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During an inflammatory process, shift in the cellular metabolism associated with an
increase in extracellular acidification are well-known features. This pH drop in the
inflamed tissue is largely attributed to the presence of lactate by an increase in
glycolysis. In recent years, evidence has accumulated describing the role of lactate in
inflammatory processes; however, there are differences as to whether lactate can
currently be considered a pro- or anti-inflammatory mediator. Herein, we review these
recent advances on the pleiotropic effects of lactate on the inflammatory process. Taken
together, the evidence suggests that lactate could exert differential effects depending on
the metabolic status, cell type in which the effects of lactate are studied, and the
pathological process analyzed. Additionally, various targets, including post-translational
modifications, G-protein coupled receptor and transcription factor activation such as NF-
kB and HIF-1, allow lactate to modulate signaling pathways that control the expression of
cytokines, chemokines, adhesion molecules, and several enzymes associated with
immune response and metabolism. Altogether, this would explain its varied effects on
inflammatory processes beyond its well-known role as a waste product of metabolism.

Keywords: lactate, inflammation, G-protein coupled receptors, immunometabolism, monocarboxylate transport
INTRODUCTION

Lactate is a hydroxycarboxylic acid that is present as two stereoisomers in mammals, the left-handed
(L-lactate) and the right-handed (D-lactate) forms, with L-lactate being the predominant form
produced during anaerobic glycolysis (1, 2). Several lines of evidence suggest that activation of
inflammatory immune cells induces a shift from oxidative phosphorylation towards aerobic
glycolysis with an increase in lactate, like the Warburg effect observed in tumor cells. The
increase in L-lactate production is a metabolic response observed in activated neutrophils,
macrophages, and dendritic cells using Toll-like receptors (TLR) ligands or pro-inflammatory
cytokines (3). Additionally, the presence of lactate has been proposed as a biomarker in various
diseases, including neoplasia malignancy, sepsis, and autoimmune diseases (4–6).

Conversely, D-lactate is formed through the methylglyoxal pathway in nanomolar concentrations (7)
but increase under pathophysiological conditions in humans, such as short-bowel syndrome (8, 9),
fatigue syndrome (10), diabetes mellitus (11), propylene glycol intoxication (12) and in patients
org January 2022 | Volume 12 | Article 8087991
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harboring deleterious enzymatic variants producing poor
metabolizers of D-lactate (13). In cattle, several pathologies are
associated with an increase in D-lactate during acute ruminal
acidosis (ARA). ARA is produced by an imbalance of ruminal
bacteria after consuming excessive, highly fermentable
carbohydrates. This ingestion of carbohydrates is followed by the
proliferation of lactate-producing microorganisms, such as
Streptococcus bovis, which metabolizes carbohydrates to L (+) and
D (-) lactate. Bovines with ARA develop several lesions, including
ruminitis, polioencephalomalacia (calves), liver abscess, and
lameness (14). The evidence suggest that lactate would be
involved in the pathophysiology of lameness in cattle (14). In fact,
D-lactic acidosis has been closely associated with the appearance of
laminitis and polysynovitis (15–19).

Lactate is often considered a metabolic waste of glycolysis;
however, several studies suggest that lactate, is more than an
intermediate metabolite, exerting immunomodulatory
pleiotropic effects that regulate the inflammatory response. The
aim of the review is to provide evidence on the various roles of
lactate in inflammatory processes, which would depend on the
metabolic status, the cellular phenotype, as well as the presence
of a myriad of receptors that could modulate its effects.
SOURCES, METABOLISM, AND
TRANSPORT OF L-LACTATE AND
D-LACTATE in Mammals

Sources and Metabolism
During glycolysis, glucose is metabolized into two pyruvate
molecules with the associated production of two ATP and two
NADH molecules (20). Under the presence of oxygen, pyruvate
is converted to acetyl-CoA by pyruvate dehydrogenase (PDH) in
the tricarboxylic acid (TCA) cycle, producing approximately 25
ATP molecules per molecule of glucose (20). Under oxygen-
deprived conditions, by the fermentative branch of the glycolytic
pathway (21), NADH is used to reduce pyruvate to lactate
through cytosolic lactate dehydrogenase (LDH), a process that
results in two ATP molecules and two lactate molecules without
consuming oxygen (20). However, this last conversion of
pyruvate to lactate also occurs under aerobic conditions and
not only under conditions of lack of oxygen, which is known as
the ‘Warburg effect’ (21).

Pro-inflammatory signals induce cellular metabolic changes,
characterized by increased glycolysis in the presence of oxygen, in
a similar fashion toWarburg effect. In this way, the pyruvate formed
during this process is reduced by LDH-A to lactate at the expense of
a disruption of the TCA cycle and oxidative phosphorylation
(OXPHOS) (Figure 1). Overall, metabolic reprogramming is
essential for both the inflammatory and anti-inflammatory
response in immune cells, with aerobic glycolysis being
predominant in inflammatory processes, while OXPHOS is more
related to the anti-inflammatory response (22–25).

