
REVIEW
published: 06 September 2021

doi: 10.3389/fcvm.2021.707529

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 September 2021 | Volume 8 | Article 707529

Edited by:

Michael Bukrinsky,

George Washington University,

United States

Reviewed by:

Chieko Mineo,

University of Texas Southwestern

Medical Center, United States

Daisy Sahoo,

Medical College of Wisconsin,

United States

*Correspondence:

Evgeny E. Bezsonov

evgeny.bezsonov@gmail.com

Mahmoud Rafieian-Kopaei

rafieian@yahoo.com

Specialty section:

This article was submitted to

Atherosclerosis and Vascular

Medicine,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 10 May 2021

Accepted: 20 July 2021

Published: 06 September 2021

Citation:

Malekmohammad K, Bezsonov EE

and Rafieian-Kopaei M (2021) Role of

Lipid Accumulation and Inflammation

in Atherosclerosis: Focus on

Molecular and Cellular Mechanisms.

Front. Cardiovasc. Med. 8:707529.

doi: 10.3389/fcvm.2021.707529

Role of Lipid Accumulation and
Inflammation in Atherosclerosis:
Focus on Molecular and Cellular
Mechanisms
Khojasteh Malekmohammad 1, Evgeny E. Bezsonov 2,3,4,5* and Mahmoud Rafieian-Kopaei 6*

1Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran, 2 Laboratory of Angiopathology, Institute of

General Pathology and Pathophysiology, Moscow, Russia, 3 Laboratory of Cellular and Molecular Pathology of

Cardiovascular System, Institute of Human Morphology, Moscow, Russia, 4 Institute for Atherosclerosis Research, Moscow,

Russia, 5Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov

University), Moscow, Russia, 6Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of

Medical Sciences, Shahrekord, Iran

Atherosclerosis is a chronic lipid-driven and maladaptive inflammatory disease of

arterial intima. It is characterized by the dysfunction of lipid homeostasis and signaling

pathways that control the inflammation. This article reviews the role of inflammation

and lipid accumulation, especially low-density lipoprotein (LDL), in the pathogenesis

of atherosclerosis, with more emphasis on cellular mechanisms. Furthermore, this

review will briefly highlight the role of medicinal plants, long non-coding RNA (lncRNA),

and microRNAs in the pathophysiology, treatment, and prevention of atherosclerosis.

Lipid homeostasis at various levels, including receptor-mediated uptake, synthesis,

storage, metabolism, efflux, and its impairments are important for the development of

atherosclerosis. The major source of cholesterol and lipid accumulation in the arterial

wall is proatherogenic modified low-density lipoprotein (mLDL). Modified lipoproteins,

such as oxidized low-density lipoprotein (ox-LDL) and LDL binding with proteoglycans

of the extracellular matrix in the intima of blood vessels, cause aggregation of

lipoprotein particles, endothelial damage, leukocyte recruitment, foam cell formation,

and inflammation. Inflammation is the key contributor to atherosclerosis and participates

in all phases of atherosclerosis. Also, several studies have shown that microRNAs and

lncRNAs have appeared as key regulators of several physiological and pathophysiological

processes in atherosclerosis, including regulation of HDL biogenesis, cholesterol

efflux, lipid metabolism, regulating of smooth muscle proliferation, and controlling of

inflammation. Thus, both lipid homeostasis and the inflammatory immune response are

closely linked, and their cellular and molecular pathways interact with each other.
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INTRODUCTION

Atherosclerosis is an important cause of cardiovascular diseases such as ischemic heart disease and
stroke. This complex multifactorial disease has chronic and progressive pathology characterized by
lipid accumulation, low-grade inflammation in the walls of large- and medium-sized arteries, and
endothelial dysfunction (1, 2).
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Two key factors in the pathogenesis of atherosclerosis
are cholesterol deposition and chronic inflammation (3).
Atherosclerosis has three significant stages including fatty
streak formation, induction of atheroma, and atherosclerotic
plaques (4).

Reactive oxygen species (ROS) and reactive nitrogen species
(RNS) damage the cellular function of lipids, proteins, and
carbohydrates, and cause lipid peroxidation and low-density
lipoprotein (LDL) oxidation (5). Oxidized LDL (ox-LDL) can
remain in the vascular intima. ox-LDL has a crucial role
in the initiation and development of atherosclerosis through
inducing endothelial cell (EC) dysfunction, increasing leukocyte
adhesiveness, inducing the expression of leukocyte andmonocyte
adhesion molecules on the endothelial surface such as Vascular
Cell Adhesion Molecule-1 (VCAM), Intercellular Adhesion
Molecule-1 (ICAM), E selectin and P-selectins (3, 6, 7).
Monocytes, T lymphocytes, and mast cells are taken up into
vascular wall intima by these adhesion molecules. T cells can
respond to inflammatory signals by producing γ-interferon
(IFN-γ) and lymphotoxin, and tumor necrosis factor β (TNF-
β) (8, 9). Monocytes are converted into macrophages in the
sub-endothelial space through Monocyte Chemotactic Protein-
1 (MCP-1), Macrophage Colony-Stimulating Factor (M-CSF),
and Interleukin-8 (IL-8). Macrophages uptake ox-LDLmolecules
via the scavenger receptor-A family to form lipid-laden foam
cells. Yellow foam cells aggregate on the arterial walls and
cause the development of fatty streaks (10, 11). A fibrous
atherosclerotic plaque cap is formed from the fatty streak during
the migration of Smooth Muscle Cells (SMCs) from media
to intima and SMCs proliferation (9, 12). At advanced stages
of atherosclerosis, Macrophages and T lymphocytes of fibrous
atherosclerotic plaque cap secrete proteolytic enzymes such as
metalloproteinase to reduce the stability of the fibrous cap and
lyse the fibrous cap extracellular matrix. Breakdown of fibrous
cap collagen content leads to coagulation process, blood clot

Abbreviations: ABCA1, ATP binding cassette transporter A1; ABCG1, ATP-
binding cassette transporters G1; ApoB, apolipoprotein B; CIC, circulating
immune complexes; CRP, C-Reactive Protein; EC, endothelial cell; EndMT,
endothelial-to-mesenchymal transition; eNOS, endothelial nitric oxide synthase;
HDL-C, high-density lipoprotein cholesterol; ICAM, Intercellular Adhesion
Molecule-1; IDL, intermediate-density lipoproteins; IFN-γ, γ-interferon; IL-8,
Interleukin-8; JNK, cJun NH2-terminal kinase; LDL, low-density lipoprotein;
LDL-C, low-density lipoprotein cholesterol; lncRNA, long non-coding RNA;
LOX-1, the lectin-like oxidized LDL 1 receptor; Lp-PLA2, lipoprotein-associated
phospholipase A2; LPL, lipoprotein lipase; LPS, lipopolysaccharide; LRP1, low-
density lipoprotein receptor-related protein 1; lysoPC, lysophosphatidylcholine;
M-CSF, Macrophage Colony-Stimulating Factor; MALAT1, metastasis-associated
lung adenocarcinoma transcript 1; MCP-1, Monocyte Chemotactic Protein-
1; mLDL, modified low-density lipoprotein; MMP, Matrix Metalloproteinase;
NEAT1, nuclear enriched abundant transcript; NF-kB, nuclear transcription
factor-kB; NFIA, Nuclear factor I A; ox-LDL, oxidized low-density lipoprotein;
PAR, Protease Activated Receptor; RNS, reactive nitrogen species; ROS, Reactive
oxygen species; S-SMase, sphingomyelinase; SMCs, Smooth Muscle Cells; SR,
scavenger receptors; SR-BI, scavenger receptor class B type I; SR-E1, the lectin-
like oxidized LDL 1 receptor; SRC, non-receptor tyrosine kinase; STAT3, signal
transducer and activator of transcription 3; TC, total cholesterol; TG, triglyceride;
TLR4, Toll-like receptor 4; TNF-β, tumor necrosis factor β; VCAM, Vascular
Cell AdhesionMolecule-1; VLDL, very-low-density lipoproteins; VSMCs, vascular
smooth muscle cells.

formation, thrombus formation, and blockade of the arteries
(3, 13, 14).

