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Insulin-like growth factor (IGF) signaling is fundamental for growth and survival. A large
body of evidence (laboratory, epidemiological, and clinical) implicates the exploitation of
this pathway in cancer. Up to 50% of breast tumors express the activated form of the
type 1 insulin-like growth factor receptor (IGF1R). Breast cancers are categorized into
subtypes based upon hormone and ERRB2 receptor expression and/or gene expression
profiling. Even though IGF1R influences tumorigenic phenotypes and drug resistance
across all breast cancer subtypes, it has specific expression and function in each. In
some subtypes, IGF1R levels correlate with a favorable prognosis, while in others it is
associated with recurrence and poor prognosis, suggesting different actions based upon
cellular and molecular contexts. In this review, we examine IGF1R expression and function
as it relates to breast cancer subtype and therapy-acquired resistance. Additionally, we
discuss the role of IGF1R in stem cell maintenance and lineage differentiation and how
these cell fate influences may alter the differentiation potential and cellular composition of
breast tumors.
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IGF Signaling

Insulin-like growth factor 1 and 2 (IGF1 and IGF2) are peptides that act as circulating endocrine
hormones critical for normal body growth. Pituitary-derived growth hormone (GH) stimulates the
liver to express IGF1, which is secreted and affects growth of multiple cell types (1, 2). Other tissues
also produce IGF ligands that act in a paracrine or autocrine manner (3). IGF ligands are bound by
insulin-like growth factor binding proteins (IGFBP1-6) (4). While IGFBP binding increases ligand
stability, IGFBP binding also decreases ligand bioavailability and competes with ligand-receptor
binding.

Insulin-like growth factor 1 or IGF2 stimulates downstream signaling events primarily by binding
and activating the type 1 insulin-like growth factor receptor (IGF1R). Insulin-like growth factor type
2 receptor (IGF2R), which is homologous to the mannose-6-phosphate receptor, does not seem to
have a signaling function and may act as a sink to modulate IGF2 ligand bioavailability. IGF1R
has high similarity to the insulin receptor (InsR) (5, 6). Indeed, although the affinities are much
lower, IGF1 can bind and activate the InsR while, in turn, insulin can bind and activate IGF1R (7).
IGF2 binds both receptors with similar affinities. In addition, a fetal form of InsR that has alternate
splicing, termed as insulin receptor isoformA (InsR-A), has a high affinity for IGF2. IGF1R and InsR
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exist primarily as heterotetramers. However, hybrid IGF1R/InsR
receptors, consisting of subunits from both receptors, can form
and bind all three ligands (8–13). Therefore, there is much
crosstalk and overlap in receptor signaling downstream of IGFs
and insulin.

Binding of IGF1 or IGF2 to IGF1R results in auto-
phosphorylation of the IGF1R kinase domain and activation of
intracellular signaling cascades. Insulin receptor substrates 1 and
2 (IRS1 and IRS2), the main signaling adaptors for both IGF1R
and InsR, are recruited to the receptor and act as docking sites
(14). IRS1 and IRS2 link the activated receptors to numerous
intracellular adaptor proteins and downstream signaling cascades
such as PI3K/AKT and RAS/MAPK/ERK1 (15).

Type 1 insulin-like growth factor receptor signaling cascades
regulate cell growth, survival, and motility. The IGF1R path-
way mediates strong anti-apoptotic signals through three known
pathways. The PI3K/AKT and RAS/MAPK pathways both facil-
itate IGF1R-induced resistance to apoptosis (16). Additionally,
IGF1R interacts with 14.3.3 proteins to induce the mitochondrial
translocation of Raf (17). All three of these pathways converge
to phosphorylate BAD and block apoptosis. Additionally, IGF1R
mediates the cell cycle through MAPK/ERK activation. ERK
induces proliferation through phosphorylation of transcription
factors such as c-Fos and Ets-like transcription factor 1 (Elk-1)
(18). IGF1R signaling also activates c-Myc, JNK, and c-Jun (19).
Cell cycle progression is promoted by IGF1R-mediated increases
in ribosome activity (20) and expression of cyclins A, B, and
D1 (21, 22). These robust anti-apoptotic properties of IGF1R
and cell cycle regulation both play critical roles in promoting
IGF1R-mediated tumorigenesis.