LDH is a nicotinamide adenine dinucleotide (NAD+) dependent
enzyme that mediates the bidirectional conversion of pyruvate and
lactate concomitantly with the oxidation and reduction of the
Frontiers in Immunology | www.frontiersin.org 2
cofactor NAD+. LDH is a tetramer made up of two subunits,
LDH-A and LDH-B, LDH-A having higher affinity and Vmax for
pyruvate than LDH-B. Thus, LDH-A, and particularly the LDH-5
tetramer (consisting of 4 subunits of LDH-A), catabolizes pyruvate
to lactate. In contrast, LDH-B transform lactate into pyruvate,
allowing cells to use lactate as a source of nutrients for oxidative
metabolism (26). Both L- and D-stereoisomers of lactate are
produced and metabolized to pyruvate through the enzyme LDH.
However, LDH has stereoselectivity, so D-lactate production and
metabolism require D-LDH, and L-lactate requires L-LDH (20, 27,
28). The physiological serum concentration of lactate is 1 to 2 mM,
with L-lactate being the predominant physiological enantiomer.
Plasma ratio of D-lactate versus L-lactate is estimated to be 1: 100
under normal conditions (29). L-LDH catalyzes a bidirectional
reaction between L-lactate and pyruvate, however, human D-
LDH catalyzes the one-way conversion from D-lactate to
pyruvate (29). L-lactate is produced by L-LDH-mediated
oxidation of pyruvate obtained from glucose (65%) and alanine
(16–20%) metabolism. To a lesser extent, pyruvate can also be
produced during serine, threonine, and cysteine catabolism
(Figure 1) (30). In contrast, D-LDH does not catalyze the
conversion of pyruvate to D-lactate and other sources give rise to
this enantiomer. L-lactate is rapidly metabolized to pyruvate in the
cytosol and within the mitochondria by L-LDH, while the
metabolism of D-lactate takes place only in the inner side of the
mitochondria by D-LDH (24, 25) giving reduction equivalents to
complex III of the respiratory chain (31).

An increase of LDH-A expression is key in the metabolism of
cancer cells and is considered a negative prognostic
FIGURE 1 | Metabolic reprogramming induced by inflammatory signals. The
increased energy required by activated immune cells leads to a metabolic
change characterized by aerobic glycolysis, increased lactate production and
a reduction in the use of the tricarboxylic acid (TCA) cycle. This metabolic
change is equivalent to the phenotype exhibited by cancer cells defined as
the Warburg effect. Created with BioRender.com.
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biomarker (32, 33). LDH-A is upregulated in CD8+ T cells and
fibroblast-like synoviocytes (FLSs) from rheumatoid arthritis patient
and is considered a potential target to rewire the metabolism and
reduces inflammatory response (34–37). Recently, D-LDH has been
linked to pathological conditions. Differential tissue expression of
D-LDH could be involved in some neuropathological conditions
(13). D-lactic acidosis in calves produces several neurological signs,
such as changes in behavior and posture, progressing to coma and
recumbency correlated with serum D-lactate concentrations,
however, it is unknown whether this increase in D-lactate is
related to defective D-LDH (38, 39). D-lactate encephalopathy is
a rare reversible neurologic syndrome that occurs in individuals
with short bowel syndrome (40–42). D-lactate inhibits
mitochondrial respiration in the brain, possibly due to low D-
LDH activity, which interferes with the use of pyruvate and L-lactate
as substrates of mitochondrial respiration (43). D-lactate also can
exert as an astrocytic metabolic inhibitor and contribute with the D-
lactate encephalopathy (44). Also, in patients harboring a mutations
in D-LDH that results in increased blood levels of D-lactate, it has
been associated with mild cerebellar ataxia, hypotonia, cognitive
impairment (45), hyperuricemia and gout (43, 46).

D-lactate is derived from carbohydrate metabolism and lipids
through the formation of methylglyoxal (MG) (47) (Figure 2).
MG is a by-product of glycolysis, produced by the fragmentation
of dihydroxyacetone phosphate (DHAP), and glyceraldehyde
Frontiers in Immunology | www.frontiersin.org 3
3-phosphate (G3P) (48). G3P is metabolized by triosephosphate
isomerase to DHAP, whereas methylglyoxal synthase (MS)
catalyzes the conversion of DHAP to MG (49). Furthermore,
MG can be derived from protein metabolism, through
aminoacetone formation, and from lipids, through reactions
catalyzed in the kidney and liver by glycerol kinase and glycerol-
3-phosphate dehydrogenase connecting glycolysis with lipid
metabolism (50).

The production of MG from the oxidation of fatty acids
occurs by conversion of acetone to MG in two steps catalyzed by
acetone and acetyl monooxygenase (AMO). MG can also be
produced by semicarbazide-sensitive amine oxidase (SSAO)-
catalyzed aminoacetone deamination from the catabolism of L-
threonine and glycine (49). Glycerol has been shown to be a
source of D-lactate derived from MG metabolism more efficient
than glucose (51). This suggests that lipolysis could be a
significant additional source of MG in the cell. Also, MG can
be derived from lipid peroxidation or body ketone oxidation
under pathological conditions such as diabetic ketoacidosis,
prolonged fasting, or a low-carbohydrate diet (48, 52). In the
process of detoxification of MG, D-lactate is produced. MG is
detoxified by glyoxalase-1 (Glo-1) and glyoxalase-2 (Glo-2). The
first step consists of the spontaneous reaction between MG and
reduced glutathione (GSH) to form a hemithioacetal, which is
the substrate for Glo-1 to form S-lactoylglutathione. Glo-2 then
FIGURE 2 | Synthesis of D-lactate through the methylglyoxal pathway. D-lactate is derived from carbohydrate metabolism through the formation of methylglyoxal
(MG). Furthermore, MG can be derived from protein catabolism with formation of aminoacetone, and lipids metabolism, through reactions catalyzed by glycerol
kinase and glycerol-3-phosphate dehydrogenase. In the process of detoxification of MG, D-lactate is produced. MS, methylglyoxal synthase; AMO, acetyl
monooxygenase; SSAO, semicarbazide-sensitive amine oxidase; GR, glutathione reductase; GSSG, oxidized form of glutathione; GSH, reduced glutathione Glo1,
Glyoxalase-1; Glo2, Glyoxalase-2. Created with BioRender.com.
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transform S-lactoylglutathione to D-lactate, restoring GSH
during this process (53). For GSH recycling, participation of
the pentose phosphate pathway is important for the formation of
NADPH to reduce oxidized glutathione (GSSG) through the
action of glutathione reductase (GR) (53). In dairy cows with
ketoacidosis, MG participates in the inflammatory response
associated with this metabolic disturbance. Despite this, the
presence of D-lactate in cattle with ketoacidosis has not yet
been reported, and the effect of MG can not be related to the
formation of D-lactate (54).