The pathophysiologic feature of atherosclerosis is an
inflammatory, cellular, and metabolic process (4, 8).
So, elucidating atherosclerosis pathogenesis is vital for
understanding disease progression and the development
of new therapeutics. This review will discuss the role and
significance of inflammation and lipid accumulation especially
LDL in the pathogenesis of atherosclerosis with more emphasis
on cellular mechanisms. Furthermore, this review will highlight
briefly the role of medicinal plants, long non-coding RNA, and
microRNAs in the pathophysiology, treatment, and prevention
of atherosclerosis.

SOURCES OF THE INFORMATION

The comprehensive information in this review article was
obtained from noteworthy scientific databases, including Web of
Science, PubMed, Science Direct, Scopus, and Google Scholar.
The main search terms used in this study were atherosclerosis,
LDL, lncRNA, microRNA, cholesterol, inflammation, and
medicinal plants.

RESULTS

Role of Lipid and Lipoprotein
Accumulation in Atherosclerosis
Various forms of lipoproteins and lipids are implicated in lipid
trafficking such as chylomicrons, sphingolipids, ceramides, very-
low-density lipoproteins (VLDL), cholesterol, apolipoproteins,
including ApoB (apolipoprotein B), intermediate-density
lipoproteins (IDL), and low-density lipoprotein (LDL) (15–20).
Lipid biomarkers are classic LDL and HDL, cholesterol, ox-LDL
cholesterol, small dense LDL cholesterol, lipoprotein (a), and
lipoprotein-associated phospholipase A2 (Lp-PLA2) (21).

Lipid homeostasis at various levels, including receptor-
mediated uptake, synthesis, storage, metabolism, and efflux, as
well as its impairment, are important for the development of
atherosclerosis (22). Under normal physiological conditions,
LDL in the cell can degrade in the lysosomes that prevent
an imbalance of uptake, synthesis, efflux, and excessive lipid
accumulation (23). The hypothesis of cholesterol retention
in the arterial cells was suggested by Nikolai Anitschkow
over 100 years ago (24). Enhanced plasma concentrations of
cholesterol-rich apolipoprotein-B-containing lipoproteins are
related to atherosclerosis. Lipoproteins can flux into and get
out of the arterial wall via caveolin-1 and the scavenger
receptor class B type I (SR-BI). Retention, or trapping, of
cholesterol-rich apoB-containing lipoproteins within the arterial
wall, is the key initiating event in atherogenesis. The retention
of apoB-lipoproteins leads to lipid accumulation, triggers
cellular responses within the artery wall, lesion development,
maladaptive local responses, and plaque initiation (25, 26). The
response-to-retention occurs via interacting lipoproteins with
proteoglycans of the arterial wall (26). The consequences of the
retention of apoB-lipoproteins include accumulation of lipids
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and exposure to local enzymes within the vessel wall (27–
29). Important enzymes involved in apoB-lipoprotein retention,
aggregation, and atherogenesis are secretory sphingomyelinase
(S-SMase), lipoprotein lipase, and phospholipase A2. The most
action of these enzymes is accelerating further retention of
atherogenic lipoproteins (26). Also, retention of cholesterol-
rich apoB-lipoproteins within the artery wall causes several
modifications and significant biological consequences (26).

The major source of cholesterol and lipid accumulation in
the arterial wall is proatherogenic mLDL (30). Desialylation,
oxidation, formation of LDL self-associates, and LDL-containing
immune complexes are the known LDL modifications (31). Also,
all eight classes of scavenger receptors have been recognized as
both native and modified LDL (32).

The first known atherogenic LDL modification is
desialylation, and the trans-sialidase (neuraminidase) enzyme
is responsible for LDL desialylation. The action mechanisms
of intracellular lipid accumulation by desialylated LDL are
performed in two ways; the first is binding, uptake, and
degradation of LDL. The second is the evaluation of hydrolysis
and esterification rates of lipids in LDL particles (33). LDL
particles desialylation causes autoantibodies production,
which forms circulating immune complexes (CIC) containing
LDL (34). CIC causes the secretion of pro-inflammatory
cytokines and macrophages apoptosis (34). Desialylated
LDL causes the following consequences: lipid accumulation,
enhancing its binding to the arterial proteoglycans, proliferative
activity, connective tissue matrix components synthesis,
breaking intercellular communication, chronic inflammation,
and intracellular esterification of free cholesterol through
preventing of the cholesterol acyltransferase esterifying activity
in macrophages and cholesterol accumulation (24, 34).

Oxidative lipoprotein modification by intimal oxidizing
agents, proteases, and lipases leads to the generation of
oxidized phospholipids (oxPLs), inducing leukocyte recruitment,
leukocyte activation, LDL aggregation, formation of cholesterol
crystals, and inflammation (16).

Modified lipoproteins, such as ox-LDL, and LDL binding
with proteoglycans of the extracellular matrix in the intima
of blood vessels, cause aggregation of lipoprotein particles,
endothelial damage, leukocyte recruitment, and inflammation
(26). Then, foam cell forms from aggregated modified apoB-
lipoproteins through taking up oxidized, proteolyzed, or
lipolysed lipoproteins, taking up cholesterol crystals by
macrophages and taking up lipoproteins by SMCs via different
classes of scavenger receptors (SR), such as SR class A (SR-A1,
also known as CD204), SR class B (CD36), and the lectin-like
oxidized LDL 1 receptor (LOX-1, or SR-E1), which can identify
and bind to modified lipoproteins (35–37). Also, aggregated
mLDL may accumulate in macrophages, which is recognized
by low-density lipoprotein receptor-related protein 1 (LRP1)
and Toll-like receptor 4 (TLR4) or degraded via lysosomal
synapses (38–40).

SR-A is expressed on the surface of macrophages by
regulating various factors. Sac1 and Sac3 phosphatases maintain
a constant level of SR-A expression in the endoplasmic reticulum
(41). Upregulation of Sac1 expression increases the SR-A

receptor abundance. Tumor Necrosis Factor-alpha (TNF-α) and
Interleukin-6 (IL-6) can upregulate the SR-A expression leading
to LDL accumulation by macrophages (42).

