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Abstract

Long-noncoding RNAs (lncRNAs) are a group of transcripts that are longer than 200 nucleotides and do not code for

proteins. However, this class of RNAs plays pivotal regulatory roles. The mechanism of their action is highly complex.

Mounting evidence shows that lncRNAs can regulate cancer onset and progression in a variety of ways. They can not

only regulate cancer cell proliferation, differentiation, invasion and metastasis, but can also regulate glucose metabolism in

cancer cells through different ways, such as by directly regulating the glycolytic enzymes and glucose transporters

(GLUTs), or indirectly modulating the signaling pathways. In this review, we summarized the role of lncRNAs in regulating

glucose metabolism in cancer, which will help understand better the pathogenesis of malignant tumors. The

understanding of the role of lncRNAs in glucose metabolism may help provide new therapeutic targets and novel

diagnostic and prognosis markers for human cancer.
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Background
Metabolism is one of the basic attributes of life. In the

1920s, Warburg found that tumor cells exhibit a special

metabolic phenotype. One of the features of this phenotype

is that despite adequate availability of oxygen, cancer cells

still tend to generate energy from glycolysis, rather than

depending on oxidative phosphorylation, which produces

more ATP per molecule of glucose. This phenomenon

is known as the “Aerobic glycolysis” or “Warburg effect”

[1, 2]. It often results in increased glucose uptake and

accumulation of ATP and lactic in the cancer cells.T1

Initially, Warburg speculated that the mitochondrial

function in tumor cells might be impaired, making it

obligatory for the tumor cells to depend on aerobic

glycolysis [3]. But later work found that mitochondrial

function is not damaged in most tumor cell types [4].

Further studies have shown that proliferating cells

require not only ATP, but also nucleic acids, fatty acids,

proteins, and membrane phospholipids. Glycolysis can

provide substrates and intermediates required for the

synthesis of the aforementioned biological macromolecules.

Glycolysis generates small molecule precursors or interme-

diates that contribute to cell proliferation, such as acetyl-

CoA, intermediates of non-essential amino acids, and

ribose for nucleotide synthesis to meet the needs of rapid

DNA replication [3, 5]. Glycolysis produces lower quantities

of reactive oxygen species (ROS). ROS can induce apoptosis

or senescence in tumor cells under oxygen stress [6]. Since

mitochondrial oxidative phosphorylation produces higher

levels of ROS, it is advantageous for the tumor cells to

depend on glycolysis for their energy needs. Although gly-

colysis produces less ATP than oxidative phosphorylation,

glycolytic intermediates provide the carbon sources that are

required for rapid cell proliferation [7]. The lactate gener-

ated by glycolysis lowers the pH of the extracellular matrix

(ECM) [8]. Acidic microenvironment promotes tumor inva-

sion and metastasis and confers resistance to radiation ther-

apy [9, 10]. Thus, the Warburg effect is an optimized way

that tumor cells harness cellular stress to thrive. It also

suggests that cancer is a metabolic disease. The most direct

way of altering glucose metabolism is by affecting the meta-

bolic enzymes or kinases. However, some signaling path-

ways also play important roles in glucose metabolism.

Regulation of enzymes, kinases and signaling pathways may
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directly or indirectly affect glucose metabolism in cancer.

Changes at mRNA and protein levels have been shown to

be involved in reprogramming the glucose metabolism in

tumor cells [11, 12].

A very large part of the more than 3 billion base pair

long human genome is transcribed, but less than 2% of

the genome encodes proteins. Most of the transcripts are

not translated into proteins. These are referred to as non-

coding RNAs (ncRNAs), which are longer than 200 nucle-

otides (NT), are called long non-coding RNAs (lncRNAs)

[13–20]. LncRNAs are involved in a variety of important

regulatory processes, at the transcriptional and post-

transcriptional levels [21–27], and in epigenetic

modifications [28–31] that play complex and precise

regulatory roles in development and gene expression.

