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Abstract— Engineering microbial consortia is an important
new frontier for synthetic biology given its efficiency in per-
forming complex tasks and endurance to environmental uncer-
tainty. Most synthetic circuits regulate populational behaviors
via cell-to-cell interactions, which are affected by spatially
heterogeneous environments. Therefore, it is important to
understand the limits on controlling system dynamics and
provide a control strategy for engineering consortia under
spatial structures. Here, we build a network model for a
fractional population control circuit in two-strain consortia, and
characterize the cell-to-cell interaction network by topological
properties, such as symmetry, locality and connectivity. Using
linear network control theory, we relate the network topology
to system output’s tracking performance. We analytically and
numerically demonstrate that the minimum network control
cost for good tracking depends on locality difference between
two cell population’s spatial distributions and how strongly the
controller node contributes to interaction strength. To realize a
robust consortia, we can manipulate the environment to form
a strongly connected network. Our results ground the expected
cell population dynamics in its spatially organized interaction
network, and inspire directions in cooperative control in mi-
crobial consortia.

I. INTRODUCTION

Synthetic biology provides biotechnologies to engineer

cells and organisms with pre-specified functions. Interest has

recently emerged in designing synthetic circuits for collective

behaviors in consortia, which include metabolites trading

for mutualism in co-culture [1], programmed predation and

rescue in prey-predator systems [2], and other competition or

coordination in sender-receiver systems [3]. Multiple popula-

tions communicate with each other, divide labor and perform

subtasks so that the overall control goal can be achieved

in consortia. Therefore, engineering microbial consortia will

enrich the potential of synthetic gene circuits in gene therapy,

biofuel and other applications [4], [5].

Realizing proposed behaviors of multiple interacting

strains on diverse temporal or spatial scales relies on two per-

spectives. First, synthetic gene circuits need to be engineered

in each population to exhibit certain functions. Second, it

is essential to engineer cell-to-cell interaction to construct

consortia. Bacteria have evolved interactions by producing,

exporting and sensing autoinducers that are mostly small and

diffusible signaling molecules. This phenomenon is called

quorum sensing, where the accumulation of autoinducers

in environment provides a good measure of cell population

density and can quantitatively affect a cell’s gene expres-

sion or trigger a differentiation process [6]. Existing work
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in ecology demonstrate that the cooperative behaviors in

consortia rely on the spatial distribution of multiple cell

agents and the structure of their interaction [7]. Efforts in

network science provide a good approach to define this spa-

tial cell-to-cell interaction as a network graph, to describe the

consortia as an integrated system and to analyze population

level performance and robustness by graph metrics [8]. As

multiple cell populations are usually spatially organized and

form heterogeneous consortia, understanding the relationship

between cell-to-cell interaction network topology and coop-

erative dynamics in consortia is particular useful for system-

level controller design in synthetic biology. By linking the

interaction network topology to populational behaviors, one

can optimize control objectives by rearranging the spatial

distribution of cell agents, rewiring intercellular quorum

sensing pathways, reweighting interaction signaling strengths

and turning on or off the synthetic circuits in certain cell

agents via external chemical stimulations.

Recent research on engineering microbial consortia mainly

focuses on intracellular circuit design [9], [10]. These papers

assume that cell populations are well-mixed, because it is

elusive how structured network properties enhance control

potentials in spatial-organized consortia. Here, we propose

a network control strategy of existing synthetic circuits and

take different spatial distributions of cell agents and their

interaction structures into consideration. Although the prin-

ciples derived here are based on a specific synthetic circuit

that regulates cell population via toxin/antitoxin mechanism,

they can be applied to a more general design framework,

where the autoinducers in quorum sensing and their regulated

products are included in a feedback controller at DNA,

transcriptional and translational levels.