CD36 with its ligands (mLDL, HDL, fatty acids, and VLDL)
is involved in lipoprotein uptake and lipid metabolism (43).
Signaling pathways, such as non-receptor tyrosine kinase
(SRC), cJun NH2-terminal kinase (JNK), Rac (GTPase)
protein, and nuclear factor-kB (NF-kB transcription factor),
are activated by interacting mLDL and CD36, which can result
in LDL absorption, oxidative processes, and the production of
proinflammatory cytokines (32, 44). LOX-1 from the E class SR
family is involved in lipid accumulation, and its expression is
increased in the intima under the inflammation and oxidative
condition (32).

In the context of the response-to-retention, HDL has the
following roles: interfering with the irreversible binding of
plasma LDL to arterial wall proteoglycans, blocking SMase-
induced aggregation of LDL, omitting toxic lipids, ameliorating
the maladaptive inflammatory infiltrate, inhibiting lipoprotein
oxidation, EC protection and suppression of monocyte
adhesion (45–49).

Role of Inflammation in Atherosclerosis
The role of inflammation in the pathogenesis of atherosclerosis
was suggested in 1908 by Sir William Osler (50). Inflammation
participates in all phases of atherosclerosis. For example,
stable plaques and ruptured plaques are characterized by a
chronic inflammatory infiltrate and “active” inflammation in
the thinning of fibrous caps (21). Inflammation is linked with
different risk factors of atherosclerosis (26, 51). All risk factors
of atherosclerosis cause inflammatory response (9). Cellular
cholesterol and inflammation can affect the immune system and
autoimmune diseases (26).

Ox-LDL and generally modified lipoproteins increase
endothelial damage, leukocyte recruitment, and inflammation.
Several studies revealed that high levels of E-selectin, ICAM-1,
and VCAM-1 are expressed by inflamed endothelium (52).
Thus, these activated endothelial cells are the local source of
leukocytes recruited into an atherosclerotic lesion (21). One of
the earliest signs of atherosclerosis is endothelial dysfunction or
activation (53). High inflammatory responses lead to arterial wall
thickening (53).

Various inflammatory cells such as macrophage foam cells
and T lymphocytes participate in inflammatory responses and
the progression of atherosclerosis (21). Different cytokines are
produced by macrophage foam cells leading to activation of
SMCs and extracellular matrix production (8).

In the initiation phase of atherosclerosis, monocytes and
lymphocytes migrate into the inner arterial wall with the help of
MCP-1 and T cell chemo-attractant. Inside the intima,monocytes
are differentiated into macrophage foam cells under the influence
of M-CSF. All activated cells release inflammatory cytokines
and proinflammatory mediators. In the fatty-streak lesion, T-
cells secrete TNF-β, IFN-γ, fibrogenic mediators, and growth
factors that can cause the migration and proliferation of smooth
muscle cells. Also, activated T-cells cause the following important
inflammatory reactions: stimulating Matrix Metalloproteinase
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(MMP) production by macrophages in the lesion, producing
IFN-γ, and halting collagen synthesis by the SMCs. It is
considered that plaque formation is related to increased plasma
concentration of C-Reactive Protein (CRP) (53). As mentioned
above, inflammatory cells, macrophage foam cells and T-cells,
and proinflammatory mediators (cytokines, interleukins) have
important roles in all different stages of atherosclerosis.

Traditional risk factors of atherosclerosis are
Hypercholesterimia, HDL, hypertension, obesity, and
diabetes. The high level of LDL cholesterol in the blood
causes artery and vascular smooth muscle cells (VSMCs) injury,
induction of adhesion molecules and proinflammatory cytokines
expression in macrophages and endothelial cells, and activation
inflammatory response by expressing mononuclear leukocyte
recruiting mechanisms (9).

The mechanisms of actions of HDL are inhibiting LDL
oxidative modification, blocking the proinflammatory effects
of ox-LDL, promoting antioxidant enzyme activity such as
acetylhydrolase and paraoxonase, which neutralize oxidized
lipids, and proinflammatory effects (9).

Angiotensin II (AII), as a powerful vasoconstrictor, is
produced during hypertension (54). AII increases the growth of
SMCs and facilitates smooth muscle lipoxygenase activity and
results in speeding up inflammation. Also, it causes inflammation
of endothelial intima via promoting the expression of cytokines
(IL-6) and MCP-1 and superoxide anion production by the
endothelium and SMCs of the artery (9, 54). In fact, Ang-II
has pro-atherogenic effects and increases endothelial oxidative
stress. Also, it up-regulates the LOX-1 gene and causes the
activation of apoptosis pathways and induction of endothelial
dysfunction (54).

Oxidative stress, ROS formation, endothelial activation, and
disruption of cellular defense systems in conditions of chronic
hyperglycemia and diabetes promote inflammation. Glycated
lipoproteins protect the proinflammatory action of cytokines in
the arterial endothelium (55, 56).

The elevated levels of VLDL and inflammatory processes
can initiate atherosclerosis. Adiponectin, leptin resistin, TNF-
α, and IL-6 are cytokines generated from adipose tissue, which
can impact inflammation (9). Biomarkers of inflammation or
indicators of the inflammatory response are CRP, Protease
Activated Receptor (PAR), CD40, Interleukin-18, LOX-1, and
Lipoprotein-associated phospholipase (Lp-PLA2) (57). Obesity
accelerates atherosclerosis through increasing glucose level,
abnormal lipid profile, and systemic inflammation (58).

One of the most stable plasma biomarkers for low-grade
systemic inflammation is CRP. It is a valuable tool for
predicting, diagnosing, and prognosis of atherosclerosis. CRP
has a direct role in promoting the inflammatory component
of atherosclerosis. The significant mechanisms actions of CRP
are: downregulating endothelial nitric oxide synthase (eNOS) to
prevent nitric oxide releasing into the endothelium, destabilizing
eNOS mRNA, increasing the release of endothelin (ET-1),
adhesion molecules (VCAM-1, ICAM), MCP-1, migration of
SMCs and facilitating LDL uptake by macrophage (59).

PAR has four types (PAR-1,−2,−3,−4). PAR-1 activation
facilitates the binding of monocytes and leukocyte recruitment in

the endothelium. PAR-1 and PAR-2 can enhance the leukocytes
and platelets to the endothelium. It is proposed that the
proinflammatory property of PARs is induced by IL-1 and TNF-α
in inflamed cells (9).

CD40/CD40L is a proinflammatory system belonging to
the TNF family. This protein is found in atherosclerotic
plaques and expressed by activated macrophages, SMCs, vascular
endothelial cells, and T lymphocytes. Binding of soluble CD40L
(sCD40L), derived from activated platelet, to CD40 on SMC, and
endothelium causes endothelial dysfunction, inflammation, and
production of proinflammatory cytokines (IL-6, IL-1), VCAM-
1, ICAM, MCP-1, MMPs, fibroblast growth factor, vascular
endothelial growth factor, platelet activation, and thus the
production of ROS and RNS (9, 60–62).