LncRNAs can also regulate glucose metabolism in tumor

cells [32–35]. The regulatory mechanism of lncRNAs is

extremely complicated and merits systematic and in-depth

research. A large number of studies have shown that

lncRNAs can affect genes involved in glucose metabolism

[36]. Therefore, we focused on the ways and mechanisms

by which lncRNAs regulate glucose metabolism in cancer,

which may help advance the understanding the complex

regulatory network of cancer metabolism and provide a

better theoretical basis for clinical diagnosis and treatment.

LncRNAs and their targets in the regulation of glucose me-

tabolism in cancer are summarized in Table 1.

LncRNAs regulate enzymes, regulatory molecules,
and oncogenes involved in glucose metabolism in
cancer
LncRNAs regulate glucose uptake via altering the

expression of glucose transporters

Glucose transporters (GLUTs) are membrane proteins

that transport glucose from the capillaries into cells and

play an important role in cellular glucose metabolism. So

far, 13 members of the GLUT family have been identified,

out of which GLUT1, GLUT3, and GLUT4 are closely in-

volved in glucose metabolism in cancer. Under normal

physiological conditions, GLUTs transport glucose rapidly.

GLUTs are often upregulated in malignant tumor cells,

expediting the glucose transport further.

LncRNA NBR2 regulates AMPK activity and is in-

duced by glucose starvation. However, Liu et al. showed

that knocking out NBR2 does not affect phenformin-

induced AMPK activity, but attenuates the expression

Table 1 LncRNAs and their targets in the regulation of glucose metabolism in cancer

Items Targets LncRNAs Tumor types References

GLUTs GLUT1 LncRNA NBR2 Kidney cancer [32]

GLUT4 LncRNA CRNDE Colorectal neopasia [33]

Enzymes HK2 LncRNA PVT1 Osteosarcoma [34]

PKM2 LncRNA H19 Liver cancer [36]

G6P, PEPCK LncRNA GAS5 Cervical/Hepatocellular cancer [37]

Pyruvate carboxylase LncRNA GCASPC Gallbladder cancer [39]

PFKFB2 LINC00092 Ovarian cancer [40]

Oncogenes c-Myc PCGEM1, LncRNA-MIF various cancer [42, 43]

HIF HIF and VHL LincRNA p21, MALAT1 Hepatocellular/Breast cancer et al [50, 51]

HIF-1α LncRNA-LET, H19, LINK-A Breast cancer [52–54]

miR-145 and HIF-1α Linc-ROR Hepatocellular cancer [55]

PI3K/AKT PTEN PTENpg1, HOTAIR Prostate/Tongue squamous carcinoma [65, 66]

Akt ANRIL Nasopharyngeal carcinoma [67]

Let-7 H19 - [69]

AMPK LKB1 LINC00473 Lung cancer [74]

AMPK LncRNA NBR2 various cancer [77]

Wnt/Snail EMT LncRNA CTD903, UCA1 Colorectal cancer, breast cancer [80, 81]

STAT STAT1 and PolyII NRCP Ovarian cancer [82]

STAT3 UCA1 Bladder cancer [86]

p53 Mutant p53, PKM2 LncRNA CUDR Hepatocarcinogenesis [94]

p53 protein MEG3, Wrap53 various cancer [95, 97]

p53, hnRNP-K LincRNA p21, MALAT1 various cancer [49, 98]

p53 Linc-ROR various cancer [49]
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of GLUT1, thereby reducing glucose uptake [37].

LncRNA Colorectal neoplasia differentially expressed

(LncRNA-CRNDE) regulates gene expression by epi-

genetic modification. The intron region of this gene has

a highly conserved sequence (gVC-In4). Ellis demon-

strated that knocking out gVC-In4 in HT29 cells

reduced the amount of lactic acid produced in cancer

cells. They further showed that the reduction in lactic

acid production was due to the decrease in the effi-

ciency of aerobic glycolysis or conversion of pyruvate to

acetyl-CoA. They also found that the expression of

GLUT4 was reduced, indicating that CRNDE modulates

the level of GLUT4 positively [38] (Fig. 1).

LncRNAs influence glycolysis by regulating enzymes or

kinases

HK2 was a direct target of miR-497, long non-coding

RNA PVT1 acts as molecular sponge to repress miR-497,

as a result, PVT1 promotes glycolysis and cell prolifera-

tion in osteosarcoma and form a PVT1/miR-497 axis in

the Warburg effect through regulation of HK2 expression

[39] (Fig. 1).