IGF1 Signaling and Mammary Gland
Function

Insulin-like growth factor 1 is critical for mammary development.
In the mammary gland, GH stimulates IGF1 production from
the stroma (23), and this is enhanced by estradiol (24, 25).
IGF-I acts in a paracrine manner to stimulate terminal end
bud (TEB) growth and form the ductal structures that extend
through the mammary fat pad. Mammary gland develop-
ment is decreased in IGF1 (−/−) null females (26). Inter-
estingly, IGF1 produced within the mammary gland is more
potent at stimulating mammary growth than circulating IGF1
derived from the liver (27). The IGF1 deficiency in IGF1
(−/−) null mice can be rescued by continuous 5-day injec-
tions of the des-IGF1 variant. Longer treatments with IGF1
plus estradiol enhance TEB formation and ductal morphogen-
esis. Interestingly, treatment with GH and estradiol does not
restore development in IGF1-null mice, indicating the neces-
sity of IGF1 for the full function and stimulation by these
hormones (26).

Similar to the critical role for IGF1 in mammary gland devel-
opment, IGF1R is also required for mammary gland morpho-
genesis. Reconstitution assays using IGF1R-deficient embryonic
mammary buds demonstrate decreased growth potential and cell
proliferation during morphogenesis (28). The reduction in mam-
mary gland morphogenesis observed upon loss of IGF1/IGF1R

signaling is a result of decreased cell cycle progression and
increased apoptosis (29–31).

Although critical for mammary gland development, IGF1
needs to function in cooperation with growth factors such as
epidermal growth factor (EGF) and transforming growth factor
beta (TGF-B) as well as the IGF1 receptors and binding proteins
for efficient signaling and full mammary function (32).

The IGF Pathway in Cancer

As IGF1 plays such a critical role in cell growth, survival, and
migration, it is not surprising that alterations in the IGF1 signaling
pathway are linked to the development and progression of multi-
ple cancers including breast, lung, osteosarcoma, gynecological,
prostate, and gastrointestinal cancers. Many different alterations
in the IGF system promote tumorigenesis: increased IGF1 and
IGF2 expression (33–36), decreased levels of circulating IGFBPs
(which increase ligand bioavailability) (37–39), and changes in
receptor expression (40, 41).

Recent large genomic analyses now allow a comprehensive
examination of genomic and molecular changes in the IGF path-
way in cancer. Analysis of data from The Cancer Genome Atlas
(TCGA) using the cBIO portal across most cancer types shows
genomic alterations in IGF ligands (IGF1, 2), receptors (IGF1R,
IGF2R), binding proteins (IGFBP1–6), and IRSs (IRS1, 2, 4); this
representing 18 genes (Figure 1A). The greatest change is in
stomach cancer where 43% of tumors show a molecular alteration
(amplification, deletion, or base pair mutation) in one or more of
the 18 genes of the IGF family. Interestingly, different tumor types
show distinct molecular changes. For example, sarcomas exhibit
copy number changes such as DNA amplification and deletion,
whereas pancreas, melanoma, and lung cancers are dominated by
base pairmutations. Some tumor types display a very low to absent
mutation rate such as thyroid, acute myelogenous leukemia, and
glioblastoma.

In breast cancer, 15%of TCGA-documented breast cancers (42)
contain genomic alterations in the IGF pathway. These alterations
consist mainly of amplification and are generally rare with only
IGF1R and IRS2 showing amplification in >5% of cases. When
considering mRNA levels (using the TCGA provisional data on
962 breast cancers which includes RNA-seq), 45.3% of breast can-
cers (n= 436/962) show a molecular alteration in at least one IGF
family member. IGFIR is amplified, overexpressed, or somatically
mutated in 9% of tumors. Other notable changes are amplification
or overexpression of IGFBP4 (9%), IGFBP5 (6%), and IRS2 (7%)
(Figure 1B).

While somatic mutation of IGF family members has only
recently been comprehensively described, a large literature has
reported on germline polymorphisms. In particular, germline
polymorphisms in IGF1, IGF1R, and IGFBP3 are associated with
increased risk of breast (43–45), prostate (46–48), lung (49), and
pancreatic (50) cancers.