Interleukin-18 (IL-18) is made by monocytes and
macrophages and its receptor is expressed on T lymphocytes (T
helper). IL-18 binds to its receptors and causes inflammation
and plaque formation via producing IL-1, TNF-α, and a positive
feedback mechanism. The stability of plaque is reduced by
increasing MMP expression (9). This proinflammatory cytokine
causes induction of IFN-γ, inhibiting collagen synthesis,
preventing thick fibrous cap formation, and facilitating plaque
destabilization (63).

LOX-1 is found in endothelial cells, macrophages, and
SMCs. It is bound only to ox-LDL and detected in all phases
of atherosclerosis. The ox-LDL/LOX-1 complex causes the
following impacts: increasing ROS production, death of SMCs,
MMP influence on a fibrous cap, providing a route of entry for
ox-LDL into endothelium, disrupting the normal endothelial
function and monocyte adhesion, and infiltration. The
stimulation of LOX-1 causes endothelial dysfunction, leukocyte
adhesion, collagen degradation, and foam cell formation (64). Lp-
PLA2 has performed its proinflammatory and proatherogenic
functions by promoting monocyte chemotaxis, enhancing
expression of mononuclear leukocyte adhesion molecules in
endothelial cells, producing lysophosphatidylcholine (lysoPC)
and non-esterified fatty acid moieties (9).

The Cellular Mechanisms of Inflammation
and Lipid Accumulation in the
Pathogenesis of Atherosclerosis
The intimal layer of the arterial wall is the location of the
Atherosclerotic lesion. The endothelial cells separate the intima
from the lumen of the vessel. Under the basal membrane,
different types of cells such as macrophages, dendritic cells,
foam cells, lymphocytes, and other inflammatory cells are found
in intimal atherosclerotic lesions (65). Deeper layers include
SMCs and pericytes that participate in immunity reactions.
Pericytes secrete pro-inflammatory cytokines such as IL-1, IL-
6, and TNF. They also act as phagocytes and antigen-presenting
cells (66, 67). Lesion development is associated with a local
enhancement of the number of macrophages, loss of intercellular
communication, and changes of Pericytes, macrophages, and
SMCs phenotype (68).

Lipid droplets accumulate in the cytoplasm of Pericytes,
macrophages, and SMCs and lead to change their appearance.
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The presence of Pericytes, macrophages, and SMCs in the
subendothelial space of the arterial wall is an early manifestation
of atherosclerosis (68). Atherogenic mLDL is the primary source
of lipids that are found in foam cells and the circulation of
atherosclerotic patients. Atherogenic modification of LDL is
mentioned in section 3.1. mLDL stimulates phagocytosis by
pericytes and macrophages. Then inflammatory cytokines are
secreted, which causes the attraction of immune cells to the
location of the inflammation. Inflammatory cytokines cause
the accumulation of intracellular lipids. Intracellular lipids
accumulation leads to rupture of the cells (68). Also, increasing
proliferative activity and stimulation of extracellular matrix
synthesis are occurring in the phase of inflammatory reaction
(69). Based on current consensus, endothelial activation and
enhanced permeability is the key event in the atherosclerotic
lesion development. Endothelial cells express cytokines
and chemokines (IL-1, TNF-α, MCP-1, growth factors, and
adhesion molecules). This leads to the interaction of circulating
immune cells with endothelium and enhancement of the
pro-inflammatory signaling at the emerging lesion site (68).
As a result of the increase of pro-inflammatory cytokines,
endoplasmic reticulum stress in the arterial wall cells and
apoptosis have occurred (70). This process and cytokine-
induced inflammation lead to interrupt the normal activity of
mitochondria and then impaired mitophagy and apoptosis (71).
mtDNA mutations have an important role in atherosclerosis.
These mutations lead to impaired glucose and fat metabolism,
increased oxidative stress, ROS generation, and cell death
(68). ROS act as modulators of gene expression related to
atherosclerosis development. The mutation spectrum of the
mitochondrial genome is useful for the early detection of
atherosclerosis (3, 71–74).

Lysosome function is linked to inflammatory cytokine release
and regulation of immune response. So, loss of lysosomal
function in ox-LDL-loaded Macrophages is a general effect
related to the excess lipid loading during atherosclerosis (75, 76).

The Role of Long Non-coding RNAs in
Lipid Accumulation and Inflammation
Long non-coding RNAs (lncRNAs) have been considered as a
novel group of epigenetic regulators with significant roles in
the pathogenesis and development of atherosclerosis. Also, these
biomarkers have the potential for targeting them therapeutically
(77). lncRNAs have multiple functions in a wide range of
biological processes. They are involved in regulatingmacrophage,
lipid metabolism and inflammatory, and immune responses (78,
79).

Taurin-up-regulated gene 1 (TUG1) knockdown prevents
hyperlipidemia and atherosclerotic lesions through up-
regulating the miR-133a expression which targets the fibroblast
growth factor 1 (FGF1) (80, 81). LncRNA-H19 has influenced
lipid metabolism by targeting miR-130b. It suppresses lipid
metabolism and increases lipid accumulation which causes lipid
metabolic disorders and atherosclerosis (79, 82). lncRNA-H19
knockdown decreases inflammatory responses and pro-
inflammatory factors (IL-1β, IL-6, and TNF-α) and enhances

the expression of anti-inflammatory factors (IL-4 and IL-10).
So, H19 can prevent endothelial inflammation by inhibiting
the STAT3 (signal transducer and activator of transcription
3) signaling pathway (82–84). lncRNA RP5-833A20.1 has a
regulatory function in lipid metabolism and inflammation
during atherosclerosis. Its target is miR-382. This lncRNA causes
enhancement of inflammatory cytokines (TNF-α, IL-1β, and
IL-6) and decreases cholesterol efflux via the miR-382-mediated
Nuclear factor I A (NFIA) pathway, and attenuates ATP
binding cassette transporter A1 (ABCA1) levels (85). lncRNA
E330013P06 is a new pro-inflammatory long non-coding RNA.
MiR143/145 is a key target of this lncRNA. Overexpressing
E330013P06 promotes foam cell formation via increasing
inflammatory genes (Nos2, Il6, and Ptgs2) and scavenger
receptor CD36 (78). lncRNA growth arrest-specific 5 (GAS5)
regulates atherosclerosis developments via various mechanisms
including promoting monocyte migration, interaction with the
histone methyltransferase EZH2 (enhancer of zeste homolog
2) PRC-2 subunit, decreasing ABCA-1 expression, cholesterol
efflux, and producing of inflammatory cytokines via targeting
miR-221 and up-regulating MMP-2 and MMP-9 (86, 87).
Antisense non-coding RNA in the INK4 locus (Anril), or
CDKN2B antisense RNA 1 (CDKN2B-AS1), has different effects
on lipid metabolism and inflammation in atherosclerosis. It
can promote lipid uptake and LPS induced-inflammation via
regulating the CDKN2B promoter and activating the NF-kB
signaling pathway (4, 88, 89). Knocking down of long non-
coding RNA Maternally Expressed Gene 3 (MEG3) protects
the VSMCs from ox-LDL-induced injury by enhancing p53
expression (90). Also, it increases pyroptosis by sponging
miR-223 and targeting NOD-like receptor protein 3 (NLRP3).
Also, the ox-LDL-induced apoptosis in VSMCs by sponging
the miR-361-5p. So, MEG3 promotes the development of
atherosclerosis by increasing inflammation (91–93). Long
non-coding RNA-DAPK1-IT1 decreases ABCA1 and ATP-
binding cassette transporters G1 (ABCG1) protein levels in
THP-1 macrophages by sponging miR- 590–3p and targeting
lipoprotein lipase (LPL). Thus, it reduces the levels of HDL and
enhances the levels of LDL (94).