This paper is organized as follow. In Section II, we

give an overview of the biological design of the synthetic

circuit. It performs as a fractional population controller in

E.coli [11], [12]. In Section III, we construct a reaction-

diffusion model under spatial settings to describe the full

dynamics of the system. In Section IV, we derive a reduced

network model and define network topology properties such

as symmetry, locality and connectivity. In Section V, we

use linear network control theory to obtain a mathematical

approximation of the closed-form solution for system steady

state. Our results include a computational simulation and a

mathematical proof relating the interaction network topology

properties to steady state cell populations. The results also

include a graph representation of network topologies that are

robust to perturbations. We summarize the main findings of

the paper discuss future work in Section VI.
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(a) (b) (c)

Fig. 1. Abstract biological design of fractional population control circuit and spatial settings. (a) describes toxin-antitoxin sequestration based fractional
population control circuit. Two cell population communicate via two quorum sensing signals S1,S2. In Cell1, S1 activates toxin T and S2 activates antitoxin
A production to further regulate cell death and rescue processes through T and A sequestration. Similar reactions occur in Cell2. (b) describes the spatial
setting of microcolonies cultured on an ager plate. Two cell populations are grown in separate wells where quorum sensing signals can diffuse around and
accumulate in environment to form a certain concentration distribution on 2D space. (c) describes the diffusion of AHL molecules and the color shades
represent AHL concentration levels. Cell microcolonies are represented as point sources of AHLs and the concentration of AHLs decreases along distance
to the source following the diffusion law. The colored lines between microcolonies represent inter-strain or intra-strain interactions.

II. BIOLOGICAL DESIGN

To engineer a stable co-culture of two cell strains Cell1
and Cell2 characterized by referenced fractional populations,

we require a synthetic circuit that consists of a biologi-

cal sensor, a population comparator/controller and a cell

growth actuator. The sensors are achieved by identifying a

small library of quorum sensing signaling molecules (acyl

homoserine lactones, AHLs) and corresponding receptor-

promotor pairs. Two cell strains produces orthogonal AHLs

respectively and concentrations of AHLs are approxima-

tions for their population densities. Both AHLs can bind

with constitutive promoters to activate expression of toxin

ccdB and antitoxin ccdA [13]. The comparator/controller is

constructed by sequestration of the toxin/antitoxin pair to

compare two scaled up cell population densities. The toxin

ccdB functions as the actuator to regulate cell growth by

inhibiting cell proliferation. The synthetic circuit is shown in

Fig. 1(a). The reference is set by the relative level of external

chemical inducer IPTG that induces two AHL synthesis.

The circuit has good tracking accuracy of the reference and

robust adaptation because it includes a sequestration-based

controller that can be approximated as an integral feedback

[14]–[16].

III. REACTION-DIFFUSION MODEL

We consider N microcolonies of strain Cell1 and N mi-

crocolonies of strain Cell2 cultured within 2N wells on an

agar plate, as in Fig. 1(b). We have following assumptions of

cell growth and interaction for the reaction-diffusion model.

Microcolonies are shaped in circles centered at each well and

grow within the well boundary. Cells grown in the same well

have identical growth dynamics and function as one agent.

AHLs diffuse fast and freely in space as well as across the

cell membrane and get degraded at a constant rate, therefore

AHL concentration forms a spatial distribution, as shown in

Fig. 1(c).

Our proposed model consists of 2N sets of ODEs of in-

tracellular chemical reactions and 2 sets of PDEs describing

AHL diffusion and degradation in the environment. Species

and reactions are shown in Table. I. The model is written as
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Equation (1) describes the dynamics of cell growth and

toxin-antitoxin kinetics of Cell1 in microcolonies indexed by

i = 1,2, . . . ,N, and reaction-diffusion equations and bound-

ary constraints for two AHLs. The production rate of two

AHLs are tunable by external IPTG induction, and the

induction strength functions as reference to the system. Here,

parameter ry represents the relative induction strength to two

cell strains and sets the reference for cell population ratio.