While many studies have examined alterations in IGF path-
way components, few measured pathway activity. For example,
tumor tissue microarrays show that 87% of primary breast tumors
express IGF1R (51); however, the active phosphorylated form of
IGF1R/InsR, as measured by immunohistochemistry (IHC), is
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FIGURE 1 | Genomic and transcriptomic alterations in the IGF pathway
in cancer. Data are from The Cancer Genome Atlas at cBio
(http://www.cbioportal.org/) in February 2015. For several cancers, the data are
published (pub) while for others it is provisional and in progress. (A) Histogram
showing genomic changes (somatic base pair mutation and copy number
alteration) in 13 members of the IGF pathway [notated on the y-axis in (B)]. Each
bar represents the percentage of tumors, which show an alteration in these
genes and each cancer type is indicated on the X-axis. (B) Genomic and

transcriptomic changes (mRNA levels) specifically in breast cancer for 13 genes
indicated on the y-axis. Each row represents a different gene. Each gray box
represents an individual tumor. The percentage of tumors showing an alteration
for each gene is shown on the Y-axis next to the gene. A red box indicates the
gene is amplified and blue is deleted. A box with a red outline represents RNA
overexpression compared to normal breast and blue is underexpression. A
green dot represents a somatic base pair mutation. Tumors without an alteration
in any of the IGF family members have been removed for visualization.

only present in roughly 50% of breast cancers where it correlates
with poor survival (52). We examined IGF pathway activity by
combining IGF-regulated mRNA levels into an “IGF gene sig-
nature.” Breast tumors expressing the IGF1 gene signature sig-
nificantly correlate with numerous poor prognostic factors and
expression of this signature is one of the strongest indicators of
poor disease outcome (53).

IGF1R across Breast Cancer Subtypes

Breast tumors display tremendous heterogeneity among different
patients due at least in part to varying molecular alterations and
divergent cells of origin. In recent years, gene expression profiling
has helped to define breast cancer subtypes. Molecular profiling
divides breast tumors into six major subtypes, which are related
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FIGURE 2 | Expression levels of IGF pathway components across
breast cancer subtypes. Level 3, IlluminaHiSeq_RNASeqV2 normalized
gene expression values for all breast cancer tumors were downloaded from
The Cancer Genome Atlas. The expressions of the indicated genes from

tumors (columns) with calculated PAM50 scores (42) were extracted, log2
transformed, median centered for each gene (rows), and a heatmap was
generated using MeV. The PAM50 subtype clusters are shown above with
the indicated colors.

to the known major drivers (and targetable biomarkers): estrogen
receptor α (ERα), progesterone receptor (PR), and erbb2 receptor
tyrosine kinase 2 (ERBB2/HER2). The currentmolecular subtypes
include luminal A, luminal B, ERBB2-like, triple negative/basal-
like, claudin-low, and normal-like (54, 55). Each subtype can also
be further classified into more defined subgroups.

The expression and role of IGF1R in various breast cancer
subtypes, and in particular its role in causing resistance to targeted
therapies, has been extensively studied. By identifying in which
tumor types the IGF1R pathway actively drives tumor initiation
and progression, we can better define the subtype(s) that may
benefit from anti-IGF1R therapies. For an overview of IGF path-
way expression across the breast cancer molecular subtypes, we
analyzedTCGAdata (42) (Figure 2).Most IGFpathwaymembers,
including IGF1R itself, tend to be more highly expressed in lumi-
nal A and luminal B tumors and comparatively underexpressed
in basal and ERBB2+ tumor types (Figure 2). This expression
only denotes mRNA levels and does not demonstrate pathway
activation.

Below, we describe the main breast cancer molecular subtypes
and the role IGF1R is believed to play in each.

Luminal
The majority of breast cancers fall into the luminal classification.
Luminal subtypes tend to be hormone receptor positive (ER+,
PR+) and comprise ~50% (luminal A) and ~10–20% (luminal
B) of all breast cancer cases (56). Luminal A tumors have the
best overall prognosis. Luminal B tumors are similar to luminal A
tumors, but are more aggressive (higher grade) and are typically
diagnosed at a younger age with higher reoccurrence rates. Hor-
mone therapies (e.g., tamoxifen and aromatase inhibitors) have
greatly increased the overall prognosis of the luminal subtype.

Estrogen receptor α is a major regulator of IGF signaling, due
in part to transcriptional activation of IGF1R and many other IGF

signaling components such as IRS1 (57–59). Consistent with this,
the hormonally driven luminal subtypes tend to have higher levels
of IGF1R and IRS expression as opposed to tumors that are less
hormonally driven (triple negative and ERBB2+) (60, 61). IGF1R
is expressed in 52 and 84% of Luminal A and 57.5 and 76% of
Luminal B tumors, respectively (62, 63). IGF1R expression does
not affect breast cancer specific survival in luminal A tumors.
Interestingly, luminal B tumors with higher total IGF1R levels
have significantly better prognosis than those with low levels of
IGF1R (62). Law et al. demonstrated that roughly 50% of all lumi-
nal tumors show phosphorylated, and presumably active, IGF1R
(52). As IGF1R is upregulated by ERα, the better prognosis of
IGF1R-expressing luminal tumors may be associated with the use
of ER-targeted therapies.

