range in molecular size
from 10 to 150 kDa and are found in all major cellular
compartments. According to molecular weight, they are
divided into following families: HSP10, small HSPs, HSP40,
HSP60, HSP70, HSP90, and HSP110. Each family of HSPs
contains �1 member (Table 1). The distinction between
constitutively expressed (eg, Hsc70 and HSP90�) or cognate
members of the HSP family and their inducible isoforms
(HSP70 and HSP90, respectively) is arbitrary, because accu-
mulating evidence in physiologically relevant in vivo systems
now indicates that such relationships depend on cell- and
tissue-restricted expression. HSP10, HSP60, and HSP75 are
mainly located in mitochondria, whereas others are present in
the cytoplasm and nucleus in physiological conditions.10

Excellent reviews have been written on the chaperone
function of HSPs in general11,12 and in the cardiovascular
system.7,13 In short, the primary physiological function of
HSPs is to fulfill chaperoning activity.14 Molecular chaper-
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ones have been defined as a nonrelated class of proteins that
mediate the correct folding of other proteins but do not take
part in the final assembly of new structures.15 HSP27 is active
in assisting the assembly of macroglobular protein com-
plexes, such as F-actin polymerization. However, this func-
tion is highly dependent on the phosphorylation state and
monomeric or multimeric state of HSP27. In the nonphos-
phorylated monomeric state, HSP27 inhibits F-actin polymer-
ization via specific binding to the plus end of the filaments.16

HSP60 forms a large (970-kDa) hetero-oligomeric protein
complex called the TCP1 ring complex (containing TCP1 and
several other proteins), which is essential for protein assem-
bly. As a chaperone, HSP70 plays a role in the assembly and
transport of newly synthesized proteins within cells, as well
as in the removal of denatured proteins.17 HSP90 binds
steroid receptors, protein kinases, intermediate filaments,
microtubules, and actin microfilaments in a specific manner.
HSP90 is an essential component of the glucocorticoid
receptor, assembled in a complex of several proteins.18 Thus,
HSPs appear to be important in preventing damage and in
cellular repair processes after injury. Indeed, increased pro-
duction of HSPs has been shown to protect cells against
apoptosis induced by oxidative stress, toxins, heat shock,

ethanol, and cellular damage after ischemia or sepsis-induced
injury.19–24

Given the high degree of amino acid sequence homology
between HSPs of different species, the immune response to
HSPs derived from pathogens may cross-react with host
HSPs.25 Thus, HSPs may be autoantigens in some circum-
stances. The HSP60 family has been shown to be involved in
the development of many diseases, such as adjuvant arthritis
in rats, rheumatoid arthritis in humans, insulin-dependent
diabetes mellitus in mice, and systemic sclerosis in humans,26

whereas HSP47, HSP60, and HSP70 have been identified as
being involved in the pathogenesis of atherosclerosis.6,27

HSP Expression in Atherosclerotic Lesions
Berberian et al28 first reported the elevated expression of
HSP70 in human and rabbit arteries and its distribution in
relation to necrosis and lipid accumulation, as well as
vascular smooth muscle cells and macrophages, in human
atherosclerotic plaques. HSP70 was mainly concentrated in
the central portions of more thickened atheromas around sites
of necrosis and lipid accumulation.29 In contrast, patches of
smooth muscle cells were observed in the most complex
plaques but without consistent association with necrosis or
increased HSP70.30 HSP70 was expressed even in dendritic

TABLE 1. Heat Shock Protein Families

Family
Members/Other

Names Physiological Function Pathological Involvement

HSP10 HSP10, HSP17 Promotes substrate release with HSP60 ?

Small HSP HSP22, �A-crystallin F-actin assembly, molecular chaperones ?

HSP23, �B-crystallin

HSP27

HSP28

HSP40 HSP32, HO-1 Guides protein folding, binding and transport of collagen Atherosclerosis

HSP40, Hdj-1

HSP47

HSP60 HSP58, GroEL Assemble polypeptides, translocate proteins across membranes,
accelerate protein folding and unfolding

Adjuvant arthritis, rheumatoid arthritis, atherosclerosis,
diabetes mellitus, systemic sclerosis, schizophreniaHSP60, HSP65

Grp58

HSP70 HSP68, Dnak. Molecular chaperone, assemble and transport newly synthesized proteins,
fold or unfold polypeptides, remove denatured proteins,
bind to specific polypeptides (eg, p53), ATPase activity

Tuberculosis, leprosy, filariasis, atherosclerosis

Hsc70, Hsx70

HSP72

HSP73

HSP75, Grp75

HSP78, Grp78

HSP90 HSP83, HptG Bind to specific polypeptide, receptors (eg, glucocorticoid receptor) Schistosomiasis, systemic lupus, erythematosus

HSP87

grp94

HSP90-�

HSP90-�

HSP110 HSP94 Only in yeast (?) –

HSP104, HSP105

HSP110, Apg-1

Grp170
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cells in the arterial wall.31 The results indicated that elevated
HSPs in plaque cells, particularly macrophages, were more
stressed within the depth of the atheroma, especially in
association with necrosis.