Similar dynamics of Cell2 and intracellur chemical kinetics

in microcolonies indexed by j = 1,2, . . . ,N exist. They are

not presented here.
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TABLE I

SPECIES AND BIOCHEMICAL REACTIONS

Species Description

C
(1)
i ,C

(2)
j Cell population density of the ith, jth microcolony

of strain Cell1,Cell2

T
(1)

i ,T
(2)
j Intracellular toxin concentration of the ith, jth

microcolony of strain Cell1,Cell2

A
(1)
i ,A

(2)
j Intracellular antitoxin concentration of the ith, jth

microcolony of strain Cell1,Cell2

S(1)(r),S(2)(r) Concentration of AHL at position r produced by
Cell1,Cell2

Reactions Description

C
kC logist(C)
−−−−−−→ 2C Cell growth and division

C
dCT+γ
−−−−→∅ Cell death by toxin effect and basal dilution

∅
kT hill(S)
−−−−−→ T AHL activated production of toxin

∅
kAhill(S)
−−−−−→ A AHL activated production of antitoxin

T +A
k−
−⇀↽−
k+

TA∗ Annihilating sequestration of toxin and antitoxin

T
dT−→∅ Degradation of toxin

A
dA−→∅ Degradation of antitoxin

∅
kS+kdi f ∇
−−−−−→ S Production and incoming diffusion flow of AHL

S
dS+kdi f ∇+γ
−−−−−−−→∅ Degradation, outgoing diffusion flow and dilution

of AHL

(a) (b)

Fig. 2. Well-mixed consortia with fractional population control circuit. (a)
is a sketch for physically well-mixed consortia. Two cell populations are
represented in blue for Cell1 and red for Cell2, and the purple background
shows the well-mixed environment of two AHLs. (b) describes the output
dynamics with different references set by external IPTG inducer levels. The
output converges to reference with negligible error at steady state.

For well-mixed consortia, shown in Fig. 2(a), the reaction-

diffusion model reduces to ODEs by setting the distance

between wells to be value 0 and having identical dynamics

of all cells of the same strain. Fig. 2(b) shows that the steady

state of the relative ratio between two populations matches

reference with nearly zero error.

For spatially distributed consortia, we can reduce the

full model into a simplified one that captures intra/inter-

strain interactions. We first reduce the PDEs using quasi-

steady state assumptions, and then reduce the ODEs by

linearization. AHL molecules diffuse fast on an agar plate

[17] so the timescale of AHL dynamics is smaller than

cell growth dynamics. We assume the spatial distribution

of AHL reaches a quasi-steady state. Since AHL molecules

only affect cell growth when they get absorbed and react

with intracellular chemicals, we solve for AHL quasi-steady

state at each Cell1 microcolony center as
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The cell population is regulated via toxin and antitoxin.

Since the toxin-antitoxin pair performs strong sequestration,

there is a timescale separation of toxin dynamics from cell

growth [18]. By performing quasi-steady state approximation

and linearization on ODEs in equation (1), we obtain the

linearized model in forms of
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We plug equation (2) into equation (3), and obtain the

simplified model as
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where KC =
Kdi f kT dC

dT
.

Equation (4) only contains cell population at discrete well

positions as variables. KC is a lumped parameter character-

izing cell growth rate. In both Cell1 and Cell2 dynamics,

there is a negative term representing intra-strain interaction

because cells of the same strain would activate self-killing to

avoid growth explosion; there is a positive term representing

inter-strain interaction because cells get rescue from the other

strain to keep growing. All interaction strengths are functions

of the distance between involved microcolonies, so that the

model can be derived into a spatial network formula.

IV. NETWORK MODEL AND TOPOLOGY

PROPERTIES

We represent a network model for spatially distributed

consortia via a fully connected graph G = {V,E} where

V = {1,2, · · ·,2N} and E ∈ V × V are sets of vertices

and edges. The vertices are microcolonies and edges are

cell-to-cell interactions via quorum sensing. We define the

weighted adjacency matrix D = [di j] ∈R
2N×2N . The element

di j represents the interaction strength associated with the

corresponding edge in E.