Estrogen receptor α and the IGF pathway show dynamic
and intricate crosstalk, resulting in bidirectional regulation of
expression and activity (64). ERα transcriptionally upregulates
IGF1R expression. IGF1R transcriptionally upregulates ERα in an
mTOR/S6K1-dependent manner and increases ERα phosphory-
lation to stimulate transcriptional activity (65, 66). Importantly,
during endocrine resistance, converging growth factor signaling
on the PI3K/AKT and MAPK/ERK pathways bypass the need for
ERα activity (67–69). Surprisingly, however, use of anti-IGF1R
therapy in the setting of endocrine resistance does not improve
prognosis (70).

Consistent with its ERα-dependent regulation, IGF1R lev-
els are reduced in many tamoxifen- and aromatase inhibitor-
resistant cell and mouse tumor models (71–73) as well as patient
tumors (74). However, the remaining IGF1R is strongly phospho-
rylated with hyperactive IGF1R/InsR/PI3K/AKT/mTOR signal-
ing beyond pre-resistance levels, suggesting that the cells/tumors
acquire resistance through an IGF1R-directed mechanism even
in cases of reduced IGF1R levels (69, 73). Furthermore, the Yee
lab has shown that while IGF1R is reduced in tamoxifen resistant
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breast cancer cells, InsR is still expressed and able to signal via
insulin to promote growth (75).

Recently, the G protein estrogen receptor 1 (CPER/GPR30)
has been identified as a potential mediator of rapid estrogens
response. Increased GPER expression is associated with increased
risk of metastasis and poor survival (76). Both IGF1 and insulin
upregulate GPER expression through the c-Fos/AP1 pathway.
IGF1 and insulin transactivate GPER to promote migration and
proliferation (77, 78). ERα is required for IGF1-induced transac-
tivation of GPER (77). Interestingly, GPER expression increases
in tumors treated with tamoxifen (79) and correlates with a poorer
prognosis specifically in tamoxifen treated patients (79–82). These
results suggest that GPER may be a potential pathway for IGF1-
and insulin-induced tamoxifen resistance.

Given basic signaling mechanisms linking the IGF and ERα
pathways, combined targeted therapy has been suggested as a
potential unique therapeutic strategy in breast cancer. For this
reason, and following on from several preclinical studies, several
trials targeting IGF1R in luminal breast cancer were performed.
Unfortunately, anti-IGF1R therapy provided little benefit in this
setting. It should be noted, however, that therapy was given to
all patients independent of whether the IGF pathway was present
or active (e.g., in the absence of biomarkers). Several in vitro
studies suggest that biomarker selection is critical for identifying
the tumors that will respond to IGF1R inhibitors (70, 83).

A major hurdle to anti-IGF1R therapy is the intricate network
of feedback that occurs in this and related pathways. For exam-
ple, the PI3K/Akt/mTOR/S6K pathway exerts a major negative
feedback upon IGF1R/IRSs and when any part of this pathway
is inhibited there is a concomitant increase in IGF1R activity.
This was noted in Phase I trials of an mTOR inhibitor and vali-
dated in many preclinical studies (84). For example, inhibition of
AKT in long-term estrogen deprived cell lines results in positive
feedback that upregulates several upstream growth factor pro-
teins through FoxO and ERα-regulated transcription, including
IGF1R and IGF ligands (85). Combined inhibition of IGF1R/IR
along with AKT inhibition and ER deprivation enhances the
anti-tumor effect in vivo (85). The ability of the pathway to
autoregulate and compensate for ER downregulation appears to
be the cause for endocrine therapeutic resistance. The only way
to impede resistance may be through inhibition of the overarch-
ing converging system, targeting multiple intercrossing growth
signaling pathways to limit compensation on as many levels as
possible.

ERBB2-Like
ERBB2 (HER2)-like tumors comprise ~15% of breast cancers and
are typically hormone receptor negative with a 40% probability
of p53 mutation (56). The ERBB2-like subtype shows poorer
prognosis than luminal tumors, with early age of onset, higher
tumor grade, and lymph node positivity. Patients with ERBB2-like
tumors tend to have early recurrence and a poorer prognosis.