Another source of lactate L and D in mammals is its
production by intestinal bacteria. In humans, strains of lactic
acid bacteria (LAB) exert health-promoting functions such as
immunomodulatory improvement of intestinal integrity,
resistance to pathogens, prevention of lactose intolerance,
anticancer effects, reduction of depression and anxiety
symptoms, anti-obesity and anti-diabetic activities, and
decrease serum cholesterol levels (55). L-lactate in drinking
water can suppress colitis induced by dextran sulfate sodium in
mice, promoting epithelial cell migration and repair through the
augment of mitochondrial ATP production (56). On the other
hand, microbiota-derived lactate, DL-lactate, regulates gut
epithelium development, whereas LAB lacking LDH fails to
induce intestinal stem-cell regeneration (57). Conversely, an
increase in the abundance of some LAB strain, including
Streptococcus, Lactobacillus, and Lactococcus has been observed
in gastric cancer patients. This could involve the supply of
exogenous lactate, which is an energy source for cancer cells
that favor inflammation, angiogenesis, metastasis, epithelial-
mesenchymal transition, and immune evasion (58). LABs are
inducers of reactive oxygen species (ROS) production in cultured
cells and in vivo (59), inducing DNA damage in colon cells (60),
which contrasts with LAB effects on the gastrointestinal tract.
These ambivalent effects could be attributable to the LAB strain,
rather than to the effects of lactate itself (60).

In cattle, L-lactate and D-lactate are produced in the rumen
by Streptococcus bovis and lactobacillus bacteria and are
degraded by lactate-utilizing bacteria in the rumen, such as
Megasphaera elsdenii and Selenomonas ruminantium, with the
ruminal pH level being key in the control of the net balance of
either stereoisomer (61).

Lactate Transport
Lactate can cross the cell membrane by three known pathways:
1) free diffusion of undissociated acid, 2) exchange for another
anion, and 3) transport via a stereospecific pH-sensitive transport
protein (monocarboxylate transporter). For monocarboxylate
transporters, members of the 16A solute carrier family proton-
bound monocarboxylic acid symporters, i.e., MCT1 (SLC16A1),
MCT2 (SLC16A7), MCT3 (SLC16A8), and MCT4 (SLC16A3) and
two sodium-coupled lactate cotransporters (SLC5A12, SLC5A8)
have been described (62, 63).

In humans, MCTs have been reported in retina, muscle, kidney,
brain capillary endothelial cells, cardiac myocytes, enterocytes,
hepatocytes, erythrocytes, thymocytes, placenta, and nervous
tissue (64, 65). In cattle, some MCT isoforms have been described
in the rumen epithelium (66), neutrophils (67), and fibroblast-like
Frontiers in Immunology | www.frontiersin.org 4
synoviocytes (bFLS) (17). In mammals, MCT1 is ubiquitous and
take part in lactate uptake in neutrophils (67) and in various organs
such as the heart, skeletal muscle, and red blood cells, as well as in
the liver for gluconeogenesis (68). MCT2 is less ubiquitous and
plays an important role in neurons, and MCT3 has been identified
only in the retinal pigment epithelium and the choroid plexus
epithelium (68). Conversely, MCT4 is expressed in strongly
glycolytic cells, such as muscle fibers, and has been shown to
increase its expression in response to hypoxia (69). In human
immune cells, MCT1, MCT2, and MCT4, in granulocytes,
lymphocytes, and monocytes have been detected (70). Similarly,
in bovine neutrophils, both MCT1 and MCT4 mRNA and proteins
are expressed; however, MCT2 and MCT3 are absent (67). MCT4
expression levels in the bovine neutrophil were 1,000 times lower
than MCT1 levels (67). MCT1 and MCT4 are associated with the
chaperone CD147, which organizes both the distribution and the
location of both transporters in the membrane (71, 72). In fact, the
presence of the chaperone protein CD147 has also been detected in
bovine neutrophils (67).

MCT1 plays an essential role in neuroinflammation since
lipopolysaccharide (LPS) was shown to increase the expression of
MCT1 and 6-phosphofructo-2-k inase/ fructose-2 ,6-
biphosphatase 3 in microglia obtained from the brain of
C57BL/6 mouse (73). The knockdown of MCT1 suppressed
the glycolysis rate and decreased the LPS-induced expression
of inducible nitric oxide synthase (iNOS), interleukin (IL)-1b, IL-
6, and STAT1 phosphorylation in BV2 microglial cells (73).
MCT4 is up-regulated in FLS obtained from patients with
rheumatoid arthritis (RA) and exports intracellular lactate into
synovial fluid in the joint (74). TLR2 and TLR4 agonists up-
regulate MCT4 in human and mouse macrophages (75).
Increased expression of MCT4 is mediated by MYD88 in an
NF-kB-dependent manner and is necessary for the sustained
high glycolysis observed during macrophage activation (75).