Long non-coding RNA metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1) has a protective
effect against atherosclerosis lesions. The supportive effects of
MALAT1 against the ox-LDL-induced apoptosis were performed
through these action mechanisms: Upregulating endothelial-to-
mesenchymal transition (EndMT), competing with miR-22-3p,
induction of autophagy by inhibiting the PI3K/AKT pathway
or sponging miR-216a-5p, and suppressing the production of
ox-LDL mediated pro-inflammatory cytokines such as IL-6 and
IL-8 via sponging miR-155 (95–98). The anti-inflammatory
effect of MALAT1 is increasing lipid uptake in macrophages via
interacting with nuclear enriched abundant transcript (NEAT1)
(99, 100). lncRNA myocardial infarction associated transcript
(MIAT) has a protective effect against the ox-LDL-induced
apoptosis through inhibiting miR-181b and signal transducer
and activator of transcription 3 (STAT3) (101, 102). From
a therapeutic point of view, lncRNA-DYNLRB2-2 has anti-
atherosclerotic properties via different mechanisms, including
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TABLE 1 | A list of lncRNAs involved in lipid accumulation and inflammation.

lncRNA Biological

processes

Target Function Reference

MALAT1 Leukocyte

activation, cholesterol

metabolism

miR-216a-5p, miR-155 and

miR-22-3p

Inhibiting inflammation (95–100)

MIAT Macrophage

apoptosis

miR-181b/STAT3 Apoptosis, inhibiting inflammation (101, 102)

GAS5 Cholesterol

metabolism

miR-221, MMP-2 and MMP-9 Promoting inflammation (86, 87)

DYNLRB2-2 Cholesterol metabolism ABCA1 and TLR2 Inhibiting inflammation and increasing cholesterol efflux (4, 103–105)

Anril Endothelial

dysfunction;

cholesterol

metabolism

ADAM10 and CDKN2B Promoting lipid accumulation and inflammation (4, 88)

DAPK1-IT1 Cholesterol metabolism miR- 590–3p and LPL Promoting lipid accumulation and inflammation (94)

MEG3 Lipid metabolism miR-223 and miR-361-5p Increasing inflammation and pyroptosis (90–93)

E330013P06 Lipid metabolism miR-143 and miR-145 Promoting inflammation and foam cell formation (78)

RP5-833A20 Cholesterol

metabolism

miR-382 Promoting inflammation/decreasing cholesterol efflux (85)

H19 Endothelial

dysfunction

miR-130b Increasing lipid accumulation, and Inflammation (82–84)

TUG1 Endothelial

dysfunction;

Macrophage

apoptosis

miR-133a/FGF1 Promoting lipid accumulation,

inflammation and apoptosis

(80, 81)

promoting cholesterol efflux, inhibiting inflammation, increasing
ABCA1 expression, inhibiting THP-1 macrophage foam cell
formation, activating the LKB1/AMPK/mTOR signaling
pathway, and inhibiting the lipopolysaccharide (LPS)-induced
inflammatory cytokines such as TNF-a, IL-1b, and IL-6 in
macrophages by reducing TLR2 expression (4, 103–105). From
a therapeutic point of view, Anril causes cholesterol efflux
and reduction of inflammatory cytokines such as IL-1b and
TNF-α in ox-LDL-exposed THP-1 macrophages via inhibiting a
disintegrin and metalloprotease (ADAM) expression (106). The
most important lncRNAs involved in lipid accumulation and
inflammation are summarized in Table 1 and Figure 1.

Role of microRNAs in Lipid Accumulation
and Inflammation
MicroRNAs have appeared as key regulators of several
physiological and pathophysiological processes in atherosclerosis
including regulation of HDL biogenesis, cholesterol efflux,
lipid metabolism, regulating of smooth muscle proliferation,
and controlling of inflammation through the activation and
infiltration of leukocytes via the vascular wall (108–110).
Moreover, numerous studies have demonstrated the beneficial
role of miRNAs as therapeutic targets in the treatment
of atherosclerosis and cardiovascular disease (Table 2 and
Figure 1) (131).

The overexpression of miR-146a can inhibit the activation of
the TLR4 signaling pathway and prevent ox-LDL accumulation
(116). Overexpression of miR-146a significantly decreases

intracellular LDL cholesterol content and secretion of IL-6
and IL-8, chemokine (C-C motif) ligand-2, and MMP-
9 in macrophages by targeting CD40L (116, 117). It was
demonstrated that miR-146a regulates IL-1 receptor-associated
kinase-1 (IRAK1) and TNF-receptor-associated factor-6
(TRAF6) (118). The protective role of miR-125a-5p against
atherosclerosis was performed through regulating the pro-
inflammatory response, lipid uptake by macrophages, decreasing
content of the inflammatory cytokines: tumor growth factor-
beta (TGF-α), TNF-α, IL-2, and IL-6 (115). The miR-125a-5p
expression can cause the expression of LOX-1 and CD68 leading
to a decrease of ox-LDL-stimulated macrophage uptake (115).
Thus, it suppresses oxysterol binding protein like-9 (ORP9)
and leads to reduction of lipid uptake and the secretion of
inflammatory cytokines, including IL-2, IL-6, TNF-α, and
TGF-β, in ox-LDL stimulated human primary monocytes (115).
miR-223 is one of the most abundant miRs in LDL and HDL
particles and inflammation (128). NOD-like receptor pyrin
domain containing 3 (NLRP3) and ICAM-1 are the targets of
miR-223. Upregulation of both these targets increases endothelial
inflammation and causes leukocyte infiltration and inflammation
connected with atherosclerosis (129, 130). It inhibits cholesterol
biosynthesis via suppressing the sterol enzymes 3-hydroxy-3-
methylglutaryl-CoA synthase 1 (HMGCS1) and methylsterol
monoxygenase 1 (MSMO1) in humans (131). miR-10a up-
regulation can influence inflammation through decreasing
IκB/NF-κB activation, downregulation of inflammatory
biomarkers, such as MCP-1, VCAM-1, E-selectin, IL-6, and IL-8.
So, it suppresses inflammatory molecules in endothelial cells
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FIGURE 1 | The cellular mechanism of atherosclerosis and the involvement of non-coding RNAs in this process (107).