To study HSP60 expression in human atherosclerotic
lesions, Kleindienst et al32 demonstrated that HSP60 was
detected on endothelium, smooth muscle cells, and/or mono-
nuclear cells of all carotid and aortic specimens. Whereas
vessels of smaller diameter, serving as reference specimens
for the normal intima without atherosclerotic lesions and
mononuclear infiltration, showed no detectable expression of
this HSP. The intensity of HSP60 expression correlated
positively with the atherosclerotic severity.33,34 Interestingly,
the expressions of HSP60 and the stress-inducible form of
HSP70 were correlated with the development of atheroscle-
rotic lesions in the aortic tree of apoE-deficient mice.35 Both
mammalian HSPs were detected newly expressed (before
mononuclear cell infiltration) on aortic roots and endothelia
at lesion-prone sites of apoE�/� mice. Both HSPs were
expressed by lesional endothelial cells, macrophages, smooth
muscle cells, and CD3� T lymphocytes.35 This study pro-
vided evidence that HSP60 and HSP70 were temporally
expressed on all major cell types in lesion-prone sites during
atherogenesis.35

HSP47 acting as a chaperone for procollagen has been also
found to be involved in atherosclerosis.36 Strong focal ex-
pression was evident in atherosclerotic, but not normal,
arteries and was prevalent in the collagenous regions. All
cells expressing type I procollagen also expressed HSP47.37

Heat shock and oxLDL stimulated the expression of HSP47
mRNA by smooth muscle cells. These findings identify
HSP47 as a novel constituent of human coronary atheroma,
and selective upregulation by stress raises the possibility that
HSP47 may be a determinant of plaque stability.37

Infections and HSP Expression
During the past decade, it has been noted that infections
might contribute to the pathogenesis of atherosclerosis.38,39

Seroepidemiological studies suggest an association between
several microorganisms and coronary heart disease, including
Chlamydia pneumoniae, Helicobacter pylori, and herpes
viruses, although controversial reports exist.39–42 These mi-
crobes may directly promote a proinflammatory, procoagu-
lant, and proatherogenic environment, and HSP might serve
as a link between infections and the atherosclerotic process.
Support for this notion was the fact that a prospective
population-based study provided strong evidence of a corre-
lation between immune reactions to HSP65 and bacterial
infections in atherogenesis,43 indicating the impact of infec-
tions in HSP induction.

In this respect, the life cycle of chlamydiae, an obligate
intracellular pathogen, appears particularly interesting. Dur-
ing its normal cycle generating infectious progeny, chlamyd-
iae express basal levels of HSP and in the presence of
interferon-�, a product of activated T cells within atheroma,
certain chlamydiae can achieve a state of intracellular chronic
persistent infection, in which they remain viable but meta-
bolically quiescent and do not replicate.44 During such
chronic and persistent infections, HSP60 production is abun-

dant. Interestingly, Kol et al45 demonstrated that chlamydial
HSP60 colocalized with human HSP60 within macrophages
in atherosclerotic lesions. Nonatherosclerotic samples con-
tained neither HSP. These findings suggest that chlamydial
infections might exert their role in atherogenesis via HSP
production.

Atherosclerosis is largely viewed as a chronic inflamma-
tory disease, to which chronic infections could contribute via
elevated lipopolysaccharide (LPS) or endotoxin.46 Endotoxin
induces local inflammation and systemic toxicity during
Gram-negative infections and results in aortic endothelial
injury with or without cell death and replication, followed by
increased leukocyte adhesion. Seitz et al47 reported that
increased levels of HSP60 were found in aortic endothelial
cells of rats in response to Escherichia coli LPS. These
authors also demonstrated endothelial expression of HSP60
with in vitro administration of LPS.47 These observations may
be significant for understanding the role of HSP in athero-
sclerosis related to chronic infections.

Concerning virus-induced HSP expression, evidence indi-
cates that infectious virus treatment of myocardial cells
increases HSP expression.48 UV irradiation of the virus
prevents virus replication and fails to elicit HSP production in
heart cells.48 It has also been found that chronically HIV-
infected lymphomas show an increased expression of
HSP70.49 Furthermore, BiP (GRP78) and endoplasmin
(GRP94) are specifically upregulated in rotavirus-infected
cells. Thus, virus infections can lead to substantial HSP
expression in the infected cells50 (Figure 1).

OxLDL and Free Radicals Induce
HSP Expression

OxLDL is believed to be crucial in the development of
atherosclerosis. OxLDL possesses several proatherogenic
properties, including interactions with several receptors, lead-
ing to the engorgement of cells with lipids, inhibition of
endothelium-dependent vascular relaxation, cytotoxicity to
proliferating cells, stimulation of chemoattractant secretion,
and induction of adhesion molecules that mediate the inter-
action of leukocytes with the endothelium.51,52 It has recently
been reported that oxLDL also triggers in vitro the expression
of HSPs (eg, HSP23 and HSP32 [or heme oxygenase]) in
mouse peritoneal macrophages,53 HSP60 in monocytes/mac-
rophages,54 and HSP70 in human endothelial55 and smooth

Figure 1. Signaling pathways of HSP expression in vascular
cells induced by stresses. SR indicates scavenge receptor; HSF,
heat shock transcription factor; HSE, heat shock element;
Nitros, nitrosylation; and SAC, stretch-activated channel.
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muscle cells.56 Additionally, Zhu et al57 demonstrated that
oxLDL induced HSP70 expression mainly in growing endo-
thelial cells, indicating that those cells, present in lesion-
prone areas, are more sensitive to oxLDL than are quiescent
cells.