Accumulating evidence indicates crosstalk between ERBB2
and IGF signaling in breast tumorigenesis. About 10–20% of
ERBB2+ tumors express IGF1R protein (62, 63). Active phospho-
rylated IGF1R/IR is found in 49% (86) and 64% (52) of ERBB2+
tumors. Brown et al. found phosphorylated IGF1R/IR does not

correlate with prognosis in trastuzumab-treated ERBB2+ tumors
(86). However, Yerushalmi et al. observed that ERBB2+ tumors
expressing higher total IGF1R protein levels have decreased breast
cancer specific survival compared to the lower IGF1R-expressing
ERBB2+ counterparts (62). In this study, these ERBB2-enriched
tumors are the only subtype presenting a low patient prognosis in
correlation with IGF1R expression (62).

The risk of recurrence is higher for ERBB2 positive breast
cancers than for ERBB2 negative breast cancers. This anti-
ERBB2 therapy resistance is often due to activation of alternative
growth factor receptor pathways. ERBB2-postive tumors express-
ing strong IGF1R membrane staining are less likely to respond
to trastuzumab and vinorelbine than those with negative or low
IGF1R protein expression (87). Other studies do not indicate a
correlation between IGF1R protein expression and trastuzumab
response (86, 88, 89) unless IGF1R expression is combined expres-
sion of downstream IGF1R signaling effectors, such as PI3K or
mTOR (88).

Unlike clinical data, in vitro breast cancer cell line data
suggest a strong correlation between increased IGF1R activ-
ity and trastuzumab-resistance (90–93). Interestingly, miRNAs,
which typically inhibit IGF1R, show decreased expression upon
trastuzumab-resistance (93, 94) and providing one possiblemech-
anism of IGF1R upregulation. In trastuzumab-resistant cell line
models, IGF1R forms a complex with ERBB2, and even a triplex
with ERBB3 (95–97). This heterodimer/trimer promotes crosstalk
between the growth receptor pathways. For example, IGF1-
induced IGF1R phosphorylation leads to ligand-independent
phosphorylation of ERBB2, which circumvents trastuzumab anti-
body inhibition and leads to an ERBB2-basedmechanism of resis-
tance (95, 98). In trastuzumab-resistant cells, IGF1R-promoted
ERBB2 phosphorylation and IGF1R-induced invasion are medi-
ated by Src and FoxM1 (98). Co-targeting ERBB2 and IGF1R
reduces Erk/AKT activation, cell proliferation, in vitro invasion,
and xenograft tumor growth to a greater extent than target-
ing either receptor individually (98, 99). Interestingly, treating
trastuzumab-resistant cells with metformin re-sensitizes cells by
disrupting the ERBB/IGF1R complexes (97), again strongly sug-
gesting that a combined therapy would hold promise for patients
with ERBB2+ breast tumors.

Triple Negative Breast Cancer
The triple negative breast cancer (TNBC) subtype accounts for
up to 10–20% of breast cancers. Approximately 75% of TNBCs
have a basal-like phenotype (56). Most BRCA-mutant tumors fall
into this subtype (100). TNBCs are defined by the absence of
ER, PR, and ERBB2. Driver mutations and subsequent targeted
therapies are currently unknown. These tumors tend to be high
grade and poorly differentiated with high rates of recurrence and
poor prognosis. Intriguingly, TNBCs respond well to neoadjuvant
chemotherapy with high rates of pathological complete response
as compared to response in other subtypes. However, TNBCs still
trend toward a poorer prognosis with increased rates of recur-
rence. The disproportion between response and outcome suggests
neoadjuvant therapies are not capable of abolishing the driving
tumorigenic cell types, underlining the need for identifiable and
targetable driver mutations in TNBC.
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Women of African descent are three times more likely to
have TNBC: 30% of breast cancers diagnosed in African-
Americanwomen are TN as compared to 11–13%of non-African-
American women (101–103). Interestingly, African-American
women have higher IGF1R expression in normal breast tis-
sue while Caucasian-Americans have higher levels of IGF2R
(104). This differential IGF1R/IGF2R expression may explain the
increased occurrence of the more aggressive TNBC subtype in
African-American women. Although IGF1R levels are similar
between normal and malignant African-American breast tissues,
phosphorylation of IGF1R and its downstream effectors are sig-
nificantly higher in the malignant samples (104). Consequently,
IGF1 signaling and proliferation (detected by gene expression
profiling) are higher in TNBCs from African-American women
compared to European-American (51). These studies underscore
the significance of IGF1R in TNBC.

About 22–46% of TNBCs express IGF1R protein (52, 62, 63)
and this expression correlates with shorter survival (105). The
IGF1 gene signature correlates with expression signatures of
TNBC tumors and cell lines (106) where both sample types are
responsive to IGF1 signaling, promoting proliferation, and cell
survival (107).