Pyruvate kinase (PK) is the last rate-limiting enzyme in

glycolysis. Allosteric as well as covalent modifications can

affect PK activity. Four isoenzymes of PK have been iden-

tified so far: M, K, L, and R types. The aberrant expression

of pyruvate kinase M2 (PKM2) is most common in tumor

cells [40]. PKM2 determines the proportion of carbons

derived from glucose that are used for glycolytic energy

production [41]. In the breast cancer cell line MCF-7, the

cytoplasmic promyelocytic leukemia tumor suppressor

protein (PML-TSP) interacts directly with PKM2. Overex-

pression of a mutated form of PML-TSP, which was gener-

ated by mutagenesis of the nuclear localization signals of

PML-TSP, suppressed PKM2 activity and accumulation of

lactate [42]. Li et al. illustrated that miR675 inhibits the

expression of heterochromatin protein 1α (HP1α), leading

to changes in histones. miR675 also upregulates lncRNA

H19 via EGR1 activation. H19 can induce and activate

PKM2, which is essential for Waburg effect and tumori-

genesis in liver cancer [43] (Fig. 1).

LncRNA GAS5 binds to the DNA binding domain of

the adrenocorticotropic hormone receptor, thereby pre-

venting its binding to the regulatory region of the gene.

GAS5 inhibits the expression of 6-phosphoglucanase

(G6Pase) and phosphoenolpyruvate carboxykinase

(PEPCK) [44], enzymes that play key roles in glucose

metabolism, thereby inhibiting gluconeogenesis and

glycogenolysis [45]. Thus, the role of GAS5 in glucose

metabolism is undoubtedly of great significance (Fig. 1).

Pyruvate carboxylase (PC), an enzyme that convert pyru-

vate to oxaloacetate, has been proved to play an important

role in cancer cell metabolism and proliferation. In gallblad-

der cancer, GCASPC binds to pyruvate carboxylase,

reduces its level and activity by promoting the instability of

PC, thereby inhibiting cell proliferation [46] (Fig. 1).
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Fig. 1 LncRNAs regulate the molecules involved in glucose metabolism in cancer. LncRNAs regulate glucose uptake and glycolytic flux by

modulating GLUTs and glycolic enzymes
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LINC00092 is upregulated in ovarian cancer. It in-

hibits one of the glycolytic enzymes, fructose-2,6-bispho-

sphatase (PFKFB2), thereby altering glycolysis, which in

turn promotes metastasis and sustains the local supportive

function of cancer-associated fibroblasts (CAFs) [47–50]

(Fig. 1). Although many enzymes involved in glucose

metabolism have been described, there are few reports

that discuss how lncRNAs affect the levels of metabolism

by influencing these enzymes. It is also necessary to inves-

tigate whether lncRNAs are associated with other en-

zymes involved in glucose metabolism.

LncRNAs affect glycolysis by regulating oncogenes

Accumulating evidence shows that MYC oncogene dys-

regulation is a common event in tumorigenesis. MYC

oncogene encodes the transcription factor, c-Myc, which

promotes cell growth and proliferation. Jung-whan Kim

demonstrated that hypoxia-inducible factor 1 (HIF-1)