Accumulating evidence supports a critical role for oxida-
tive stress in the pathogenesis of atherosclerosis.58 It has been
reported that high levels of reactive oxygen species present in
atherosclerotic lesions induce DNA damage and inactivate
proteins.59,60 Modulation of growth or apoptotic responses by
free radicals has been demonstrated in a number of cell types,
including endothelial and smooth muscle cells.58 Stimulation
of cell apoptosis and proliferation by free radicals is thought
to be a critical step in atherosclerotic lesion formation. The
potential role of oxidative stress conditions in the induction of
HSPs has been reported.61 Treatment of endothelial cells with
H2O2 or xanthine oxidase has been shown to increase HSP70
mRNA levels.62 Nuclear runoff transcription data and kinetics
of mRNA decay have indicated that the observed increase in
HSP70 mRNA levels in H2O2-treated cells is mainly due to a
transcriptional induction. Furthermore, a similar effect of
H2O2 on HSP expression in smooth muscle cells has been
observed.63 It has been demonstrated that H2O2 activates the
HSP70 promoter via enhanced binding of signal transducers
and activators of transcription (STAT) to cognate binding
sites in the promoter.63 Because Janus kinase (JAK)2 is
activated rapidly in smooth muscle cells treated with H2O2,
STAT1 and STAT3 were tyrosine-phosphorylated and trans-
located to the nucleus in a JAK2-dependent manner. Inhibi-
tion of JAK2 activity with AG-490 partially inhibited H2O2-
induced HSP production.63 Thus, regulation of HSP70
expression via activation of the JAK/STAT pathway suggests
that this pathway is responsible for HSP70 induction in
response to oxidative stress (Figure 1).

Current data suggest that NO is a double-edged sword that
could result in relaxation and/or cytotoxicity of vascular
smooth muscle cells via cGMP-dependent or -independent
signaling pathways.64 NO can stimulate the S-nitrosylation of
numerous proteins and also binds to the nonheme iron of
ribonucleotide reductase to inhibit DNA synthesis. In vivo,
increased production of NO has been observed in response to
hemodynamic stress, sepsis shock, and endotoxin.64 It is not
yet clear whether NO increases the expression of HSP in
smooth muscle cells or whether HSP acts in conjunction with
NO. A recent report has demonstrated that NO leads to the
induction of HSP70 protein and mRNA in cultured smooth
muscle cells65 and other cells.66,67 Induction of HSP70 mRNA
was associated with the activation of heat shock transcription
factor 1 (HSF1). HSF1 activation was completely blocked by
hemoglobin, dithiothreitol, and cycloheximide, suggesting
that the protein damage and nascent polypeptide formation
induced by NO may initiate this activation.65 Thus, NO
induces HSP70 expression in smooth muscle cells via protein
nitrosylation–initiated HSF1 activation.

Biomechanical Stress Induces HSP Expression
In vivo, the vessel wall is exposed to 2 main hemodynamic
forces or biomechanical stress: shear stress (the dragging
frictional force created by blood flow) and mechanical stretch

(a cyclic strain stress created by blood pressure).68,69 Shear
stress stimulates endothelial cells to release NO70 and pros-
tacyclin,71 resulting in vessel relaxation and protection of
vascular cells, whereas smooth muscle cells are stimulated by
cyclic strain stress.72 In humans, atherosclerotic lesions occur
preferably at bifurcations and curvatures73 where hemody-
namic force is disturbed; ie, there is lower shear stress and
higher mechanical stretch.74 Although veins do not develop
spontaneous atherosclerosis-like lesions, accelerated athero-
sclerosis occurs rapidly in venous bypass grafts, which bear
increased biomechanical forces that are due to alterations in
blood pressure, ie, vein (0 to 30 mm Hg) versus artery
(120 mm Hg). Another typical example for mechanical force
involvement is hypertension-induced arteriosclerosis. There-
fore, mechanical stress could be a crucial factor in the
pathogenesis of atherosclerosis.

Udelsman et al75 have reported that restraint (immobiliza-
tion stress) results in the selective induction of HSP70 mRNA
and HSP70 protein in rat aortas. In addition, HSP70 expres-
sion has been induced in rat arteries by treatment with the
�1-adrenergic agonist phenylephrine. Restraint-induced ex-
pression of the HSP70 gene in the aorta could be blocked by
administration of the �1-adrenergic antagonist prazosin.
These results suggest that the vascular HSP70 induction in
restrained animals may be mediated via �1-adrenoceptors.75

However, studies by other investigators have indicated that
this vascular response can also be mimicked, at least to some
extent, by in vivo administration of vasopressin, dopamine, or
cocaine,76–78 each of which exerts its effect via interaction
with receptors distinct from the �1-adrenoceptor. Because
phenylephrine, dopamine, cocaine, and air-jet stress can all
elevate blood pressure, we79 have demonstrated that the
induction of HSP70 in rat aorta by various agents is second-
ary to acute hypertension. This mechanism is consistent with
earlier observations demonstrating that stretching of the
myocardium induces HSP70 expression in isolated perfused
rabbit hearts80 and that increased pressure in the heart (as a
result of restricting efflux of blood into the aorta) is sufficient
to elicit HSP70 induction in the heart,81 in which stretch-ac-
tivated ion channels, ie, L-type calcium channels, are impor-
tant signal transducers.82 These findings support the hypoth-
esis that induction of HSP70 expression in the arterial wall
occurs as a physiological response to acute hypertension, ie,
hemodynamic stress or biomechanical stress.83