Laboratory studies analyzing anti-IGF1R therapeutic response
typically demonstrate a favorable response to TNBC therapies.We
demonstrated that TNBC cell lines and a primary tumor xenograft
are sensitive to the anti-IGF-IR/InsR tyrosine kinase inhibitor
BMS-754807 (106). Surprisingly, expression of a dominant-
negative IGF1R during MMTV-Wnt1-mediated tumorigenesis
accelerates mammary tumor formation and promotes aggressive-
ness (108). Interestingly, these tumors possess IGF2 signaling
as well as a suggested role for InsR signaling. Additional stud-
ies demonstrate that IGF1R inhibition does not abrogate IGF-
induced phenotypes in the presence of increased IGF2/IGF2R
signaling (109). In TCGA patient data, IGF2R expression is sig-
nificantly higher in basal-like tumors as compared to luminal
tumors (Figure 2) (p value <0.001, t-test). Taken together, these
studies suggest that IGF1R inhibition may be beneficial in some
triple negative breast cancers but that the benefit will be very
context-dependent.

Recently, the G protein estrogen receptor 1 (GPER/GPR30)
has been identified as a potential growth regulator of TNBCs
(110, 111). GPER is believed to mediate rapid estrogen response
independently of ER; and thus, can drive estrogen-responsive
growth even in ER-negative cells. As mentioned above, IGF1
signaling induces GPER expression and GPER promotes IGF1-
induced migration and proliferation (77, 78). More work need
to be completed in this area to determine if GPER could be a
potential biomarker for anti-IGF1R-responsive TNBCs.

Most BRCA1 tumors phenocopy TNBC (100). In line with
BRCA1-mediated repression of the IGF1R promoter (112, 113),
BRCA1-mutant tumors show elevated IGFIR and IGF1 lev-
els, leading to reduced apoptosis, and enhanced survival (113–
115). Importantly, inhibition of the IGF1R/PI3K/AKT pathway
decreases proliferation in BRCA1-deficient cells (116). These
studies suggest IGF1R signaling significantly contributes to
tumor cell proliferation and survival in BRCA1-deficient breast
cancers.

The Influence of IGF1R on Cell Potential
and Cell Fate

IGF1R Signaling and Stemness
The IGF system regulates stem cell maintenance in normal tissue
processes. In human embryonic stem cells, the stem cell niche
produces IGF2, which is required for survival and expansion
(117). In neural stem cells, IGF2 is believed to bind and act
through the InsR-A rather than IGF1R (118). Conversely, the
human embryonic niche relies on the IGF2/IGF1R axis for self
renewal and stem cell expansion (117), suggesting the necessity
of IGF1R-promoted signaling in maintaining the stem cell pop-
ulation. In the hematopoietic and muscular system, expression
of a skeleton muscle-localized IGF1 transgene enhances skeletal
muscle regeneration in irradiated mice in part by recruiting pro-
liferating bone marrow-derived cells, increasing stem cell marker
populations, and acceleratingmyogenic differentiation (119, 120).
Additionally in the hematopoietic system, IGF1R levels in new-
born umbilical cord blood correlates positively to the total number
of hematopoietic stem and progenitor cells (121). These studies
demonstrate a role for IGF1R in regulation of stem and progenitor
cell populations.

A recent review published by Roberta Malaguarnera and Anto-
nio Belfiore summarized in great detail the known pathways
and links between the IGF1R pathway and the epithelial-to-
mesenchymal transition (EMT) and stem cell-related processes
across several tissue types, both normal and cancerous (122). EMT
is a naturally occurring process for remodeling of tissues and
wound healing where polarized epithelial cells lose adherence and
gain mesenchymal characteristics, including enhanced mobility
and matrix invasion. Tumors often undergo EMT in an out-of-
context manner. Interestingly, cells undergoing EMT also acquire
stem cell-associated characteristics such as the capacity for self-
renewal, gain of specific gene expression changes and cell surface
markers, and ability to initiate tumorigenesis (123). The gain of
these stem cell-associated properties suggests an overlap between
EMT and stem cell mechanisms. In cancerous tissues, these over-
lapping mechanisms, now activated out-of-context, may play key
roles in metastatic spread and resistance to cancer treatments.