The transport kinetics for both stereoisomers have been
measured in frog oocytes expressing MCT1 and MCT4. The
Km values for MCT1 determined for L-lactate and D-lactate
were 4.4 and >60 mM and for MCT4 were 28 and 519 mM,
respectively (76). Despite the different Km of both stereoisomers
D-lactate has pro-inflammatory effects dependent on MCT1 in
both neutrophils and bFLS, which suggests that the uptake of D-
lactate by MCT1 is a requirement for the pro-inflammatory
effects of this stereoisomer (17, 67). Accordingly, bovine with
acute ruminal acidosis (ARA) 5 mM of D-lactate versus 1.6 mM
of L-lactate in the bloodstream has been determined (77). It has
been suggested that D-lactate is rapidly absorbed but
metabolized more slowly than L-lactate by bovine tissues (78).
Therefore, only D-lactate blood concentrations are increased in
cattle with ARA (77, 79), which could contribute to the
development of inflammatory processes in ruminants.
LACTATE AS A CELLULAR METABOLITE
IMMUNOMODULATOR

To carry out the inflammatory response, immune cells must
activate metabolic pathways as part of host defense responses
January 2022 | Volume 12 | Article 808799
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(80). Conversely, each population of immune cells requires
different metabolism and nutrient use (81). It has been shown
that macrophage metabolism can influence inflammatory
cytokine production, and the same has been demonstrated in T
cells (82), myeloid-derived suppressor cells (MDSC) (83), and
dendritic cells (DC) (84). The intersection between metabolism
and immunity has been proposed to be part of the field of
immunometabolism (81). Most research has focused on the
absorption and metabolism of glucose, amino acids, mainly
glutamine, and certain fatty acids. However, lactate, the end
product of the glycolytic pathway, may regulate the
inflammatory response in various cells (85). Lactate is
produced and secreted in significant quantities by immune
cells during the inflammatory process (3, 85). Although short-
term lactate exposure has limited effects on cytokine production,
long-term lactate treatment shows strong anti-inflammatory
effects in monocytes (85). This adaptation of immune cells to
lactate concentrations in the microenvironment, may affect the
functions of tissue-specific immune cells (85). Moreover, it
suggests that the duration of lactate exposure can also decide
the outcome of immunomodulatory effects.

It has recently been demonstrated in neutrophils that lactate
can be used as non-glucose substrates to generate glycogen stores
(86). In addition, in neutrophils, LPS increases the
gluconeogenesis that fuels glycogen deposition, which in turn
support the higher energy demands of a pro-inflammatory
response (86). In FLS, a relevant effector of synovial immunity
(87), an increase in lactate production is associated with the
characteristic glycolytic metabolic rewiring in rheumatoid
arthritis (88); moreover, lactate can induce metabolic
reprograming in FLS and increase pro-inflammatory cytokine
expression (89). Altogether, these results suggest that the effect of
lactate on inflammation is closely related to the cellular
phenotype and its metabolic status.

Lactate Activity in Endothelial Cells
Endothelial cells (ECs) control the extravasation of circulating
immune cells into tissues through the production of cytokines,
chemokines, and adhesion molecules. It has been proposed that
lactate can activate signaling pathways in endothelial cells and
modulate the inflammatory response.

In ECs, lactate influx viaMCT1 induces the activation of NF-
kB (90). NF-kB is constituted by p65 (RelA) and p50 (NF-kB1)
subunits and remains inactive in the cytosol forming a complex
with IkB proteins. Phosphorylation of IkB is crucial for the
polyubiquitination and proteasomal degradation of IkB and
activation of NF-kB (91). Lactate through phosphorylation and
degradation of IkBa activates NF-kB and regulates a wide variety
of inflammatory genes including IL-8. The activation of NF-kB
by lactate is dependent on the inhibition of prolyl hydroxylase
(PHD), which are Fe (II) and 2-oxoglutarate-dependent
dioxygenases. The oxidation of lactate by LDH-B increases the
intracellular pool of pyruvate that competes with 2-oxoglutarate
and inhibits the hydroxylase activity of PHD. PDH-catalyzed
hydroxylation of proline induces polyubiquitylation and
degradation of HIF-1a in the proteasome. Inhibition of PDH
by pyruvate results in protein stabilization of HIF-1a allowing
Frontiers in Immunology | www.frontiersin.org 5
migration to the nucleus to modulate transcription of target
genes in ECs (90). These genes include proangiogenic effectors
such as vascular endothelial growth factor (VEGF) (92). Overall,
in ECs lactate activates both NF-kB and HIF-1a and the decrease
in the catalytic activity of PHD is required for the activation of
both transcription factors by lactate (Figure 3). However,
lactate-induced NF-kB activity was also inhibited by
antioxidant agents, suggesting the participation of reactive
oxygen species (ROS) in the regulation of the lactate-induced
inflammatory response in ECs (90). On the other hand,
endothelial cells express the G-protein-coupled receptor
(GPCR), GPR4, a proton-sensing receptor. Extracellular
acidification by lactic acid can promotes the pro-inflammatory
response in ECs, the cellular mechanisms associated with this
receptor are discussed in section 4.