Using an in vitro mechanical stress model, we84 have
provided evidence that mechanical forces evoke rapid acti-
vation of HSP70 expression in smooth muscle cells. Elevated
protein levels were preceded by HSP70 mRNA transcription,
which was associated with HSF1 phosphorylation and acti-
vation stimulated by mechanical forces. Although mitogen-
activated protein kinases (MAPKs), including extracellular
signal–regulated kinases (ERK), c-Jun NH2-terminal protein
kinases (JNKs)/stress-activated protein kinases (SAPKs), and
p38 MAPKs,85–87 were also highly activated in response to
cyclic strain stress, inhibition of ERK and p38 MAPK
activation by their specific inhibitors did not influence HSF1
activation.84 Interestingly, smooth muscle cell lines stably
expressing dominant-negative rac (rac N17) abolished HSP
protein production and HSF1 activation induced by mechan-
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ical forces, whereas a significant reduction of HSP70 expres-
sion was seen in ras N17–transfected cell lines. Therefore,
mechanical stretch–induced HSP70 expression is mediated
by HSF1 activation and regulated by rac/ras GTP-binding
proteins84 (Figure 1).

Signal Transductions Leading
to HSP Transcription

The heat shock response is primarily regulated at the level of
transcription and is mediated by �1 of a family of HSFs that
interact with a specific regulatory element, the heat shock
element, present in the promoters of HSP genes.88,89 At the
present, 4 different HSFs have been identified, ie, HSF1,
HSF2, HSF3, and HSF4.13 HSFs are products of the tran-
scription of 4 different genes. HSF1, HSF2, and HSF4 have
been identified in human tissues. At present, HSF3 has been
described only in the chicken, in which it is involved in the
development of various tissues. HSFs are present constitu-
tively in the cell in a non–DNA-binding state; they are
activated in response to various stresses to a DNA-binding
form. This activation process appears to involve the oli-
gomerization of HSF from a monomeric to a trimeric state
and is associated with HSF hyperphosphorylation.88,89

The kinases or enzymes responsible for HSF hyperphos-
phorylation are unknown. However, there is evidence indi-
cating that HSF1 activity can be inhibited through the
phosphorylation of HSF1 serine residues by ERKs.90 In fact,
3 families of MAPKs (ERK, JNK/SAPK, and p38 MAPK)
are activated in vascular cells stimulated by heat shock,91 free
radicals,92 LDL and oxLDL,93 arachidonic acid,94 hyperlip-
idemia,95,96 and mechanical stress.97 This indicates a possible
relationship between MAPK activation and HSP expression
in vascular cells in atherosclerosis. Furthermore, a different
stimulus seems to activate different signal pathways, leading
to HSF activation. Figure 1 schematically illustrates signal
pathways initiated by a variety of stresses that lead to HSP
expression. For instance, the mechanical stress–stimulated
integrin-rac pathway results in HSP induction in smooth
muscle cells, whereas H2O2 activates the JAK2-STAT path-
way, leading to HSP expression. Most signal transducers or
pathways are not fully elucidated, and further studies will be
needed to clarify the mechanism of HSP expression at a
molecular level.

Surface Expression and Release of HSPs
Although it is assumed that HSP must be located in the
cytoplasmic compartment to exert its function, evidence is
emerging that surface expression of HSP60 in mononuclear
cells may occur as well.49,98 We99 showed that aortic endo-
thelial cells express HSP60 on their surface after cytokine
stimulation or heat shock treatment. Fluorescence-activated
cell sorter analyses revealed that �80% of living endothelial
cells stressed by cytokines or 42°C were positively surface-
stained with the antibody against HSP60. In that study,99

several monoclonal antibodies against various epitopes of
HSP60 were used to stain stressed endothelial cells. Surface
staining of endothelial cells was obtained by antibody II-13,
recognizing amino acid residues 288 to 366 of HSP60, but not
by ML-30, recognizing residues 315 to 318, and LK1 and

LK2, recognizing residues 383 to 447.99 Subsequently, sev-
eral groups100–102 confirmed the surface expression of HSP60
in different types of cells. For instance, Khan et al102

demonstrated that HSP60 and histone 2B can localize in the
T-cell plasma membrane, in which HSP60 functions as a
molecular chaperone for histone 2B, and that protein kinase
A–catalyzed phosphorylation of HSP60 and histone 2B
appears to regulate the attachment of histone 2B to HSP60.
Physiologically, HSPs can maintain certain polypeptides in
an unfolded state, thus facilitating their translocation across
membranes. In this process, a portion of the HSP molecule
might extend beyond the cellular plasma membrane to the
surface. Alternatively, membrane-expressed HSPs may have
physiological functions; eg, HSP17 stabilizes cell membranes
antagonizing the stress-induced damages of the membrane.103

Interestingly, HSP90 induced in smooth muscle cells
stimulated by free radicals can be released into cultured
medium as identified by capillary chromatography, electros-
pray ionization tandem mass spectrometry, and Western blot
analysis.104 These results show that brief oxidative stress
causes sustained release of HSP90 from vascular smooth
muscle cells that, in turn, can stimulate ERK activation. In
addition, cells from a variety of primary human tumors
contained considerably higher levels of HSP than did their
normal autologous tissue counterparts. Analysis of superna-
tants of transformed cell lines showed them to be enriched in
HSP70 and gp96. On exposure to lysates or supernatants of
transformed cell lines, human dendritic cells underwent
maturation, which was abrogated by treatment with boiling,
proteinase K, and geldanamycin, an inhibitor of HSPs,
suggesting that HSPs rather than endotoxin or DNA were the
responsible factors.105 Furthermore, glial cells also release a
variety of molecules that support neuronal function, of which
HSP70 was shown to be exported into the culture medium
whether under normal conditions or subjected to heat shock.
The amount of glial HSP70 released ranged from 5 to 15 pg
per 106 cells per day, being greater after heat shock.106 Thus,
HSPs were expressed not only within the cells but also on the
surface, which can be released into the cultured medium or
intercellular space in certain circumstances.