Insulin-like growth factor 1 signaling is an integral part of
both the EMT and stem cell-related processes in normal and
cancerous tissues. Numerous in vitro studies demonstrate IGF1R
as a driver of self renewal, stem cell surface markers, migration,
and invasion in both normal and cancerous tissues and tumor
initiation in hepatic, lung, prostate, and breast cancers (122). Each
of these studies has begun to reveal the mechanisms of IGF1R-
regulated EMT and stem phenotypes. Stem-promoting signaling
pathways such as Wnt/B-catenin (124–127), Notch (128–130),
and Shh (131, 132) act upstream to increase IGF1R expression
with cross talk and regulation at the IGF1R promoter level by
Sp1 and HMGA1 (133–136). In addition to upstream regulation
by these master stem cell master controllers, IGF1R promotes
positive downstream feedback through regulation and interaction
with the well known EMT and stemness-linked transcription
factors Zeb1 (137), NFκB (138), Snail (138), Twist (139), and p53,
Sox2, Oct4, Nanog (140–142). Additionally, the tumor suppressor
p53, known for inhibition of many stem cell regulators, inhibits
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IGF1R (143), which in turn act to downregulate p53. Interaction
with these numerous stem-related pathways and factors strongly
supports the central role of IGF1R in both the induction and the
maintenance of stemness and EMT.

This role for IGF1R in promotion of stem-like characteris-
tics has been specifically demonstrated in primary breast can-
cer. In human primary breast cancer xenografts, total and
phosphorylated IGF1R expression is significantly higher in
the CD44+CD24− sorted breast cancer stem cell popula-
tion compared to the non-CD44+CD24− population (144).
IGF1R expression and upregulated AKT activity are required for
maintenance of this population. IGF1R inhibition reduces the
aldehyde dehydrogenase+ stem-like population and suppresses
mammosphere-forming capacity. Notably, silencing of IGF1R
reduces tumor initiating ability of the xenografts. (144). Together
this data demonstrate an active role for IGF1R in driving mam-
mary stem-like phenotypes in vitro and in vivo.

IGF1R and Lineage Fate
In addition to stem cell maintenance, two new studies suggest
a link between IGF1R and cell lineage fate. In thyroid tissues,
cell lineage differentiation is associated with IGF pathway acti-
vation (145). A similar trend is observed in neural cells. The
lineage restricted neural progenitors primarily express IGF1R
while the neural stems cells appear to rely more heavily on
IGF2 and IR-A signaling (118). These studies suggest that IGF1R
may be responsible for promoting cell fate, or at the very least,
be restricted to maintaining differentiated cells of a specific
lineage.

Morphogenesis and homeostasis of the mammary gland relies
on stem cell function for the production and maintenance of
the myoepithelial and luminal lineages. The TEBs contain the
mammary gland stem cell niche and is where lineage differen-
tiation and ductal morphogenesis occurs. IGF1 signaling pro-
motes the development of the TEB. TEB formation and ductal
outgrowth are grossly impaired in IGF1−/− mice (26), signifying
that IGF1 signaling is significant for development and/or mainte-
nance of the mammary stem cell niche. While IGF1R-null mice
die postnatally before mammary gland development, mammary
gland transplantation of embryonic IGF1R-null mammary buds
shows reduced ductal growth similar to IGF1-null mice (28). The
IGF pathway is also important in pregnancy and lactation where
luminal differentiation is vital. During early pregnancy, alveolar
differentiation is reduced in heterozygous IGF1 mice (146). This
same lack of alveolar budding and decreased alveolar density
is observed in transgenic mice containing a pregnancy-induced
kinase-dead IGF1R (147). Thus, the IGF pathway seems to have a
role not only in mammary gland stem cell maintenance but also
in lineage specification throughout the many stages of mammary
gland development.

IGF1R and Breast Cancer Lineages
Breast tumors show both intra- and inter-tumor heterogeneity,
suggesting distinct tumor initiation and progression pathways for
each tumor type. Breast tumor heterogeneity likely results from
a combination of both clonal outgrowth and aberrant differen-
tiation of progeny. Defining the breast cancer cell of origin is a

topic of major interest. Based on the cell of origin hypothesis,
the heterogeneity of the tumor is restricted by a strictly linear
differentiating breast cell hierarchy. Basically, the characteristics
and differentiation potential of the tumor cells are restricted to the
characteristics and differentiation potential of the cell of origin,
which, in this case, is typically considered as a stem or progenitor
cell. A variation on this cell of origin concept is that the tumor
phenotype and potential is at least partially, if not primarily,
determined by the genetic alterations acquired and not solely on
the mammary lineage of origin. This variation suggests that the
gained alterations activate or deactivate pathways out of context to
alter a cell’s capabilities for differentiation and cell fate. Whether
the heterogeneity is determined by the cell of origin or the genetic
alterations or a mixture of explanations, the underlying impor-
tance is in understanding the potential and fate of the individual
tumor cells.