Lactate Activity in Neutrophils
Neutrophils are one the first leukocytes to be recruited to the site
of infection and to execute microbial killing perform diverse
functions such as phagocytosis, oxidative burst (ROS) and
neutrophil extracellular traps (NETs) (93). However, also
neutrophil responses lead to tissue injury and are associated
with several diseases such as sepsis, asthma, ischemia-
reperfusion injury, and rheumatoid arthritis (94). Due to the
low abundance of mitochondria, it has been commonly
considered that neutrophils only use glycolysis for their
biological functions (95). However, different metabolic routes
are required to fulfill the energetic, biosynthetic, and functional
requirements of neutrophils, including the TCA cycle, oxidative
phosphorylation (OXPHOS), the pentose phosphate pathway
(PPP), and fatty acid oxidation (FAO) (96, 97). Nonetheless,
glycolysis is the main metabolic pathway involved in
phagocytosis, ROS, and NET release (98–100). Inducers of
ROS-dependent and ROS-independent NETs cause an increase
in extracellular acidification rate (ECAR), LDH activity, and a
reduction in pyruvate kinase M2 (PKM2) activity, increasing
lactate formation (101). The deamination of histones (mainly
conversion of arginine side chains to citrullines) is a key step to
allow whole NET dispersion (102). In fact, mice lacking
peptidylarginine deiminase 4 (PAD4), the enzyme required for
histone deamination, have decreased NETosis (103).
Furthermore, D-lactate induces the release of NET in bovine
neutrophils, activating PAD4 and by a mechanism independent
of ROS (Figure 3) (67).

Inhibition of lactate formation by sodium oxamate, an LDH
inhibitor, reduces tachyzoite-induced NETs (104). Furthermore,
sodium oxamate, inhibits NETosis and lactate accumulation
during LPS-induced sepsis in mice, suggesting the importance
of lactate as a pro-inflammatory agent in an experimental model
of NETosis (101). In fact, both L- and D-lactate can directly
induce the release of NETs (67, 101). D-lactate-induced NETosis
is dependent on MCT1, and this effect favors the adhesion of
PMN to the endothelium, suggesting that lactate could behave as
an intracellular signaling agent (67).

D-lactate has been shown to have a pro-inflammatory effect
on bovine neutrophils since it induces the release of MMP-9,
increases the expression of CD11b and decreases the expression
January 2022 | Volume 12 | Article 808799
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of L-selectin, which favors endothelial adhesion (67, 105).
Conversely, exogenous lactate treatment also induces NET
formation in human neutrophils, while inhibition of LDH
activity significantly reduces NETosis (101).

Lactate Activity in Macrophages
and Mast Cells
LPS induces differentiation to M1-type macrophages, a
proinflammatory phenotype that generates ATP and lactate
release through aerobic glycolysis (106). Furthermore,
inhibition of LDH-A by FX11 reduces lactate secretion, pro-
inflammatory cytokine release, iNOS levels, and COX2
expression in RAW264.7 macrophages treated with LPS (35).
Additionally, MCT1 is expressed in macrophages and increases
with inflammatory stimuli such as LPS, tumor necrosis factor
(TNF)-a, or nitric oxide (NO), increasing lactate uptake (107).

Macrophages exposed to 20 mM lactate for 24 h, followed by
LPS plus lactate for another 24 h, increases pro-inflammatory
cytokine production through MD-2 up-regulation, a TLR4 co-
receptor being this response MCT dependent (108). The
inhibition of MCTs by alpha cyano-4-hydroxycinnamic acid
decreases the expression of lactate-induced pro-inflammatory
cytokines in human macrophages, indicating that lactate
transport through MCT is necessary for lactate effects on
macrophages (26). Taken together, the current background
suggests that lactate may be a metabolite involved in the
regulation of the pro-inflammatory response in macrophages.
Sodium lactate increases the LPS-induced expression of MMP-1,
Frontiers in Immunology | www.frontiersin.org 6
IL-1b, and IL-6 in U937 macrophage-like cells through NF-kB
and Mitogen-activated protein kinases (MAPK) cascades (109).
Other author suggest that lactic acid reduces the activity of NF-
kB and the expression of pro-inflammatory cytokines presenting
anti-inflammatory effects in LPS-stimulated macrophages
through of GPR81 (110, 111). Moreover, an increase of
protons could also explain the discrepancy of lactate effect on
macrophages. Has been demonstrated that the neutralization of
pH in the lactic acid-containing medium increases LPS-induced
MMP-1 secretion, indicating that lactic acid-induced pH
reduction may interfere with pro-inflammatory effects (109).
Besides, secretion of TNF-a by macrophages is inhibited by
acidic pH (112). Additionally, long term effect of exogenous
lactate in M1 macrophages, trigger an endogenous ‘lactate clock’
that induce an M2 phenotype by metabolic reprograming
through the epigenetic mechanism by lactylation and
acetylation of histone H3 (113, 114). This effect could to assist
with repairing collateral damage produced by the host during
infection and to explain the anti-inflammatory effects of lactate
after 24 h (85, 115, 116). Also, lactate through ERK-STAT3
signaling pathway (117) and the combination of lactate and
hypoxia via HIF1a stabilization (118) shift the polarization into
M2-like macrophages.

Similarly, lactate decreases the expression of cytokines
induced by LPS and IL-33 in mouse mast cells (119, 120). The
anti-inflammatory effects presented by lactate in mast cells are
through a decrease in the phosphorylation of TGF-b-activated
kinase-1, JNK and ERK which suppresses the activation of NF-
FIGURE 3 | Proposed lactate signaling pathways. Endothelial cells. Lactate activates NF-kB pathway through the formation of reactive oxygen species (ROS).
Lactate-induced HIF-1a stability is dependent on prolyl-hydroxylase (PHD). Neutrophils. Lactate induces NETosis through MCT1-dependent PAD4 activation
and glycolysis. Macrophages. Lactate has an anti-inflammatory effect through the activation of the GPR81 receptor and the inhibition of the inflammasome and
the NF-kB pathway. Lymphocytes. Lactate induces IL-17 expression in a MCT1-dependent manner and decreases migration through indirect inhibition of
glycolysis. FLS. Lactate regulates the expression of pro-inflammatory cytokines through MAPK and NF-kB pathways dependent on lactate input by MCT1.
Created with BioRender.com.
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kB (119, 120). Furthermore, the effects of lactate have been
related to HIF-1a, which regulates microRNA miR-155,
considered a pro-inflammatory agent in various systems (120).
Other mechanisms have also been proposed, such as the
reduction of the IgE-induced phosphorylation of Syk, Btk and
ERK, which are signals of inflammatory responses, which
confirms the anti-inflammatory role of lactate in mast cells (121).