The network graph can be partitioned into four subnetwork

graphs: G11, G22 containing microcolonies of one cell strain

as nodes and interaction edges among nodes, and G12, G21

containing microcolonies of both strains as nodes but only

interaction edges between different strains. The matrix D
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can be partitioned into four blocks and they are referred

as intra-strain interaction strength matrix −D11, −D22, and

inter-strain interaction strength matrix D12, D21. We associate

a set of real values of cell population densities of each

microcolony as system states, denoted as C
(1)
i ,C

(2)
j , i, j =

1,2, . . . ,N, and combine these states into a big network state

vector X = [X (1),X (2)]T = [C
(1)
1 · · ·C

(1)
N C

(2)
1 · · ·C

(2)
N ]T ∈ R

2N .

The output y is the relative ratio between two cell population

densities. We use l2 norm for all following discussions.

We identify the element di j of matrix D as KC f (r j − ri)
according to equation (4) and derive the network state

dynamics as in

d
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(5)

Our control goal is to set the output to track an external

reference ry, set by relative IPTG inducer level. We add

a network control input u ∈ R
N
+ into the system, and it is

implemented as an extra production of AHL1 in each Cell1
well. Therefore, the coefficient matrix of u depends on D11

amd D21 because they represent interactions activated by

Cell1. When two cell populations are grown on a plate,

the spatially structured interaction network may require a

control input u to steer the system to the steady state that

satisfies the reference ry. We define the control cost of u as

EN(u) = ∑
N
i=1 ui , where ui are elements of u, i = 1,2, · · ·,N.

Consider a network G = ∪Gi j, i, j = 1,2 with adjacency

matrix D =

[

−D11 D12

D21 −D22

]

. We define properties such as

symmetry, locality and connectivity in the context of quorum

sensing in microbial consortia.

Definition 1. If D11 = D22, D12 = D21, then G is a symmet-

rical network.

Remark. Given the assumption that two AHLs diffuse and

get degraded at the same rate, the geometric symmetry

of spatially distributed consortia is equivalent to network

topology symmetry.

Definition 2. The locality of a subnetwork Gii is defined as

‖Dii‖ , i = 1,2.

Remark. Locality measures the intra-strain interaction

strength. If microcolonies are grown closer on the plate, they

form a more localized community.

Definition 3. The connectivity of a subnetwork Gi j is defined

as
∥

∥Di j

∥

∥ , i, j = 1,2, i 6= j. Connectivity of a network G is

defined as
∥

∥Di j

∥

∥+
∥

∥D ji

∥

∥ , i, j = 1,2, i 6= j.

Remark. Connectivity represents the inter-strain interaction

strength. If two cell populations are more mixed than iso-

lated, the network is strongly connected with large connec-

tivity. Otherwise, the network is weakly connected.

(a) (b) (c)

(d) (e) (f)

Fig. 3. System steady states for spatially cultured consortia with sym-
metrical or asymmetrical interaction networks. (a)-(c) describe consortia
structures with different symmetrical network topologies, denoted as sym1,
sym2 and sym3. The upper plots are network graph representations. Blue
and red nodes are microcoloinies of two cell populations; blue and red edges
are intra-strain interaction pathways; green edges are inter-strain interaction
pathways. The lower plots show cell population density at steady state.
The bars are population densities of each microcolony and the dashed
lines (blue and red) on x − z plane are total Cell1 population and total
Cell2 population. The dashed lines overlap, indicating that the relative
population ratio between two strains is value 1, so y∞ = ry. (d)-(f) describe
consortia structures with different asymmetrical network topologies, denoted
as asym1, asym2 and asym3. The dashed lines are not at same level,
indicating that the output doesn’t perform good tracking and the system
needs an network control input to achieve referenced cell population
fraction.