Soluble HSPs
As described above, HSPs are released into cultured medium
in vitro. The question is whether HSPs exist in human blood,
which may be correlated with atherosclerosis. Currently,
we107 performed a population-based study (n�826) to deter-
mine serum-soluble HSP60 (sHSP60), carotid atherosclero-
sis, and risk factors. We demonstrated that sHSP60 levels
were significantly elevated in subjects with prevalent/incident
carotid atherosclerosis and were correlated with intima-media
thickness independent of age, sex, and other risk factors.
Interestingly, sHSP60 was also correlated with anti-LPS,
anti-Chlamydia, and anti-HSP60 antibodies, inflammation
markers, and chronic infections. The concentration of
sHSP60 in some patients is �1 �g/mL, which is high enough
to produce extracellular-based signaling (see below). Affinity
chromatography and Western blot analysis confirmed the
molecular weight of sHSP60, ie, 60 kDa (Figure 2). Because
the antibodies used for sHSP60 measurement are reactive to
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human and bacterial HSP60, it is unknown whether these
60-kDa bands are originated from human and/or bacteria.
Nevertheless, these data provide the first evidence of a strong
correlation between sHSP60 and atherosclerosis, suggesting a
role of sHSP60 in the development of atherosclerosis.

Concomitantly, Pockley et al108 measured sHSP60 and
sHSP70 in subjects with borderline hypertension. A major
novel observation in their report was findings that sHSP60
was present at a significantly enhanced level in patients with
borderline hypertension, which was associated with intima-
media thickness and early atherosclerosis. These data provide
additional support for the role of sHSPs in the induction/
progression of hypertension and atherosclerosis.

Where and how sHSPs are released into the blood is
currently unknown. Given that all types of tissues highly
express HSPs in response to stress, there are several possi-
bilities. First, infectious agents may be the major factor
contributing to sHSP60 release from the organisms and from
human cells. For example, chlamydiae, during the life cycle,
undergo both phases of nonlytic infection, in which they
remain viable but do not replicate, and phases of lytic
infection.109 During the lytic phases, host cells release their
own HSP60, produced during a chronic phase of infection,
and also chlamydial HSP60, which has been produced by
bacteria. Support for this theory is that sHSP60 levels are
significantly correlated with anti-chlamydial antibodies,107

and that chlamydial and human HSP60s exist at high levels in
human atherosclerotic lesions.45 Second, sHSP60 could be
released from the dying cells of tissues during chronic
inflammation and from atheroma, as earlier studies have
shown the occurrence of cell death within atheroma.110,111

Recent data have demonstrated that open-heart surgery re-
sults in the release of sHSP70 into the blood of patients,112

which may be due to cell damage and inflammatory re-
sponses. Finally, surface-expressed HSPs in the cell under-
going apoptosis may be released into blood via the formation
of microparticles, which have been identified in the circulat-
ing blood of patients with acute coronary syndromes and in

nonischemic patients.113 These microparticles generated in
vitro from activated platelets or leukocytes stimulate cultured
endothelial cells to produce prostacyclin and cytokines and to
express adhesion molecules.113–116 The microparticles circu-
lating in the peripheral blood of patients with acute myocar-
dial infarction affect endothelium-dependent responses in
normal blood vessels.114 sHSPs may be present in the
microparticles and serve as active components exerting their
role in these processes. Therefore, HSP60 release into the
circulation could be the result of different pathways.

sHSPs Having Proinflammatory Activities
Kol et al45 provided the first evidence that chlamydial HSP60
and human HSP60 can act as extracellular agonists and
induce tumor necrosis factor-� (TNF-�) and matrix
metalloproteinase-9 production by macrophages. Subse-
quently, they demonstrated that chlamydial or human HSP60
activates human endothelial cells, smooth muscle cells, and
monocyte-derived macrophages.117 Chlamydial and human
HSP60 induce E-selectin, intercellular adhesion molecule-1,
and vascular adhesion molecule-1 expression on endothelial
cells similar to levels induced by LPS. Each HSP60 also
significantly induces interleukin (IL)-6 production by endo-
thelial cells, smooth muscle cells, and macrophages. Heat
treatment abolishes all these effects but does not alter the
ability of E coli LPS to induce these functions. Therefore,
chlamydial and human HSP60s activate human vascular cell
functions relevant to atherogenesis and lesional complica-
tions. Similarly, Chen et al118 have demonstrated that autol-
ogous HSP60 serves as a danger signal to the innate immune
system, which results in proinflammatory responses, includ-
ing the production of TNF-�, IL-12, and IL-15. Asea et al119

have demonstrated that exogenous HSP70 also acts as a
cytokine to human monocytes by stimulating a proinflamma-
tory signal transduction cascade that results in an upregula-
tion of IL-1, IL-6, and TNF-� expression. Furthermore, it has
been shown that HSP60 mediates monocyte adhesion to
endothelial cells in vivo and in vitro via CD14. Poston et al120

Figure 2. A, Concentrations of sHSP60 in
blood. sHSP60 was measured by sand-
wich ELISA, as described.107 B, Chroma-
tography and Western blot analysis for
soluble HSP. Monoclonal antibody II-13
was coupled to supports by using an
immunoglobulin-coupling kit. sHSP60 was
isolated from serum with higher sHSP60
levels. Isolated proteins were visualized by
Western blot.107
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found that monocytes efficiently adhere to sHSP60-coated
plates; this adherence was specifically inhibited by CD14
antibodies, suggesting that sHSP60 itself behaves as an
adhesion molecule through its affinity to CD14. Hence,
autologous sHSPs may alert innate immunity121 via the same
recognition as for microbial pathogens, resulting in proin-
flammatory responses in the vessel wall.