cooperates with dysregulated c-Myc to promote glycoly-

sis by inducing hexokinase 2, which catalyzes the first

step of glycolysis, and pyruvate dehydrogenase kinase 1,

which inactivates pyruvate dehydrogenase and dimin-

ishes mitochondrial respiration [51]. The prostate cancer

marker, lncRNA PCGEM1, can influence a variety of

metabolic pathways such as glucose metabolism, PPP,

nucleic acid and fatty acid biosynthesis, and tricarboxylic

acid cycle, at the transcriptional level. Significantly,

PCGEM1 binds directly to the promoters of target

genes, physically interacts with c-Myc, promotes

chromatin recruitment of c-Myc, and enhances its trans-

activation activity [52]. Under normal oxygen conditions,

c-Myc regulation of the glycolytic genes promotes glu-

cose metabolism. The interaction of lncRNA with c-Myc

inhibitory factor (MIF) reduces the level of c-Myc protein,

thereby inhibiting glycolysis. Mechanistically, lncRNA-

MIF acts as an endogenous competitive RNA for miR-

586, reducing the inhibitory effect of miR-586 on Fbxw7,

an E3 ubiquitin ligase that regulates c-Myc protein stabil-

ity. Thus, lncRNA-MIF increases the expression of Fbxw7

and reduces the c-Myc protein level. There is a feedback

loop between c-Myc and lncRNA-MIF, which regulates

the expression of c-Myc protein and glucose metabolism

[53] (Figs. 2 & 3).

LncRNAs affect glucose metabolism by regulating
metabolism-related signaling pathways
HIF signaling pathway

HIF is a nuclear transcription factor that is produced by

cancer cells adapting to hypoxic environments [54].

Activation of HIF-1α contributes to Warburg effect,
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Fig. 2 Role of lncRNA-mediated HIF, PI3K/AKT/mTOR and LKB1-AMPK pathways in glucose metabolism in tumor cells. LncRNAs can regulate

HIF-1α protein synthesis and stability, thus modulating HIF-1-mediated metabolic reprogramming. The rate of translation of HIF-1a mRNA in

cancer cells is dependent upon the activity of the mammalian target of rapamycin (mTOR), which in turn is determined by the activity of

upstream tumor suppressor proteins and oncoproteins. HIF-1α plays a key role in stimulating glycolic enzymes and in blocking mitochondrial

activity. LncRNAs can also regulate Akt and AMPK pathways. Akt may increase oxidative phosphorylation by enhancing metabolic coupling

between glycolysis and oxidative phosphorylation, through facilitating the association of mitochondrial hexokinase with VDAC and mitochondria.

Akt enhances glycolytic flux via multiple mechanisms. First, it increases glucose uptake and flux. Second, hyperactive Akt activates mTORC1, which

promotes HIF1α accumulation under normoxic conditions and increases GLUT1, HKII, and lactate dehydrogenase (LDH) levels. Finally,

Akt-increased cellular ATP levels serve to maintain low AMPK activity, which is required for full activation of mTORC1
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partly through the upregulation of GLUTs, thereby in-

creasing glucose uptake [55] or by increasing the expres-

sion of glycolytic enzymes [56, 57] or by inhibiting

oxidative phosphorylation [58]. These studies indicate

that the Warburg effect is not caused just by hypoxia,

but rather through a more specific regulation of tran-

scription, in which HIF-1 increases the expression of

most glycolytic enzymes.

Hypoxia is thought to be related to Warburg ef-

fect, although the underlying mechanism is not yet

clear. LincRNA-p21 was originally thought to be a

p53-induced lncRNA that regulated P53-triggered

apoptosis in murine models [59]. However, it is not

associated with apoptosis in human tissues.