V. RELATIONSHIP BETWEEN TOPOLOGY AND

SYSTEM BEHAVIORS

The proposed synthetic circuit ensures good performance

in regulating relative ratio of cell population for well-mixed

consortia. The results in Fig. 2(b) and from previous work

shows that the output y matches the reference ry with negligi-

ble error [11]. However, The output’s accurate tracking per-

formance does not maintain for spatially distributed consortia

and an extra network control input is needed. By designing

the interaction network topology, we can minimize the cost to

achieve population control by solving the following problem.

minimize
G

EN(u)

subject to G ∈ {G} ,

y∞ → ry, t → ∞

u = [1, · · ·,1]T u.

(6)

We first set the network control input u to be zero and

solve for output dynamics of all potential network topologies

to see the limits on performing good tracking. Secondly, we

look for certain topologies that need small control efforts

by solving equation (6). Then we can show how network

properties of symmetry, locality and connectivity contribute

to the minimum required network control cost.

Given a fixed network topology, there usually exist cost
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favorable nodes that require less control effort than other

nodes to achieve good tracking. It could help us efficiently

selecting microcolonies to induce extra AHL production as

control input by solving the following equation.

minimize
i

EN(u)

subject to G = {V,E}with D =

[

−D11 D12

D21 −D22

]

y∞ → ry, t → ∞

u = [0, · · ·,0,1,0, · · ·,0]T u.

(7)

In this section, we present propositions, and give math

proof sketch and simulation results. To better demonstrate,

we assume the inter-strain interaction strength between ad-

jacent microcolonies from Cell1 to Cell2 is equal to the

strength from Cell2 to Cell1, in other words, D12 = DT
21; all

microcolonies have fixed position within the 2N wells, so we

have ‖D‖ = const; there is an unique steady state solution

for all network topologies, denoted as X∞ and y∞.

A. Network symmetry determines system tracking accuracy

Proposition 1. If network G is symmetrical, then the system

in equation (5) requires no network control cost to achieve

good tracking of reference.

Proof Since G is symmetrical, we have D11 = D22, D12 =
D21. Let u = 0, the system dynamics is reduced to

d

dt

[

X (1)

X (2)

]

=

[

− 1
ry

D11 D12

1
ry

D21 −D22

]

[

X (1)

X (2)

]

. (8)

By subtraction of X (1) and X (2) dynamics in equation (8),

we can obtain the dynamics of ∆X = X (1)−X (2) as

d(∆X)

dt
= (D11 +D12)

(

X (2)−
1

ry
X (1)

)

. (9)

The steady state is solved and it matches the reference.

y∞ =

∥

∥

∥
X
(1)
∞

∥

∥

∥

∥

∥

∥
X
(2)
∞

∥

∥

∥

= ry (10)

�

Simulation We run simulations on the full reaction-

diffusion model in equation (1). We set N = 4, ry = 1

and u = 0. We present three different network topologies

that are symmetrical, labeled as sym1, sym2 and sym3 in

graph representations and show the system state values (cell

population densities on 2D space) at steady state in Fig. 3(a)-

3(c). Fig. 4(a) shows the output’s dynamics. Computational

results verifies the proposition where the output converges to

value 1 without extra network control cost.

B. Locality identifies topology that requires minimum control

cost

Proposition 2. Given a network G, the minimal network con-

trol cost for system in equation (5) is achieved by topologies

with minimal locality difference between subnetworks G11

and G22.

argmin
G

EN(u) = argmin
G

|‖D22‖−‖D11‖| (11)

Proof Let u = [1, · · ·,1]T u. By subtraction of X (1) and X (2)

dynamics in equation (5), we can obtain

d(∆X)

dt
=−(D11 +D21)

(

1

ry
X (1)+u

)

+(D12 +D22)X (2)
. (12)

Since there exist a unique solution at steady state, we have

D11 +D21 is invertible and solve for the steady state.

X
(1)
∞ = ry (D11 +D21)

−1 (D12 +D22)X
(2)
∞ − ryu (13)

To achieve reference, we let y∞ = ry and solve for the

minimum required control input cost by giving inequalities.