HSP-Initiated Signal Transductions
The finding that sHSPs have a cytokine-like activity evoking
proinflammatory responses in vascular cells leads to search-
ing “specific” receptors of sHSPs and related signal pathways
in a variety of cells. Surprisingly, several groups reported at
approximately the same time that the Toll-like receptor
(TLR)4/CD14 complex is a soluble HSP receptor.122–127 So
far, �10 human TLRs have been identified. A variety of
bacterial and fungal components are known TLR ligands,
including peptidoglycan for TLR2, LPS for TLR4, flagellin
for TLR5, and unmethylated CpG motifs in bacterial DNA
for TLR9.128 It is possible that TLRs may collectively be
responsible for detecting a large repertoire of microbial
pathogens. TLRs are evolutionarily conserved innate immune
receptors that are shared by IL-1 receptor signaling to activate
the nuclear factor (NF)-�B pathway and release inflammatory
cytokines.128 Xu et al129 investigated the expression of these
receptors in murine aortic and human coronary atheroscle-
rotic plaques and demonstrated preferential expression of
TLR4 in lipid-rich and macrophage-infiltrated murine and
human atherosclerotic plaques. Other studies in vitro demon-
strated basal expression of TLR4 by macrophages, which was
upregulated by oxLDL. Concurrently, Edfeldt et al,130 using a
semiquantitative polymerase chain reaction and immunohis-
tochemical analysis, demonstrated that of 9 TLRs, the expres-
sion of TLR1, TLR2, and TLR4 was markedly enhanced in
human atherosclerotic plaques. A considerable proportion of
TLR-expressing cells was also activated, as shown by the
nuclear translocation of NF-�B. Very recently, Kiechl et al131

demonstrated that a polymorphism or mutation of TLR4 was
strongly correlated with the incidence and development of
atherosclerosis in a large population study (Bruneck Study).
Thus, TLRs could be involved in the pathogenesis of
atherosclerosis.

As mentioned above, several groups reported that soluble
HSPs specifically bind to the TLR4/CD14 complex, initiating
different signal pathways in different types of cells.122–127 In
human mononuclear cells, human sHSP60 binds to TLR4/
CD14, leading to p38 MAPK activation,122 whereas in
smooth muscle and epithelial cells, chlamydial and human
sHSP60 stimulates ERK42/44 activation.132,133 ERK42/44 is
a central component of signaling via growth factors. Sequen-
tial activation of Ras and Raf activates MAPK kinase. MAPK
kinase then activates ERK by dual phosphorylation of key
threonine and tyrosine residues, and MAPK, in turn, phos-
phorylates serine and threonine residues on several transcrip-
tion factors, including c-Myc, activator protein-1, NF–IL-6,
activating transcription factor-2, and Elk-1, leading ulti-
mately to cell growth and differentiation.134 This indicates
that chlamydial and human HSP60 are potent inducers of
human smooth muscle cell proliferation and that these effects

are mediated, at least in part, by rapid TLR4-initiated activa-
tion of ERKs.133 However, it should be pointed out that data
from most of the studies mentioned above are derived from
usage of recombinant HSPs produced from E coli, indicating
a possibility that HSPs might be contaminated with LPS.

In macrophages and endothelial cells, the binding of
sHSP60 to the TLR4/CD14 complex leads to the activation of
MyD88–NF-�B pathways. In 293 cells, chlamydial sHSP60–
mediated NF-�B activation required TLR4 and MD2. A
dominant-negative MyD88 construct also inhibited sHSP60-
induced NF-�B activation, indicating a MyD88-dependent
signaling pathway.123 In addition, it has been demonstrated
that soluble HSP70 and mycobacterial soluble HSP65 have a
binding activity similar to that of TLR4/CD14, which initiates
the MyD88–NF-�B signaling pathways.126 These findings
suggest that TLR4/CD14 is a receptor for several soluble
HSPs and have partially clarified the signal pathways after
soluble HSP–TLR4/CD14 binding (Figure 3).

Antibodies Against HSP60
In the early 1990s, we135 first reported an association of
anti-HSP65 antibodies with atherosclerosis. Serum antibodies
against mycobacterial HSP65 were significantly increased in
subjects aged 40 to 79 years with carotid atherosclerosis
compared with those without lesions, and increased antibody
concentration was independent of age, sex, and other estab-
lished risk factors. A follow-up study confirmed that HSP65
antibody titers in the population emerged as highly consistent
over a 5-year observation period.136 Titers were significantly
elevated in subjects with progressive carotid atherosclerosis
and were correlated with intima/media thickness. Again,
multiple linear regression analysis documented these associ-
ations to be independent of age, sex, and other risk factors.
Finally, HSP65 antibody titers significantly predicted the
5-year mortality.136 Subsequently, Mayr et al43 demonstrated
that anti-mycobacterial HSP65 antibody titers were positively
correlated with human IgA to C pneumoniae and with IgG to
H pylori, indicating a role for infections in the production of
anti-HSP antibodies.