LincRNA-p21 is a hypoxia-responsive lincRNA that

competes with HIF-1α to bind to the von Hippel-

Lindau tumor suppressor protein (pVHL) and pre-

vents the formation of HIF-1α-pVHL, thus inhibiting

the ubiquitinated degradation of HIF-1α. pVHL is a

component of ubiquitin ligase complex that binds to

HIF-1α and routes it to the proteasome degradation

pathway. Thus, lincRNA-p21 plays an important role

in hypoxia-induced glycolysis. Under hypoxic condi-

tions, HIF-1α-induced lincRNA-p21 stabilizes HIF-

1α, forming a positive feedback loop. But this loop is

not always activated because hypoxic stimulation

may slow down [60]. In human hepatic epithelial

cells (L-02), arsenite increases the expression of

glycolysis-related genes, including HK2, Eno-1, and

Glut-4. In L-02 cells exposed to arsenite, the lncRNA,

metastasis-associated lung adenocarcinoma transcript 1

(MALAT1), and HIF-α, are overexpressed. Moreover,

MALAT1 enhances arsenite-induced glycolysis by pro-

moting the disassociation of HIF-1α from VHL, prevent-

ing VHL-mediated ubiquitination of HIF-1α, which

causes the accumulation of HIF-1α [61]. However,

the overexpression of lncRNA-LET results in a de-

crease in the expression of HIF-1α [62]. Hypoxia

also induces LncRNA H19, which is involved in

hypoxia-induced signal transduction processes in

cancer cells, thereby altering glucose metabolism

[63]. Lin reported that an lncRNA in cytoplasm, long

intergenic non-coding RNA for kinase activation

(LINK-A), is involved in the metabolic reprogram-

ming in triple-negative breast cancer [64]. LINK-A

facilitates the recruitment of BRK to the EGFR-

GPNMB complex and activates BRK kinase. The

BRK-dependent phosphorylation of HIF1α at tyrosine

565 interferes with hydroxylation of proline 564,

thereby stabilizing HIF1α. LINK-A promotes the

metabolic reprogramming and tumor progression in

triple negative breast cancer by activating HIF1α. Takaha-

shi et al. reported that linc-ROR is associated with hypoxia

response and can act as a molecular sponge of miR-145 to

regulate HIF-1α and its target genes such as VEGF, TGF-β,

and PDK1 [65] (Fig. 2).
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Fig. 3 Role of lncRNA–mediated Wnt/Snail, STAT and p53 pathways in glucose metabolism in tumor cells. LncRNA can modulate the expression
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PI3K/AKT/mTOR signaling pathway

Phosphoinositide 3-kinase (PI3K) signaling pathway is

involved in glucose metabolism even in insulin-free

tissues. PI3K indirectly increases the expression of

GLUTs and enzymes by modulating Akt and mammalian

target of rapamycin (mTOR). Akt-related metabolic

factors include apoptosis-related kinases and GLUTs.

Activation of Akt can increase cellular ATP production

and oxygen consumption [66, 67]. In short, Akt plays a

pivotal role in determining the pathway of ATP produc-

tion; glycolysis or oxidative phosphorylation. Akt regulates

glycolysis via multiple mechanisms: (1) increasing the

expression of GLUTs [68]; (2) enhancing the expression

of glycolytic enzymes such as HK2, PKM2 [67, 69, 70]

or inhibiting mitochondrial oxidative phosphorylation

[71, 72]; (3) activating mTORC1, which in turn in-

creases HIF-1 levels [73, 74].

Polisenno found that PTEN pseudogene (PTENpg1)

can regulate the expression level of PTEN, and inhibit

tumor growth by inhibiting Akt signaling pathway [75].

The PTENpg1 and PTEN 3′ UTR contain a highly con-

served domain, and a non-conserved domain. PTENpg1

can protect PTEN mRNA by blocking the interaction of

miRNA and PTEN in the form of miRNA decoy.

Similarly, hox transcript antisense RNA (HOTAIR) is

overexpressed in a variety of tumors. HOTAIR in human

tongue squamous cell carcinoma is associated with in-

creased PTEN methylation. PTEN inhibits Akt signaling

pathway and regulates glucose metabolism [76] (Fig. 2).

LncRNA ANRIL is upregulated in nasopharyngeal

carcinoma. ANRIL increases the uptake and utilization

of glucose in aerobic glycolysis by increasing the phos-

phorylation of Akt and activating the mTOR signaling

pathway, resulting in the upregulation of GLUT1 [77].

Kallen noted that H19 harbors both canonical and non-

canonical binding sites for the let-7 family of micro-

RNAs, which plays important roles in development,

cancer, and metabolism. LncRNA H19, acts as a molecu-

lar sponge to inhibit miRNA Let-7 activity [78]. H19 is

highly expressed in a variety of human cancers. H19

expression is inhibited via PI3K/AKT-dependent phos-

phorylation of the miRNA processing factor KSRP.

Inhibition of H19 expression increases let-7 levels,

resulting in the impairment of insulin/PI3K/AKT path-

way, leading to reduced glucose uptake [79] (Fig. 2).