TABLE 2 | A list of microRNAs involved in lipid accumulation and inflammation.

miRNA Target Function Reference

miR-155 MAPK10/ SOCS1 Decreasing inflammation, lipid uptake and foam cell formation (111–114)

miR-125a-5p ORP9 Reduction of lipid uptake and secretion of inflammatory cytokines (115)

miR-146a TNF receptor (TNFR)

associated factor 6

(TRAF6)

Decreasing intracellular LDL cholesterol content and inflammation (116–118)

miR-33a/b ABCA-1 HDL biogenesis and reverse

cholesterol transport

(119, 120)

miR-34a SirT1 Inducing endothelial cell senescence and inhibiting cell cycle (121)

miR-10a MAP3K7 Inhibits NF-kB activation and down regulation of inflammatory molecules (122)

miR-302a ABCA1 HDL biogenesis, cholesterol efflux and inhibiting foam cell formation (77)

miR-126 VCAM-1 Inhibiting angiogenesis and inflammation (123–125)

miR-21 MKK3 Cholesterol efflux and inhibiting foam cell formation (21, 126)

miR-92a STAT3 Increasing inflammation (127)

miR-223 ICAM-1 and NLRP3 Reducing foam cell formation and production of proinflammatory cytokines (128–130)

(122). miR-21 is a vital signaling mediator in an inflammatory
state. Inhibition of this miRNA is related to the progression of
atherosclerosis via increasing expression of mitogen-activated

protein kinase kinase 3 (MKK3), inducing both p38 and the JNK
(c-Jun N-terminal kinase) signaling pathway and regulating the
expression of different pro-inflammatory mediators, including
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lipopolysaccharides and TNF-α (126, 132). miR-302a can
regulate ABC transporters, which are involved in cholesterol
efflux. The action mechanisms of this miRNA are increasing
ABCA1 activity, cholesterol efflux out of macrophages, and
preventing foam cell formation and growth of the atheromatous
plaque (77). miR-126 can affect the inflammatory state of
vasculature by the activation and infiltration of leukocytes via
the vascular wall. It inhibits VCAM-1. Thus, miR-126 inhibition
leads to enhancement of the proinflammatory TNF-α expression,
the activity of NF-κB (nuclear factor κB), the activity of
VCAM-1, as well as leukocyte-endothelial cells interactions and
atherosclerotic lesions formation (123–125). Overexpression of
miR-155 can cause attenuated inflammation and the subsequent
foam cell formation via miR-155/calcium-regulated heat-stable
protein 1 (CARHSP1)/TNF-α signaling pathway and targeting
of mitogen-activated protein kinase 10 (MAPK10) signaling
pathway (111, 112). It was suggested that miR-155 can contribute
to the inflammatory processes through increasing STAT3 and
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB) signaling and targeting the suppressor of cytokine
signaling 1 (SOCS1) in ox-LDL-induced macrophages (113).
miR-155 could decrease the lipid uptake in ox-LDL-stimulated
cells (114). miR-33a/b is a key regulator of lipid metabolism. It
plays a key role in regulating reverse cholesterol transport by
inhibiting the expression of ABCA1 at the RNA and protein
level and decreasing cellular cholesterol efflux to apolipoprotein
A-I (ApoA-I) (119, 120). Inhibition of miR-33a/b causes the
following consequences: Increasing β-oxidation and decreasing
fatty acid synthesis, ameliorating circulating lipids profile, and
slowing down the progression of atherosclerosis (119, 120).

miR-92a expression in the endothelial cells of atherosclerosis-
prone areas is an important regulator of atherosclerosis
development via targeting STAT3 and secreting IL-6 and MCP-
1 (127). miR-34a can develop atherosclerosis via inhibiting cell
cycle and SirT1 protein expression, inducing endothelial cell
senescence and repressing cell proliferation (121).

Role of Medicinal Plants and Their Active
Compounds in Atherosclerosis
In recent decades, medicinal plants and natural products
have been considered as one of the most important anti-
atherosclerotic strategies for the treatment and prevention of
atherosclerosis. Medicinal plants and natural products with
their potential antioxidant, antiatherogenic, and anti-thrombotic
properties, prevent atherosclerosis and its harmful complication
through modulating the pathways of the inflammatory response,
reducing cholesterolemia, free radicals, and decreasing vascular
resistance (133, 134). The most important medicinal plants with
anti-atherosclerotic actions have been summarized in Table 3

and Figure 2.
The experimental New Zealand rabbits group treated with

extract of Tribulus terrestris revealed decreased levels of total
cholesterol (TC), high-density lipoprotein cholesterol (HDL-C),
low-density lipoprotein cholesterol (LDL-C), and triglyceride
(TG) in serum compared to the control group (133, 157).
In Triton WR-1339-induced hyperlipidemic rats treated with

Ocimum basilicum extract, the TC, TG, and LDL-C levels
decreased (133, 158). Salvia miltiorrhiza with its Salvianolic
acid B can inhibit CD36-mediated lipid uptake via binding
directly to CD36 with high affinity (159). Salvia miltiorrhiza
and cryptotanshinone decrease the expression of MMP-9, NF-
κB, and the production of adhesion molecules. This plant
prevents the migration of human aortic smooth muscle cells
(174, 175). Salvia miltiorrhiza and its active compound,
Danshenol, suppress ICAM-1 expression and relevant monocyte
adhesion to endothelial cells through the NADPH oxidase
subunit 4 (NOX4)-dependent inhibitor of kappa B (IκB)
kinase β (IKKβ)/nuclear factor-kappa B (NF-κB) pathway
(164). Cryptotanshinone from S. miltiorrhiza decreased LOX-
1, ICAM-1, and VCAM-1 expression (135, 136). Salvianolic
acid B from Salvia miltiorrhiza reduced JAK2 (Tyr 1007/1008)
and STAT1 (Tyr701 and Ser727) phosphorylation. It enhanced
protein inhibitor of activated STAT 1 (PIAS1) and suppressor
of cytokine signaling 1 (SOCS1) expressions in endothelial
cells (176). The modulatory effects of salvianolic acid B and
Cryptotanshinone, bioactive compounds from S. miltiorrhiza,
significantly suppressed the atherosclerotic plaque formation
by inhibiting the LOX-1 and MMP-9 expression and affecting
PI3K/Akt, MAPK, NF-KB pathways (135, 137). Allium sativum
with large amounts of flavonoids, such as kaempferol inhibits
cyclooxygenase and lipoxygenase and prevents the accumulation
of thrombocytes. Allium sativum extract decreases the level
of malondialdehyde, superoxide, and hydroxyl radicals (141).
Allium sativum has antithrombotic activity by suppressing
cyclooxygenase, reducing the generation of thromboxane B2,
prostaglandin E2, and leukotriene C4 by platelets (142). Extract
from Allium sativum inhibits platelet aggregation via different
mechanisms including increasing cyclic nucleotides, inhibiting
GPIIb/IIIa receptor and fibrinogen binding, and preventing
phosphorylation of collagen-induced ERK, JNK, and p38 (143–
145). It lowers blood lipids such as total cholesterol and
triglycerides through down-regulating acetyl-CoA carboxylase
(ACC), acyl-CoA cholesterol acyltransferase (ACAT), HMGR,
fatty acid synthase (FAS), sterol regulatory element-binding
protein-1c (SREBP-1c), and glucose-6- phosphate dehydrogenase
(G6PD) (170). Nigella sativa and its main active compounds,
propolis and thymoquinone, prevent LDL oxidation and decrease
in the development of atherosclerotic lesions. It scavenges
the free radicals and has antioxidant activity. This medicinal
plant and its active compounds decreased TC, LDL-C, and
TG, while increased HDL-C levels in hypercholesterolemic
rabbits (162, 163). Celastrus orbiculatus up-regulated scavenger
receptor class B type 1 (SR-B1), cholesterol 7α-hydroxylase
A1 (CYP7A1), and 3-hydroxy-3-methyl-glutaryl-coenzyme A
(HMG-CoA) reductase and significantly decreased TC, non-
HDL-C, TG, and lipid deposition in the arterial wall (160). C.
orbiculatus decreased CRP, IL-6, and TNF-α levels in plasma
and CD68 up-regulation and NF-κB p65 protein activation
in the arterial wall (160). Magnolia officinalis, with its main
compound, magnolol, suppressed IL-6-induced phosphorylation
of Tyr705 and Ser727 on STAT3. STAT3 is a transcription
factor involved in inflammatory responses. It reduces ICAM-
1 expression on the endothelial surface (151). The ethanolic