Figure 3. sHSP-initiated signal transduction pathways.
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Regarding anti-human HSP60 antibodies, 2 independent
groups demonstrated that �70% of the study subjects had
anti-human HSP60 antibodies.137,138 The prevalence of coro-
nary artery disease was significantly increased in seropositive
compared with seronegative patients. Importantly, HSP60
antibodies were related to disease severity, which persisted
after adjustment for traditional risk factors, ie, age, race, sex,
smoking, diabetes, hypercholesterolemia, hypertension, and
C-reactive protein levels.137,138 Moreover, Huittinen et al139

reported that human HSP60 IgA or chlamydial HSP60
antibodies were a significant risk factor for coronary events.
When an elevated human HSP60 IgA antibody level was
present simultaneously with a high C pneumoniae IgA
antibody level and an elevated C-reactive protein level, the
relative risk was 7.0. In addition, many other groups140–149

confirmed the elevated levels of HSP antibodies in coronary
heart disease, myocardial infarction, stroke, hypertension,
and restenosis after angioplasty (Table 2). Therefore, an
elevated human HSP60 antibody level may be a risk factor
for atherosclerosis and could be a marker of the disease,
especially when it is present with C pneumoniae infection and
inflammation.

Circulating antibodies to HSPs may be induced or main-
tained by several different mechanisms. First, infection with
agents that contain homologous HSP60 proteins could induce
an anti–self-response through molecular mimicry in suscep-
tible individuals.150 Second, the protein could become immu-
nogenic because of structural alteration or posttranslational
modification resulting from oxidation or metabolic alter-
ations.151 Third, other foreign or self-antigens could interact
with HSP60 to form immunogenic complexes in which B
cells recognize HSP60 and T cells direct their response at the
associated antigen.26 Fourth, soluble HSP might be not
recognized as a self-protein by a population of T and B
lymphocytes, inasmuch as HSPs being leaked are intracellu-
larly localized in physiological conditions.152 Finally, genetic

variation may also be important for antibody production.
Supporting this issue are findings that a strong association
between the IL-6 promoter �174 polymorphism and anti-
HSP60 antibody level was seen. Carriers of allele C at this
position had significantly lower levels of anti-HSP60 and
anti-HSP65 antibodies. A lack of association between IL-1�
and IL-1� gene polymorphisms and antibody levels has been
detected.153 Therefore, circulating anti-HSP antibody titers
could be maintained at higher levels via different
mechanisms.

T Cells Specifically Responding to HSP60/65
It has been established that atherosclerotic lesions of humans
and rabbits contain a large number of T lymphocytes.4 About
half of these T cells express major histocompatibility com-
plex class II antigens, and some also express IL-2 receptors,
indicating a state of activation. Studies have shown that T
lymphocytes in human atherosclerotic plaques are mostly
Th1 cells expressing the low-molecular-weight form
(CD45RO) of the leukocyte common antigen and very late
activation antigen-1, an integrin.4 These T cells are poly-
clonal in origin and are based on the phenotype of T cell
receptors, ie, �/�, and �/�.32,154,155 Most T lymphocytes
involved in atherosclerosis bear the �/� T-cell receptor.
However, in the earliest stage of atherogenesis, there is an
average of 9.7% �/� T cells. T-cell receptor �/�� cells have
been proposed to constitute a first line of defense, and recent
results have also indicated a possible participation of T cells
in the early stages of atherosclerosis.156 The presence of T
cells in atherosclerotic lesions could be important, because
these cells can act as effector cells and secrete factors
chemotactic for mast cells, monocytes/macrophages, and
smooth muscle cells, and they can also determine the differen-
tiation and function of B cells and monocytes/macrophages.

What are the antigens recognized by these T cells in
atherosclerotic lesions? They are possibly HSPs, a notion that

TABLE 2. Summary of Epidemiological Studies on HSP Antibodies

First Author and Reference Cases/Controls Disease HSPs Odds Ratio and P*

Xu et al135 867 Carotid AS HSP65 1.52 (1.09–2.02)

Gruber et al140 107/90 Vascular diseases HSP65 P�0.001

Hoppichler et al141 203/76 CHD, MI HSP65 P�0.05

Mukherjee et al143 28/12 CHD, PTCA HSP65 P�0.036

Frostegard et al142 66/67 Hypertension HSP65 P�0.034

Birnie et al144 136 CHD HSP65 P�0.012

Prohaszka et al147 74 CHD HSP60 P�0.0001

Xu et al136 750 Carotid AS HSP65 1.42 (1.02–1.98)

Chan et al145 61/21 Peripheral AS HSP70 P�0.0037

Zhu et al138 274/91 CAD HSP60 1.86 (1.13–3.04)

Burian et al137 276/129 CAD HSP60 2.6 (1.3–5.0)

Gromadzka et al146 180/64 C ischemia HSP65/70 P�0.0001

Prohaszka et al149 424/321 CHD HSP60 P�0.007

Ciervo et al148 179/100 CHD HSP60 P�0.05

Huittinen et al139 239/239 CHD HSP60 2.0 (1.1–3.6)