LKB1-AMPK signaling pathway

AMP activated protein kinase (AMPK) is a highly con-

served cellular energy sensor that is necessary for glu-

cose homeostasis [80, 81]. Activation of AMPK triggers

the activation of TSC2 complex, leading to inactivation

of mTOR-activated GTP-binding protein Rheb. mTOR

also inhibits AMPK directly [56]. Under energy deficit

conditions, AMPK enhances the activity of TSC2 by

phosphorylating it and thus protects cells from apoptosis

[82].

Liver kinase B1 (LKB1) is a threonine/serine kinase

and tumor suppressor that regulates cell growth and

energy metabolism by regulating the activity of m-TOR.

Knocking down LKB1 promotes tumor cell proliferation,

with increased uptake and utilization of glucose,

enhanced ATP levels, and biosynthesis of macromole-

cules. In LKB1-deficient cells, this metabolic reprogram-

ming process relies on HIF-1α, which exerts its

antagonism by inhibiting m-TORCI [12, 83]. LINC00473

is a nuclear lncRNA that interacts with NONO, a com-

ponent of the cAMP signaling pathway. LINC00473 is

highly expressed in human non-small cell lung cancer

and is associated with LKB1 dysregulation. LINC00473

was induced by LKB1 inactivation and subsequent cyclic

AMP-responsive element-binding protein (CREB)/CREB-

regulated transcription coactivator (CRTC) activation

[84] (Fig. 2).

LncRNA NBR2 is induced by LKB1-AMPK signaling

pathway under conditions of energy stress. NBR2 can

act as tumor suppressor by enhancing the activity of

AMPK kinase [85, 86]. LKB1 can activate AMPK,

followed by AMPK phosphorylation. AMPK activates a

series of downstream target genes, inhibiting ATP-

depleted anabolism and activating ATP-induced catabol-

ism. Glucose starvation can induce the phosphorylation

of AMPK or acetyl-CoA carboxylase. Knocking down

NBR2 significantly attenuates phosphorylation of AMPK

and mTORC1 inactivation, suggesting the presence of a

NBR2-AMPK feedback loop mechanism [87]. Adenosine

kinase alleviates ATP depletion by converting two ADPs

into one ATP and one AMP, which maintains the ATP/

ADP ratio when ATP is rapidly decreasing. However,

excessive accumulation of AMP activates LKB1-dependent

AMPK, which in turn activates downstream target genes to

replenish the energy currency of the cell [88] (Fig. 2).

Wnt/snail signaling pathway

Su Yeon Lee et al. showed that Wnt inhibits mitochon-

drial respiration via inhibiting cytochrome c oxidase and

promotes glycolysis by inducing pyruvate carboxylase, a

key anaplerotic enzyme. This process relies on the β-ca-

tenin/T-cell factor 4/Snail signaling pathway. Knocking

down E-cadherin repressed mitochondrial respiration

and stimulated glycolysis via Snail activation, indicating

that EMT may contribute to Wnt/Snail-mediated regula-

tion of mitochondrial respiration and glucose metabol-

ism [89].

In metastatic lung adenocarcinoma, lncRNA-CTD903

inhibited Wnt/β-catenin and subsequently inhibited the

expression of transcription factors, Twist and Snail, to

influence EMT and inhibit the invasion and metastasis

of lung adenocarcinoma cells [90]. In the breast cancer
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cell line MDA-MB-231, lncRNA UCA1 contributes to

the stimulation of EMT through Wnt/β-catenin signal-

ing pathway, thus promoting the invasion and metastasis

of breast cancer cells [91]. We speculate that lncRNA

could indirectly alter glucose metabolism in cancer by

affecting EMT via Wnt/Snail pathway (Fig. 3).

STAT signaling pathway

LncRNA NRCP is upregulated in ovarian cancer and

promotes tumor cell growth and proliferation by stimu-

lating glycolysis. Rupaimoole demonstrated that NRCP

promotes STAT1 binding to RNA polymerase II. When

the expression of NRCP was silenced by the introduction

of siRNA–NRCP into the tumor microenvironment,

binding of RNA polymerase II to STAT1 decreased, indi-

cating that NRCP acts as an intermediate in the binding

of STAT1-RNA polymerase II. Further studies have

shown that NRCP binds to STAT1 and RNA polymerase

II, leading to an increase in the expression of down-

stream target genes such as glucose-6-phosphate isomer-

ase, which in turn affects glycolysis in tumor cells [92].