Lactate Activity in Lymphocytes
Several studies have shown that activated T lymphocytes increase
intracellular lactate concentrations coupled with increased
expression of glucose and lactate transporters (122, 123),
glucose uptake (124), expression of glycolytic enzymes, and
LDH (125). The foregoing has led to the conclusion that the
energy required by active T cells leads to a metabolic shift toward
aerobic glycolysis and an increase in lactate (126). Increased
intracellular lactate production correlates with increased
extracellular lactate (127), which can inhibit glucose
consumption by reversing lactate flux and, in this way,
interfere with T-cell function (128). Overall, the extracellular
lactate uptake, through MCT, down-regulates hexokinase 1
(Hk1) which reduces glycolysis and reduces T cell migration
(129). Another lactate-induced effect on T cells is increased
production of the pro-inflammatory cytokine, IL-17. Both
decreased migration and increased production of IL-17
induced by lactate in T cells is the hallmark of T cell –
mediated inflammation in chronic inflammatory diseases
(CID) (129). Consistent with the above, chronically inflamed
synovial tissue from RA patients is associated with high levels of
IL-17, CD4+ T cells (130) and high expression of MCT (Slc5a12)
(129). Hence, lactate is uptake in T cells troughMCT and inhibits
glycolysis but increases IL-17 expression through the PKM2/
STAT3 pathway. Thus, lactate causes T-cell entrapment and
increased expression of cytokines at inflamed sites (131,
132) (Figure 3).

Lactate in Fibroblast-Like Synoviocytes
Lactate has an important role in inflammatory joint pathologies
such as rheumatoid arthritis. Intracellular levels of L-lactate
contribute to the production of pro-inflammatory cytokines in
FLS through intracellular signaling that involve the MAPK and
NF-kB pathways (133). Additionally, it has been proposed that
TNF-a-induced IL-6 and IL-8 production in FLS from patients with
rheumatoid arthritis (FLS-RA) is dependent on L-lactate levels
(133). FLS-RA in a later stage has elevated MCT4 levels (74). The
expulsion of lactate by MCT4 protects the cells from the damaging
effects of its accumulation. However, it is unknown whether lactate
can be taken up and used by other cells. It is highly likely that the
role of MCT and metabolite exchange between cells differs during
the course of RA depends on themitochondrial state and themicro-
environment of the joint (134).

D-lactate is involved in the etiology of lameness during ARA.
In fact, a significant increase in D-lactate has been observed in
the synovial fluid of bovines with ARA, and it has been
hypothesized that D-lactate may exert a pro-inflammatory
effect on bFLS (17). In relation to this, an increase in IL-1b,
IL-6, and PGE2 has been identified in the synovial fluid of heifers
Frontiers in Immunology | www.frontiersin.org 7
with ARA (18). In vitro studies have shown that D-lactate
increases IL-6 and IL-8 in bFLS (17, 89). Consistent with this,
D-lactate and IL-6 increase early in the synovial fluid of heifers
with ARA and this increase occurs before the recruitment of joint
neutrophils (19). Similarly, a very early metabolic change with
the presence of lactate in arthritic joints precedes the recruitment
of phagocytic immune cells (135).

The presence of MCT1 and MCT4 mRNA and proteins has
been detected in bFLS. Blocking MCT1 by a selective inhibitor
reduces the expression and synthesis of IL-8 and IL-6 (17). These
results suggest that lactate plays an important role in
inflammatory processes and that entry into cells through MCT
could contribute at least in part to exert these effects (Figure 3).

MAPK and NF-kB pathways have been extensively studied and
are critical in FLS activation during joint inflammation (136, 137).
D-lactate increases ERK1/2 and p38 phosphorylation in bFLS (17),
and it has been suggested that L-lactate could also activate p38 and
ERK1/2 in FLS-RA (133). Inhibition of these kinases decreased IL-6
and IL-8 induced by D-lactate (17), suggesting that D-lactate could
regulate the expression and synthesis of pro-inflammatory cytokines
through the MAPK pathway and the NF-kB pathway, which are
involved in the synthesis of IL-6, CXCL8 (138) and the expression of
COX-2 and mPGES-1 (139, 140) (Figure 3). D-lactate and bovine
TNF-a (bTNF-a) increase the expression and secretion of IL-8 and
IL-6 in an NF-kB-dependent manner in bFLS (17). Besides, L-
lactate increases the degradation of IkBa and activates NF-kB in
human FLS (90, 133). Activation of NF-kB is key for the constitutive
secretion of IL-6 and IL-8, as well as the secretion of these cytokines
induced by IL-1b in FLS-RA (141), which suggests that lactate in the
joint could activate intracellular signaling in FLS leading to the
expression of pro-inflammatorymarkers during joint inflammation.