Type 1 insulin-like growth factor receptor’s role in mammary
stem cell maintenance and necessity for lineage differentiation
suggests that aberrantly expressed IGF1R may be capable of
enhancing cell potential and altering cell fate in a tumor, per-
haps even in tumors composed of fully differentiated cells. As
discussed above, IGF1R expression is essential for driving luminal
alveolar differentiation, linking IGF1R to the luminal lineage. In
breast cancer, IGF1R expression correlates most strongly with
luminal breast cancers (60, 61). This expression may be a result
of ER-driven growth through IGF1R rather than a causative link
between IGF1R and the luminal lineage; nevertheless, the pres-
ence of IGF1R may still affect cell signaling and perhaps cell
lineage. In addition to luminal tumors, IGF1R actively promotes
tumor growth and survival in p53 and BRCA1-mutant tumors,
which usually emulate the basal-like subtype (113–115). Although
basal-like breast cancers are defined by basal and myoepithe-
lial marker expression (148), they present with a luminal pro-
genitor gene signature (148–152). In support of this luminal
link, recent studies suggest BRCA1-associated basal-like tumors
derive from a luminal progenitor cell of origin rather than a
basally positioned cell (150, 153). Elevated IGF1R expression
and signaling in these basal-like tumors appear to have active
roles in tumor promotion. Thus, as IGF1R is associated with
cell lineage fate, IGF1R signaling may be influencing the gain
and loss of lineage markers and phenotypes in these tumors.
Taken all together, these data suggest that IGF1R may be con-
nected with driving lineage fate, particularly luminal-associated
fate.

Therapeutic Targeting of IGF1R as an
Anti-Cancer Therapy

Based upon extensive basic, preclinical, and clinical evidence, a
range of anti-IGF1R therapeutic strategies have been developed,
including humanized monoclonal antibodies, which prevent lig-
and binding and small-molecule inhibitors that inhibit the tyro-
sine kinase domain. Early clinical data from anti-IGF1R trials
were very promising. In a Phase I trial of the monoclonal anti-
body, AMG 479, a patient with chemo-refractory Ewing sar-
coma had complete remission (154). In a Phase II trial, 14%
of 125 patients with recurrent or refractory sarcoma responded
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to the monoclonal IGF1R antibody, R1507 (155, 156). In both
of these trials, therapy was well tolerated. In contrast, two
large NSCLC Phase III trials of figitumumab in combination
with either carboplatin and paclitaxel or Tarceva, respectively,
were terminated due to lack of response and severe toxicities
(157, 158).

The lack of response in anti-IGF1R trials has been a large con-
cern. The failure may be a consequence of trial design and not the
efficacy of the IGF1R inhibitors themselves (159). In the Phase III
trials, patients were not screened for IGF1R expression, limiting
the percent of patients that even had a chance to respond to the
therapy. Additionally, monoclonal antibody inhibition is specific
to IGF1R and does not inhibit the InsR, which can also stimu-
late tumorigenesis. InsR signaling increases upon IGF1R inhibi-
tion, suggesting pathway compensation (160–163). As touched on
throughout the above review, there is also substantial crosstalk
between many of the growth factor signaling pathways, including
IGFR, EGFR, ErbB2, and ERα. A combinatory therapy approach
may be needed for efficient suppression without compensation or
resistance.

Before continuing anti-IGF1R therapies, it is necessary to
define additional IGF1R-based biomarkers to more accurately
predict anti-tumor response and identify responsive tumors. A
better understanding of the important components of the IGF1R
signaling pathway and the instances where crosstalk and compen-
sation can occur is required. Only then can we pinpoint the cancer
subtypes that will benefit from IGF1R therapeutics, alone or in
combination with other inhibitors.

Overview

Type 1 insulin-like growth factor receptor plays a key role in
cancer promotion, resistance, and recurrence across breast cancer
subtypes. Understanding the role of IGF1R in individual subtypes
is critical to better targeting. The current research highlights
IGF1R as necessary for stem cell maintenance and expansion.
In turn, additional studies demonstrate the need and expression
of IGF1R in more differentiated populations. Taken together,
these studies suggest that IGF1R may not only be driving stem
cell characteristics, leading to increased therapy resistance, but
also that altered IGF1R signaling in tumor cells may influence
expression of lineage-linked traits and direct lineage potential and
fate, contributing to the heterogeneity of tumors.
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