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 September 2021 | Volume 8 | Article 707529

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Malekmohammad et al. Lipids and Inflammation in Atherosclerosis

TABLE 3 | Important anti-atherosclerotic medicinal plants and compounds.

Medicinal plants Active compounds Action mechanism Reference

Anti-inflammatory effects of medicinal herbs

Salvia miltiorrhiza Salvianolic acid B and cryptotanshinone Decreasing expression of MMP-9 and inhibition of NF-kB pathway and

ICAM-1,VCAM-1 and MCP-1 expression

(135–137)

Glycyrrhiza glabra glabridin Blockage of JNK and NF-kB signaling, suppression of TNF-a, and production of

IL-1b

(138–140)

Allium sativum kaempferol Inhibiting of inflammation signaling (like TNF-a, IL-1b, ICAM-1) (141–145)

Astragalus membranaceus Astragaloside IV Down regulating of CD40L, CD40, CXCR4 and SDF-1 (146, 147)

Punica granatum Ellagic acid and punicalagin Decreasing plasma levels of IL-6 and TNF-α and increasing IL-10 (148–150)

Magnolia offinicalis Magnolol Suppressing phosphorylation of Tyr705, Ser727 and Tyr705 and stat3, inhibition

of NF-kB pathway and inhibition of adhesion molecules expression

(151)

Curcuma wenyujin β-Elemene Inhibiting production of IL-1β, TNF-α, INF-γ, MCP-1, and ICAM-1 (152)

Tripterygium wilfordii Celastrol Decreasing production of iNOS, NO, and pro-inflammatory cytokines (153)

Ginkgo biloba Ginkgo biloba extract Decreased expression of IL-1β,

TNF-α and IL-10

(154)

Curcuma longa Bisacurone Inhibiting activity of iNOS, COX-2, lipoxygenase, and xanthine oxidase. Inhibiting

JAK/STAT signaling pathway

(155)

Coptis chinensis berberine NF-kB activation and JNK phosphorylation (156)

Lipid-lowering effects

Tribulus terrestris Tribulus terrestris extract Decreasing total cholesterol, LDL-C, and triglyceride (TG) (133, 157)

Ocimum basilicum Aqueous extract of Ocimum basilicum Decreasing total cholesterol, LDL-C, and triglyceride (TG) (133, 158)

Salvia miltiorrhiza Salvianolic acid B Inhibiting CD36 and decreasing total cholesterol, LDL-C, and triglyceride (TG) (159)

Celastrus orbiculatus Celastrus orbiculatus extract Up regulating SR-B1, CYP7A1 and HMG-CoA, decreasing total cholesterol,

LDL-C, and triglyceride (TG)

(160)

Panax notoginseng saponins Decreasing total cholesterol, LDL-C, and triglyceride (TG) (161)

Nigella sativa Propolis and thymoquinone Decreasing total cholesterol, LDL-C, and triglyceride (TG) (162, 163)

Astragalus membranaceus Astragaloside IV Increased activity of PPARα and PPARγ (146, 147)

Allium sativum Flavonoids, alkaloids Decreasing total cholesterol, LDL-C, and triglyceride (TG) (141–145)

Anti-oxidative effects and inhibitory activity of LDL oxidation

Nigella sativa Propolis and thymoquinone Scavenging of free radicals (162, 163)

Salvia miltiorrhiza Danshenol A, Tanshinone IIA, Salvianolic

acid B and Cryptotanshinone

Inhibiting ROS production and decreasing LOX-1 expression (135, 164)

Punica granatum Phenol, Ellagic acid and punicalagin Decreasing ROS production (148–150)

Buddleja officinalis Aqueous extract of B. officinalis Inhibiting ROS production (156)

Curcuma wenyujin β-Elemene Inhibiting ROS production and eNOS expression (152)

Celastrus orbiculatus C. orbiculatus extract Inhibiting ROS production (160)

Tripterygium wilfordii Celastrol Inhibiting ROS production and LOX-1 and iNOS expression (153)

Ocimum basilicum Aqueous extract of Ocimum basilicum Inhibiting Radical anion superoxide production (133, 158)

G. glabra Glycyrrhizin and glabridin Inhibiting ROS production, inhibiting LDL NADPH oxidase and preventing

cholesterol oxidation

(138–140)

A. sativum Flavonoid, kaempferol Decreasing lipid peroxidation, superoxide and hydroxyl radicals (141–145)

Sesamum indicum Sesamolinol, sesamol Inhibiting ADP-Fe+/NADH-induced peroxidation and lipid oxidation (165, 166)

Suppression of cholesterol accumulation and foam cell formation

Curcuma longa curcumin Promoting ABCA1-dependent cholesterol efflux and inhibiting of SR-A-mediated

oxidized LDL uptake

(167–169)

Coptis chinensis berberine Increasing LXRa-ABCA1-dependent cholesterol efflux, activating the

AMPK-SIRT1-PPAR-?pathway and down-regulating HMGR expression

(156)

Allium sativum kaempferol Down-regulation of HMGR, FAS, SREBP-1c, G6PDH and acetyl-CoA

carboxylase

(170)

Salvia miltiorrhiza Salvianolic acid B Down-regulating of CD36 expression (159)

Punica granatum Ellagic acid and punicalagin Up-regulation of ABCA1 expression and regulating PPAR-ABCA1 pathway (148–150)

Inhibitory effects of medicinal herbs against monocyte recruitment

Purple perilla Purple perila extract and α-asarone Inhibiting foam cell formation and SR-B1 expression, upregulation of ABCA1 and

ABCG1

(133, 171)

(Continued)

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 September 2021 | Volume 8 | Article 707529

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Malekmohammad et al. Lipids and Inflammation in Atherosclerosis

TABLE 3 | Continued

Medicinal plants Active compounds Action mechanism Reference

Buddleja officinalis Aqueous extract of Buddleja officinalis Inhibiting VCAM-1 and ICAM-1 expression (156)