EN(u) = N ‖u‖ ≥
2N

∥

∥

∥
X
(2)
∞

∥

∥

∥

‖D‖
|‖D22‖−‖D11‖|

(14)

When ‖D22‖ − ‖D11‖ = 0, one special case is discussed

in Proposition 1 and we have EN(u) = 0 ≥ 0. We can

minimized the control cost by minimizing network locality

difference. �

Simulation We present three different network topologies

that are asymmetrical, labeled as asym1, asym2 and asym3 in

Fig. 3(d)-3(f). For all these topologies, Cell2 are more locally

distributed than Cell1, which satisfy ‖D22‖−‖D11‖> 0. Fig.

3(d)-3(f) demonstrate the system state values (cell population

densities on 2D space) at steady state without network

control input u. They show Cell2 population occupies a lower

fraction than Cell1, in other words, y∞ > ry. We then run

simulations with network control input added to the systems

and compare the output dynamics in Fig. 4(b). All three

systems perform good tracking of the reference with different

levels of control cost. We analyze all potential topologies

for N = 4 spatial settings and plot the relationship between

locality difference and steady state output without control

input u in Fig. 4(c), and the relationship between locality

difference and minimum required control cost in Fig. 4(d).

We altered the absolute distance unit values between adjacent

wells and the relationships maintain.

C. Locality and connectivity contribution identifies energet-

ically favorable controller node

Proposition 3. Given a network G, the selection of the most

cost favorable node depends on the node’s contribution to

locality and connectivity.

argmin
i

EN(u) = argmax
i

∥

∥

∥
(D11 +D21) [0, · · ·,0,1i−th,0, · · ·,0]

T
∥

∥

∥

(15)

Proof Let u= [0, · · ·,0,1i−th,0, · · ·,0]
T

u. Let v
(11)
i and v

(21)
i

denote the ith column of D11 and D21 as

v
(11)
i = D11 [0, · · ·,0,1i−th,0, · · ·,0]

T
,

v
(21)
i = D21 [0, · · ·,0,1i−th,0, · · ·,0]

T
.

(16)

By subtraction of X (1) and X (2) dynamics in equation (5),

we can obtain the dynamics of ∆X = X (1)−X (2) as
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(a) (b)

(c) (d)

Fig. 4. System state and output dynamics w/ and w/o network control input.
(a) describes output dynamics of three different symmetrical network topolo-
gies (sym1-3) without network control input u. Outputs of all symmetrical
networks achieve reference at value 1. (b) describes output dynamics of three
different asymmetrical network topologies (asym1-3). Solid lines represent
outputs with no network control input u and there are significant steady state
errors. Dashed lines represent outputs with minimum network control input
u and all of them converge to the constant reference ry = 1. (c) describes
the relationship between steady state output and the difference between
interaction network localities of two cell populations. The dots are simulated
data from all potential topologies of consortia cultured in 2N = 2×4 wells,
and the dashed lines are fitted linear functions. Different colors represent
results for different physical distance unit values between two adjacent
wells. The plot shows that more localized cell population tends to occupy a
lower population fraction. (d) describes the relationship between minimum
required network control cost and the difference between interaction network
localities of two cell populations. The plot shows networks that have large
locality difference require more control effort to track reference.

d(∆X)

dt
=−(D11 +D21)

1

ry
X (1)+(D12 +D22)X (2)

−
(

v
(11)
i + v

(21)
i

)

u

(17)

We can solve for the solution as

X
(1)
∞ = ry (D11 +D21)

−1 (D12 +D22)X
(2)
∞

− (D11 +D21)
−1

ry

(

v
(11)
i + v

(21)
i

)

u.
(18)

To achieve reference, we let y∞ = ry and solve for the

minimum required control input cost as

EN(u) = ‖u‖=
∥

∥

∥
X
(2)
∞

∥

∥

∥
|‖D22‖−‖D11‖|

1
∥

∥

∥
v
(11)
i + v

(21)
i

∥

∥

∥

. (19)

Given a network topology, D is fixed and we can minimize

the control cost by picking one favorable node that con-

tributes most to locality and connectivity. �

Simulation We demonstrate the proposition by adding a

constant network control input onto each node of a fixed

network topology, and measure the control cost required

for steering the system output to track the reference. Fig.