Overall, the pleiotropic effects of lactate in inflammatory
processes could be partially linked by its property as a
multifunctional intracellular signaling molecule, which control
the transcription factors activity and pro-inflammatory protein
expression. Additionally, these effects could be dependent of
changes in MCTs expression and lactate metabolism during
inflammatory process. In fact, immune cells also show quite
dissimilar cellular metabolism, closely related to their role in
inflammatory processes, in this scenario lactate differentially
affects cell metabolism, and depending on the cell type and
metabolic microenvironment, it would exert inflammatory or
anti-inflammatory effects. In the past years, the discovery of
several G-protein coupled receptors (GPCR) as potential lactate
and proton sensors, could additionally explain the varied
responses seen with lactate in inflammation (111, 142).
LACTATE AS A G PROTEIN-COUPLED
RECEPTOR AGONIST

Hydroxycarboxylic acid receptor 2 (HCA2) is a GPCR also
known as PUMA-G (upregulated protein in macrophages by
IFN-g) (143), HM74A, and GPR109A (144). White and brown
adipose tissue, macrophages, neutrophils, Langerhans epidermal
cells, DCs, and microglia express HCA2 (143, 145–150).
Proinflammatory stimuli such as LPS, IL-6, and IL-1b (144)
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increase the expression of HCA2 in macrophages, and colony-
stimulating factor 2 (CSF2) augment the level of HCA2
expression in neutrophils (151). In macrophages, HCA2
couples to Gai/o-type G proteins that, via protein kinase A
(PKA) or Gbg, can inhibit NF-kB and reduces cytokine
expression (152), whereas in neutrophils HCA2 via Gai/o
reduces cAMP favoring apoptosis through the pro-apoptotic
protein BAD (147). In sepsis, lactate-induced activation of
HCA2 decreases the inflammatory response by reducing
cytokine expression and promoting M2-like polarization
(153) (Table 1).

Lactate signaling can be modulated by the G-protein coupled
receptor GPR81 (also named HCA1) localized in the cytoplasmic
membrane. GPR81 is coupled to Gai-type G proteins (154). After
lactate stimulation, the distribution of GPR81 is observed in
intracellular granules, suggesting internalization (155). GPR81
activation occurs at a lactate concentration of 0.2 to 1.0 mM
(156), followed by down-regulation of cAMP and inhibition of
PKA-mediated signaling (157). Lactate binds to GPR81 in
adipocytes inhibiting the lipolysis (158). Evidence suggests that
GPR81 is an anti-inflammatory pathway that inhibits NLRP3
inflammasome release by activating the intracellular adaptor
protein, b-arrestin 2 (ARRB2), and attenuating NF-kB activity
(Figure 3) (159). In macrophages and monocytes, lactate binds to
GPR81 and reduces the effects induced by TLR4 agonists such as
NF-kB activation, the release of IL-1b, and cleavage of CASP1, via
ARRB2 (115) (Table 1). Lactate through GPR81 reduces
inflammation and organ injury in mice with auto-immune
hepatitis (115). In GPR81-/- mice, susceptibility to dextran sulfate
sodium (DSS)-induced colonic inflammation is increased, while
pharmacological activation of GPR81 decreases the expression of
inflammatory cytokines and improves colonic inflammation (160).
GPR81 has also been involved in the anti-inflammatory activity of
lactate in mouse uterine inflammation during labor (161). It has
recently been demonstrated in macrophages that lactate viaGPR81/
Frontiers in Immunology | www.frontiersin.org 8
ARRB2 increases acetylation of HMGB1 by inducing nuclear
translocation of acetylase p300/CBP resulting in increased
endothelium permeability (162).

LPS activates bonemarrow (BM) neutrophils and induces lactate
release through increased glycolysis. Lactate released acts on GPR81
expressed by endothelial cells to increase vascular permeability
inducing the mobilization of BM neutrophils (163). Lactate
increases the levels of neutrophil-attracting chemokines favoring
rapid neutrophil mobilization from the BM (163). LPS decrease the
expression of GPR81 and MCT-1 in endothelial cells and increase
lactate concentrations in the extracellular space, suggesting a role in
neuroinflammatory processes altering structural integrity of the
blood-brain barrier in vitro (164). Additional evidence suggests
that the activation of GPR81 reduces oxidative stress and the
expression of IL-6, IL-8, monocyte chemoattractant protein
(MCP)-1 and HMGB1 (165). Accordingly, it has been shown that
the activation of GPR81 can exert atheroprotective effects in
endothelial cells exposed to oscillatory shear stress (OSS).

The activation of GPR81 inhibits the secretion of the vascular
cellular adhesion molecule (VCAM)-1 and endothelial selectin
(E-selectin), which suppress monocyte attachment to the
endothelium (165). Conversely, lactate induces the expression
of the neutrophil chemokines CXCL1, CXCL2, and G-CSF in
bone marrow and plasma through a mechanism independent of
the GPR81 receptor (163). This suggests a potential pleiotropic
pro-inflammatory effect in of lactate; however, it remains to be
clarified whether lactate produces its effects by direct activation
of the receptor or through lactic acidosis, which could produce
conformational modifications in the receptor.

Acidosis is a hallmark of the microenvironment of
inflammatory pathologies (166, 167), where lactic acid is
among the most important extracellular metabolites (168).
Thus, other putative lactate sensors GPR4, GPR65 (TDAG8),
GPR68 (also known as ovarian cancer G protein-coupled
receptor 1, OGR1), and GPR132 (G2A) have been described as
TABLE 1 | Main characteristics of lactate-activated and proton sensor receptors in inflammatory response.

Receptor Ligand Location G
protein

Biological Function

HCA2,
PUMA-G,
HM74A or
GPR109A.

Lactate White and brown adipose tissue,
macrophages, neutrophils,
Langerhans epidermal cells,
dendritic cells, and microglia.

Gai/
Gao

Inhibition of NF-kB and reduction cytokine expression and apoptosis through BAD. Promotion
to M2-like polarization of macrophages.