Curcuma longa curcumin Inhibiting IκBα, Akt, and PKC phosphorylation and VCAM-1 expression (167–169)

Salvia miltiorrhiza Cryptotanshinone Reducing LOX-1, VCAM-1 and ICAM-1 expression (136, 164)

Paeonia lactiflora Paeonol Inhibiting ICAM- 1 expression and NF-κB p65 translocation into the nucleus (172)

Panax notoginseng Saponins Inhibiting ICAM- 1 and VCAM-1 expression (161)

FIGURE 2 | The cellular mechanism of atherosclerosis development and mechanisms of action of medicinal plants and natural products (173).

extract of Astragalus membranaceus decreased blood glucose
and triglyceride (TG) via the increasing activity of PPAR-α and
PPAR-γ (146). Also, downregulation of CD40 ligand and C-
X-C chemokine receptor type 4 (CXCR4) expression on the
platelet surface, and stromal cell-derived factor-1 (SDF-1) and
CXCR4 expression in the aorta are the most important effects
of A. membranaceus and Astragaloside IV (147). β-Elemene
isolated from Curcuma wenyujin inhibits the production of
pro-inflammatory cytokines and cell adhesion molecules such
as IL-1β, TNF-α, INF-γ, MCP-1, and ICAM-1 and decreases
the size of atherosclerotic lesions (152). Tripterygium wilfordii
and its triterpenoid, Celastrol, prevent phosphorylation and
degradation of IκB. This medicinal plant reduces the production
of inducible nitric oxide synthase (iNOS), NO, and pro-
inflammatory cytokines such as TNF-α and IL-6 (153). Curcuma
longa and curcumin inhibit SR-A-mediated oxidized LDL uptake
and lead to reduced cholesterol accumulation in the arterial wall
via activation of the AMPK-SIRT1- LXRa signaling pathway
(167, 168). Also, curcumin shows anti-inflammatory properties
via inhibiting the activity of iNOS, COX-2, lipoxygenase, and
xanthine oxidase, and activating NF-kB (169). C. longa inhibits

IκBα, protein kinase B (Akt), and protein kinase C (PKC)
phosphorylation and suppresses VCAM-1 expression (155).
Glycyrrhiza glabra and its main flavonoid, glabridin, have
anti-inflammatory properties via different action mechanisms
including inhibiting TNF-a-stimulated gene expression of
VCAM-1 and ICAM-1 and blocking JNK and NF-kB (138,
139). It prevents LDL oxidation through inhibiting 2, 2-
azobis (2-amidinopropane) hydrochloride (AAPH)–stimulated
production of cholesteryl linoleate hydroperoxide in LDL
(140). Coptis chinensis and its main compound, berberine,
increase LXRa-ABCA1-dependent cholesterol efflux and activate
the AMPK-SIRT1-PPAR-g pathway, consequently decreasing
foam cell formation (156). Punica granatum, ellagic acid, and
punicalagin, possess obvious anti-inflammatory effects including
reducing plasma levels of IL-6 and TNF-α, increasing the anti-
inflammatory cytokine IL-10, and decreasing the translocation of
NF-kB from the cytosol to the nucleus (148–150). Ginkgo biloba
extract decreases IL-1β, TNF-α, IL-10 expression, and growth of
vascular smooth muscle cells (VSMC) (154).

Paeonol, the active compound of Paeonia lactiflora, decreased
ICAM- 1 expression via phosphorylation of IκBα and inhibition
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of NF-κB p65 translocation into the nucleus. It had influences
on extracellular signal-regulated kinase (ERK) induced by TNF-
α and blocked the phosphorylation of p38 (172). Saponins,
the active compounds of Panax notoginseng suppress TNF-
α-induced endothelial adhesion molecules such as ICAM-1
and VCAM-1 expression and reduce monocyte adhesion to
the endothelium (161). Purple perilla and its main compound
α-asarone prevent ox-LDL-induced foam cell formation via
inhibiting SR-B1 expression. Also, Purple perilla causes the
adenosine triphosphate (ATP)-binding cassette transporter A1
(ABCA1) and ABCG1 upregulation, and subsequently result
in cholesterol efflux from macrophages through interactions
between peroxisome proliferator-activated receptorγ (PPARγ),
liver X receptor α (LXRα), and ABC transporters (133).
Buddleja officinalis reduces VCAM-1 and ICAM-1 through
inhibition of NF-κB and reactive oxygen species (ROS) (156).
Sesamum indicum with its antioxidant and anti-inflammatory
properties showed inhibitory effects on membrane microsomal
peroxidation, lipid peroxidation, ADP-Fe3+/NADH-induced
peroxidation, and Cu ions-induced LDL oxidation. Hence, this
plant decreases the levels of plasma triglyceride and cholesterol,
and LDL-cholesterol (LDL-C) (165, 166).

CONCLUSIONS

Atherosclerosis is a chronic inflammatory disease that is
continuous crosstalk between the lipid metabolism and
immune-inflammatory pathways. Accumulation of intracellular
lipids is a fundamental event in atherogenesis at the cellular
level. The accumulation of intracellular modified lipids,
especially ox-LDL, leads to foam cell formation. Inflammation
participates in all phases of atherosclerosis. Lipid droplets
accumulate in the cytoplasm of Pericytes, macrophages, and
smooth muscle cells and lead to change their appearance.
All risk factors of atherosclerosis cause an inflammatory
response. Inflammatory cytokines cause the accumulation
of intracellular lipids. Intracellular lipids accumulation leads
to rupture of the cells. As a result of the increase of pro-
inflammatory cytokines, endoplasmic reticulum stress in the
arterial wall cells and apoptosis occur. This process and cytokine-
induced inflammation lead to interrupt the normal activity of

mitochondria and then impaired mitophagy and apoptosis.
Thus, both lipoprotein metabolism and inflammatory immune
response play vital roles in the initiation, perpetuation, and
eventually, resolution of the atherosclerosis process.

This information leads to the development of new approaches
to the diagnosis and treatment of atherosclerosis such as
evaluation of microRNAs and lncRNAs. On the other hand, new
developments based on using cell models, medicinal plants, and
natural products as therapeutic tools have been developed to
prevent lipid accumulation and foam cell formation. Recently,
lncRNAs and miRNAs have been considered for the treatment
and prevention of atherosclerosis. Hence, the therapeutic effects
of these molecules, especially lncRNAs, have largely remained
experimental at this time. Expressing the therapeutic effect of
these molecules with more details and their mechanism of
action needs more experiments and research in the future.
Totally, various lncRNAs and miRNAs can prevent and treat
atherosclerosis by regulating HDL biogenesis, cholesterol efflux,
lipid metabolism, regulating smooth muscle proliferation, and
controlling inflammation.

Medicinal plants and their active compounds can prevent
atherosclerosis through the following mechanisms: in fact,
medicinal plants decrease total cholesterol, LDL-C, and TG.
Various bioactive compounds reduce LOX-1 expression. They
inhibit ROS production. Natural products inhibit the foam cell
formation and SR-B1 expression. Also, the production of IL-1β,
TNF-α, INF-γ, MCP-1, and ICAM-1 is inhibited by different
medicinal plants.
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