Fig. 5. Illustration for picking energetically favorable nodes for asym-
metrical networks. The most energetically favorable node is the one in
the network center, which contributes most to network’s locality and
connectivity. It has a more significant effect on system dynamics because it
is strongly connected with other nodes.

5 shows an example of asym1 network topology. The re-

sults show that the maximizer and minimizer of function
∥

∥

∥
(D11 +D21) [0, · · ·,0,1i−th,0, · · ·,0]

T
∥

∥

∥
are the most and least

cost favorable nodes. The data show
EN(u)max

EN(u)min
≈ 1.2, so the

worst selection of control nodes can result in 20% more of

cost burden.

D. Connectivity improves network robustness

In microbial consortia, fluctuations of chemicals in envi-

ronment can cause uncertainty and noises in cell growth.

To investigate the robustness of our synthetic circuit and

interaction network, we introduce a metabolic burden change

as a disturbance to cell growth, and assess system output’s

adaptation as a measure of robustness. For all potential

network topologies, we decrease the growth rate of Cell1
populations after the system achieves some steady states, and

measure the output recovery error when the systems achieves

steady states again. Fig. 6(a) shows that topologies of large

connectivity are more adaptive to perturbations. Fig. 6(b)

shows that the most robust network topology is sym3 where

all Cell1 and Cell2 microcolonies are strongly connected,

and the least robust network topology describes consortia

that contain two rather isolated populations.

From an ecological perspective, our proposed population

regulation circuit performs a similar mutualistic symbiosis.

Research has shown that mixed consortia are more robust to

environmental perturbations and more resistant to invaders

[7]. Our model captures such property by relating interac-

tion network connectivity to robustness. In network graph

representation, it is clear to see strongly connected topolo-

gies correspond to mixed consortia and weakly connected

topologies correspond to isolated consortia.

VI. DISCUSSION

In this paper, we propose a network control strategy

to achieve population regulation for spatially distributed

microbial consortia. Given an intracellular synthetic circuit,

we focus on a physically meaningful understanding of how

cell-to-cell interaction network topology governs control po-

tential. We build a network model based on reaction-diffusion

equations, map system behaviors to topology properties

and formulate the network control question as optimization
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(a) (b)

Fig. 6. Robustness of networks under perturbations. (a) describes the
relationship between network connectivity and output recovery error after
Cell1 growth rate is perturbed to be 20% slower. The dots are simulated
data from all potential topologies of consortia cultured in 2N = 24 wells,
and the dashed lines are fitted linear functions. Different colors represents
for different physical distance unit values between two adjacent wells. The
plot shows that strongly connected networks are more robust than weakly
connected networks with smaller output recovery error. Strongly connected
networks have better adaptation to fluctuations in environments. (b) shows
two network topologies that have the smallest(upper) and largest(lower)
connectivity. Their corresponding systems are the least and most robust one
over all potential networks.

problems. The propositions inform links from topology to

dynamics analytically and numerically, and provide network

level design guidance for better performance with less control

efforts in synthetic biology problems.

We note that our work is based on a specific synthetic

circuit, but the theory and analysis can be adopted to a more

generalized problem in synthetic biology. For any functional

intracellular circuit that requires cell-to-cell interaction, our

approach is useful for finding out constraints on spatial-

temporal dynamics. It is important to discuss about such

theoretical limitations on population level synthetic system

design, such as biofilm formation. For future work, we would

like to gain more intuition about the role of topology in

complex networks by applying our results to other systems

in microbial consortia.
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