LncRNA UCA1 plays an important role in bladder

cancer via the activation of PI3K/AKT/mTOR pathway.

Li et al. discovered that UCA1 can stimulate glycolysis

by upregulating HK2. Earlier research has shown that

STAT3 is a direct transcriptional activator of HK2. It is

also a downstream effector of mTOR [93–95]. The

authors further validated the association of UCA1

with the mTOR-STAT3 signaling pathway. The re-

sults showed that both rapamycin and STAT3 siRNA

could decrease glucose consumption and lactate

production, indicating that UCA1 can induce the ex-

pression of HK2 via mTOR-STAT3 pathway, thus

regulating glycolysis [96] (Fig. 3).

p53 signaling pathway

The absence of p53 in the cell can lead to mitochondrial

respiratory damage and increased glycolysis [97, 98]. p53

not only inhibits the expression of GLUT1 and GLUT4

[99], but, it also acts as a transcription factor that regulates

multiple metabolism-related enzymes [100]. Activation of

p53 increases the ubiquitination of phosphoglycerate

mutase (PGM), preventing the conversion of fructose-1,6-

bisphosphate to pyruvate [101]. In gastric cancer, p53

inhibits glycolysis by activating TP53-induced glycolysis

and apoptosis regulator (TIGAR) [102]. TIGAR is a p53-

induced gene that encodes a protein, which degrades

fructose 2,6-bisphosphate, which in turn prevents the

activation of 6-phosphofructokinase 1 (PFK1), thereby

inhibiting glycolysis. Therefore, glucose gets shunted into

pentose phosphate pathway, which produces more

NADPH. NADPH can produce a simplified form of gluta-

thione, which is the main substance that protects the cell

from ROS damage [103]. In conclusion, the multifaceted

role of p53 in glucose metabolism in cancer is manifested

in the inhibition of glycolysis and facilitation of TCA cycle

and oxidative phosphorylation.

Wu et al. showed that a double mutant of p53

(N340Q/L344R) could facilitate the progression of HCC

by upregulating PKM2. The p53 mutant forms a com-

plex with LncRNA CUDR. The complex binds to the

promoter regions of PKM2, enhancing the phosphoryl-

ation of PKM2 and its polymer formation [104]. Many

lncRNAs can regulate the expression of p53 directly or

indirectly. Maternally expressed gene 3 (MEG3) is usu-

ally absent in a variety of human tumor cell lines. MEG3

overexpression leads to an increase in p53 protein and

activation of p53 downstream target genes [105]. MEG3

promotes p53-regulating transactivation in meningioma

cell lines [106]. Wrap53, a natural antisense transcript of

p53, regulates the mRNA level of endogenous p53 and

induces its expression by targeting the 5′ UTR [107].

LincRNA p21 is a downstream transcript of p53. It can

inhibit the transcription of p53 and induce apoptosis by

binding to hnRNP-K [59]. MALAT1 is highly expressed

in lung cancer, pancreatic cancer, non-small cell lung

cancer, and is closely associated with cancer metastasis

in patients with non-small cell lung cancer. Tripathi et

al. found that knocking out MALAT1 in normal human

fibroblasts stimulated DNA damage repair and resulted

in the activation of p53 and its downstream target genes.

The cell cycle defects observed in MALAT1-depleted cells

were sensitive to p53 levels, indicating that MALAT1 may

be an important inhibitor of p53 [108]. ROR is a special

lncRNA in p53 signaling pathway. It can inhibit p53 and

in turn be regulated by p53 [59]. These results suggest that

lncRNAs may play a crucial role in p53-mediated regula-

tion of glucose metabolism (Fig. 3).

Therapeutic potential of lncRNAs in targeted
treatment of cancer
Targeted therapy has attracted significant attention in re-

cent times. Detailed understanding of lncRNA-mediated

regulation of glucose metabolism in tumor cells may facili-

tate the development lncRNA inhibitors, which block

tumor progression. Anti-miRNAs have been developed

for treating hepatocellular carcinoma and are now in

clinical trials [109]. Understanding the role of lncRNA in

regulating glucose metabolism in cancer is important to

explore the possibility of using lncRNA for targeted

therapy.