*P values are shown when odds ratios were not provided in the articles. AS indicates
atherosclerosis; CHD, coronary heart disease; CAD, coronary artery disease; MI, myocardial infarction.
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is supported by the finding of T cells cultivated from
atherosclerotic lesions by Xu et al.33 These researchers
showed that a population of the T lymphocytes isolated from
the atherosclerotic lesions of rabbits specifically responded to
HSP65 in vitro. IL-2–expanded T-cell lines derived from
atherosclerotic lesions showed a significantly higher HSP65
reactivity than those developed from peripheral blood of the
same donor. In human atherosclerotic lesions, Mosorin et
al157 showed that a proportion of T cells responded to
chlamydial sHSP60. They found that sHSP60 induced spe-
cific proliferation in 71% of the cases and revealed 2
haplotype (DRB1*1502 and DQB1*06) binding motifs in
human sHSP60. Another group has obtained a similar result
with T cells responding to HSPs in atherosclerotic lesions.158

They demonstrated that some chlamydia-specific T-cell lines
derived from human atherosclerotic plaques responded to
HSP60. Those recognizing chlamydial HSP60 did not cross-
react with human HSP60, but human HSP60-responsive lines
from atherosclerotic lesions were also observed. Taken to-
gether, these findings support the presence of antigen-specific
T lymphocytes to HSPs in atherosclerotic lesions. An excel-
lent review regarding how these T cells are recruited, acti-
vated, and subsequently exert their role in atherogenesis has
recently been published in Arteriosclerosis, Thrombosis, and
Vascular Biology.4

Immune Reaction to HSP60 in Atherogenesis
Because of the high sequence homology between chlamydial,
other bacterial, and human HSPs (75% at the amino acid
level),25 it is naturally possible that cross-reactions of anti-
bodies and T cells against HSPs between microbes and
humans contribute to the development of atherosclerosis.
Wick et al159 first hypothesized that autoimmune reactions to
HSPs could be crucial in initiating atherosclerosis. Recently,
Wick et al,160 stating that atherosclerosis is an autoimmune
disease, have updated this hypothesis. Although existing data
do not allow us to establish that atherosclerosis is an
autoimmune disease, autoimmune reactions to HSPs may
contribute, at least in part, to atherogenesis. Because their
article concerning this issue has been thoroughly reviewed,160

the present review will briefly summarize the progress in this
field.

As demonstrated, human serum anti-mycobacterial HSP65
antibodies react with a recombinant form of human HSP60
and homogenates of atherosclerotic lesions.161 Human anti-
HSP65 antibodies react with human HSP60 present in endo-
thelial cells, macrophages, and smooth muscle cells of ath-
erosclerosis.161 Schett et al162 have purified human anti-
HSP65 antibodies and have shown that they are cytotoxic to
endothelial cells. By Western blotting analysis, they have
demonstrated that such antibodies from patients with athero-
sclerosis react specifically with recombinant mycobacterial
HSP65, recombinant human HSP60, chlamydial HSP60, and
E coli GroEL/HSP60.163 Heat-stressed endothelial cells could
be lysed by these antibodies in the presence of complement
via complement-mediated cytotoxicity or in the presence of
peripheral blood mononuclear cells via antibody-dependent
cellular cytotoxicity.163 In addition, a population of T cells in
atherosclerotic lesions may also play a similar role as auto-

antibodies, suggesting that cell-mediated immune responses
to HSP60 are involved in the pathogenesis of this disease. In
further support of autoimmunity are findings that rabbits and
mice develop atherosclerosis after immunization with
HSPs.164,165 Therefore, serum autoantibodies and T cells react
not only with bacterial HSP65 but also with human HSP60 in
vascular cells.

Hypothesis and Perspectives
Figure 4 depicts the current model for the role of HSPs in
atherogenesis. All risk factors, eg, infections, biomechanical
stress, oxLDL, and free radicals, directly stimulate cells of the
arterial wall and/or other tissues to express high levels of
HSPs. The physiological functions of these HSPs are to
protect cells against apoptosis. Pathologically (ie, from stim-
ulation by the risk factors), the cells are dying; this releases
intracellular HSPs into intercellular spaces to form sHSPs.
sHSPs bind to TLR4/CD14 receptors, resulting in endothelial
cells expressing adhesion molecules, in smooth muscle cells
leading to proliferation, and in macrophages inducing a range
of proinflammatory cytokines. Simultaneously, macrophages
present antigens to T and B cells, which produce autoanti-
bodies and autoreactive cells against HSPs. All contribute to
the development of atherosclerosis.

The past several years have seen a dramatic increase in the
number of studies involving the role of HSPs in the patho-
genesis of atherosclerosis. On the basis of these progresses, I
have summarized the data and formulated an HSP hypothesis

Figure 4. Schematic representation of potential role of HSP60 in
atherogenesis. Various stressors, such as infections, biome-
chanical stress, oxLDL, free radicals, toxins, heat shock, and
other stress, induce HSP production in the arterial wall, which is
released into blood to form soluble HSPs (sHSPs). sHSPs bind
to TLR4/CD14 complex resulting in proinflammatory responses
and autoimmune reactions, which contribute to atherosclerosis.
ECs are endothelial cells; TLK, Toll-like receptor; SMCs, smooth
muscle cells; and Mø, macrophages.
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as shown in Figure 4. However, many outstanding questions
have to be answered before the topic can be brought to
completion. For instance, what are the molecular mechanisms
of risk factor–induced HSP expression (eg, signal transduc-
tion pathways between stimuli and HSP induction)? How are
intracellular HSPs released? How many signaling pathways
in different types of cells are involved after sHSP-TLR4/
CD14 binding? To which degree do autoimmune reactions to
HSPs contribute to atherosclerosis in humans? I believe that
further research into the issues mentioned above will provide
a better understanding of the molecular mechanisms in
atherosclerosis and result in important clinical applications.
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