HCA1 or
GPR81

Lactate Adipocytes, macrophages
monocytes, endothelial cells

Gai Inhibition of lipolysis in adipocytes.
Inhibition of NLRP3 inflammasome release by activating the intracellular adaptor protein,
b-arrestin 2 (ARRB2), and attenuating NF-kB activity.
Increased vascular permeability inducing the mobilization of bone marrow (BM) neutrophils.

GPR4 Proton
sensor

Vascular endothelial cells. Gas Induces NF-kB activation and increases the inflammatory response in endothelial cells.
Activates apoptotic pathways and regulates the endoplasmic reticulum (ER) stress in
endothelial cells.

GPR65 or
TDAG8

Proton
sensor

T cells, B cells, neutrophils, and
eosinophils.

Gas Reduces pro-inflammatory cytokine production (TNF-a and IL-6), ROS production and
apoptosis.

GPR132 or
G2A

Proton
sensor

Macrophages and neutrophils. Gaq Promotes activation of the peroxisome proliferator-activated receptor g (PPARg) in tumor-
associated macrophages (TAMs) causing activation to macrophage M2 and tumor growth.

GPR68 or
OGR1

Proton
sensor

Macrophages, dendritic cells, T cells
and neutrophils.

Gaq/
11 and
Gas

Maintain tumor-associated macrophages in an M2-like state and suppresses T-cell infiltration
favoring tumor growth. Increases the production of CXCL8 and IL-6 in human airway smooth
muscle cells related to bronchial contraction and hyperresponsiveness of the airways in
patients with bronchial asthma.
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proton sensitive and could be involved in immune modulation
during the inflammatory processes characterized by low pH
levels obtained from lactic and carbonic acids (166, 169).

GPR132 is described in neutrophils (170) and macrophages and
appears to be responsible for migration to recruit macrophages in
the pro-inflammatory microenvironment surrounding the focus
of inflammation (171). In addition to being the least sensitive to
extracellular acidification, it can be stimulated by lysophospholipids
(172), generating IP3 through Gaq activation (173). GPR132
expression is reduced by the activation of peroxisome
proliferator-activated receptor g (PPARg) in tumor-associated
macrophages (TAMs); moreover, breast tumor cells produce
lactate which activates GPR132 in TAMs, promoting macrophage
M2 activation and tumor growth (174, 175).

GPR4 is a pro-inflammatory GPCR that activates the Gs-cAMP-
exchange protein activated by cAMP highly expressed in vascular
endothelial cells linked to leukocyte adhesion (176). Activation of
GPR4 by extracellular acidification also increase the expression of
chemokines, cytokines, and adhesion molecules through the NF-kB
pathway in endothelial cells (Table 1) (176–178). Acidosis-induced
activation of GPR4 promotes the endoplasmic reticulum (ER) stress
response and apoptosis of endothelial cells (177, 179, 180). GPR4-/-

reduces inflammation in the DSS-induced acute colitis and in the
spontaneous IL-10-/- colitis model in rodents (169, 181).

GPR65 (TDAG8) is expressed in T cells, B cells, neutrophils, and
eosinophils and is coupled to the Gs/adenyl cyclase/cAMP pathway
(182, 183). GPR65 activation reduces pro-inflammatory cytokine
production (TNF-a and IL-6) in mouse peritoneal macrophages
(184, 185), ROS production in human neutrophils (186) and
apoptosis in human eosinophils (166) (Table 1).

GPR68 (OGR1) is a proton-sensing receptor that can detect
decreases in extracellular pH during inflammation. It is expressed in
macrophages (184), dendritic cells (187), T cells (188), and
neutrophils (186) and has a pro-inflammatory function in colitis
(189), asthma through activation of dendritic cells (187), and in
murine experimental autoimmune encephalomyelitis that regulates
T cell responses during autoimmunity (190). This receptor has been
described to be able to couple Gaq/11 and Gas and trigger
increased intracellular calcium and cAMP (Table 1) (191, 192).
GPR68 may maintain TAM in an M2-like phenotype and inhibits
T-cell infiltration, which promotes tumor growth (188). GPR68
expression can be induced by TNF-a in the human macrophage
lineage and primary human monocytes, activating Gaq signaling
during the development of mucosal inflammation (189, 193).
Furthermore, hypoxia improves the TNF-mediated induction of
OGR1 expression, which is reversed by NF-kB inhibitors (194).
Extracellular acidification induces the production of CXCL8 and IL-
Frontiers in Immunology | www.frontiersin.org 9
6 through OGR1 in human airway smooth muscle cells and could
be related to bronchial contraction and hyperresponsiveness of the
airways in patients with bronchial asthma (195, 196).
CONCLUSIONS

Lactate, more than a product of metabolism, exerts modulating
effects on the immune response and, depending on the cell type,
could interfere or promote the inflammatory response.
Apparently, the diversity of effects would depend on the
pathway by which lactate is generated or metabolized. In
addition, during the development of inflammatory processes,
various changes occur in cell metabolism, in this scenario the
presence of lactate can contribute to enhance or interfere with
the immune response, depending on the pathological context
analyzed. Furthermore, the evidence suggests that lactate may
play as pleiotropic physiological signaling agent, modulating
several signal transduction pathways and transcription factors.
Lactate can mediate its effects directly through lactate-sensitive
G-protein coupled receptors or indirectly through its effects on
extracellular acidification, which would stimulate different
proton-sensitive receptors. The activation of these receptors
can contribute or interfere with the inflammatory process.

Taken together, all the currently available evidence suggest
that lactate possesses a myriad of biological effects, which could
explain dissimilar responses observed in inflammatory processes.
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