In a recent study of lung adenocarcinoma, reversing

the Warburg effect by inhibiting the EDFR signal

pathway inhibited tumor development [65]. Pusapati

et al. identified the mTORC1-dependent reprogram-

ming of metabolism that allowed cancer cells escape

dependence on glycolysis. Using a combination of

targeted glycolysis and mTOR inhibitors to prevent

Fan et al. Molecular Cancer  (2017) 16:130 Page 7 of 11



metabolic reprogramming induced cancer cell apoptosis

[110]. In the MCF-7 breast cancer cells, combination

treatment using acarindine (AICAR) and Methotrexate

(aminoglucuric acid) reversed the Warburg effect. Mono

drug therapy may induce drug resistance, but combination

therapy can induce the expression of AMPK and FOX1,

resulting in increased mitochondrial oxidative phosphoryl-

ation and decreased glycolysis. These metabolic changes

suggest an anti-Warburg effect that blocked the G1/S and

the G2/M transition, slowing down cell cycle [111]. These

results highlight the potential of targeting glucose

metabolism for cancer treatment.

Fluorodeoxyglucose positron emission tomography

(FDG-PET) has been employed to measure glucose

metabolism, for detecting cancer and predicting the

prognosis [112]. Current methods, including positron

emission tomography (PET), autoradiography and

magnetic resonance imaging (MRI), can measure the

rate of primary metabolism of glucose. The limitations

of these methods include their inability to distinguish

markers and intermediate products. Germline mutations

in succinate dehydrogenase and fumarate hydratase of

TCA cycle have been reported in kidney and ganglion

cell tumors [113]. One of the effects of these mutations

is the activation of HIF-1α-regulated glucose metabol-

ism. HIF plays a pivotal role in tumor metabolism; but

HIF also regulates a variety of target genes, such as those

involved in cell proliferation, angiogenesis and glucose

metabolism. Therefore, therapies targeting HIF may

cause unpredictable pathophysiological changes. Hence,

it seems more reasonable to develop specific inhibitors

targeting lncRNA.

In contrast to gene therapy, oligonucleotide therapy is

more similar to small molecule therapy. Oligonucleotides

can be synthesized artificially, do not integrate into the host

genome and are highly specific. Therefore, they have min-

imal non-specific and generalized effects. Oligonucleotide-

based therapies include using siRAN, anti-miRs, miRNA

mimics, antisense oligonucleotides, targeting the upregula-

tion of mRNA by lncRNA, and oligonucleotide-induced

differential splicing [114]. Locked nucleic acid gapmers can

effectively interfere with lncRNA. Gapmers have been re-

ported to be effective in targeting primate PSCK9, but failed

in phase 1 clinical trials [115]. Survivin and HIF-1α gap-

mers have been used for one year without safety issues

[116, 117]. LncRNA-based targeted therapies still have a

long way to go. Future studies need to address these

exciting hypotheses.

Prospect
Reprogramming glucose metabolism is a recently identi-

fied hallmark of cancer cells. Mounting evidence shows

that numerous factors are involved in this process. We

have highlighted the special roles of lncRNAs in this

review. As discussed above, the interaction of lncRNAs

with crucial transcription factors or metabolic enzymes

involved in the processes of glycolysis can effectively

modulate glucose metabolism and promote tumor

progression. In addition to these critical molecules, other

metabolic pathways are also pivotal for glucose metabolism

in cancer, especially the PI3K/AKT/mTOR pathway and

the AMPK pathway. LncRNA, as a regulator of metabol-

ism, may provide novel attractive targets for cancer therapy.

Therefore, detailed understanding of the role of lncRNA in

regulating glucose metabolism and the mechanism by

which it accomplishes this regulation will help to develop

novel means to control aberrant metabolic phenotype

and find more effective therapeutic strategies to sup-

press the “Warburg effect”, ultimately paving the way

for better treatment of cancer.
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