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Abstract

The mammalian Mre11-Rad50-Nbs1 (MRN) complex coordinates double strand break (DSB) 

signaling with repair by homologous recombination and is associated with the H2A.X chromatin 

response to DSBs, but its role in non-homologous end joining (NHEJ) is less clear. Here we show 

that Mre11 promotes efficient NHEJ in both wild-type and Xrcc4−/− mouse embryonic stem cells. 

Depletion of Mre11 reduces use of microhomology during NHEJ in Xrcc4+/+ cells and suppresses 

end resection in Xrcc4−/− cells, revealing specific roles for Mre11 in both classical and alternative 

NHEJ. The NHEJ function of Mre11 is independent of H2A.X. We propose a model in which both 

enzymatic and scaffolding functions of Mre11 cooperate to support mammalian NHEJ.

DNA double strand breaks (DSBs) provoke a complex set of cellular responses, which, if 

defective, can perturb development or promote cancer in higher eukaryotes. The Mre11/

Rad50/Nbs1 (MRN) complex in vertebrates and the homologous Mre11/Rad50/Xrs2 (MRX) 

complex in yeast act as DSB sensors and also support DSB repair 1. MRN binds to DNA 

ends, recruiting and activating the Atm signaling kinase 2,3. One of the targets of Atm is 

histone H2A.X, which is phosphorylated on serine 139 to form “γ-H2A.X”, recruiting 

Mdc1, MRN and other protein complexes to chromatin near the DSB 4. Thus, MRN exists 

in two fractions near the DSB – an H2A.X-independent fraction at the DSB and an H2A.X/

Mdc1-dependent fraction on chromatin 5. Loss of Mre11, Rad50 or Nbs1 results in 

embryonic lethality in mice 6-8. Hypomorphic mutations in human MRE11 or NBS1 lead to 

ataxia telangiectasia-like disorder (ATLD) or Nijmegen breakage syndrome (NBS) 

respectively 9,10. Cells derived from individuals with either disorder show radiation 

hypersensitivity, chromosomal instability and DSB repair defects.

DSBs in eukaryotes are repaired primarily by homologous recombination (HR) or non-

homologous end joining (NHEJ). In mammalian cells, the classical NHEJ pathway uses 

Xrcc4/DNA ligase 4 to catalyze ligation of DNA ends 11,12. A robust alternative, Xrcc4-

independent NHEJ pathway has been identified 13-16. DSB repair products in Xrcc4−/− 
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cells reveal frequent deletions associated with short tracts of homology at the repair 

junction, an outcome termed microhomology-mediated end joining (MMEJ) 17.

The MRN complex has been implicated in HR in both yeast and vertebrates. Mre11 

collaborates with Sae2/Ctp1/CtIP in end processing for HR 18-21, and MRN/MRX may also 

promote HR by tethering DNA ends 22-24. In Saccharomyces cerevisiae, MRX facilitates 

NHEJ 25,26 and has also been implicated in MMEJ 27. Early efforts to demonstrate a role 

for vertebrate MRN in NHEJ led to contradictory conclusions 28-30. However, recent work 

has revealed a role for MRN in NHEJ during V(D)J recombination in developing 

immunocytes 31,32. To what extent mammalian MRN influences NHEJ of unscheduled 

DSBs is not clear.

To study the role of Mre11 in mammalian NHEJ, including Xrcc4-independent NHEJ, we 

generated isogenic Xrcc4+/+ and Xrcc4−/− mouse embryonic stem (ES) cells harboring a 

single copy of an NHEJ reporter, in which NHEJ is triggered in response to tandem site-

specific chromosomal DSBs. Our work reveals a critical role for Mre11 in both Xrcc4-

dependent and Xrcc4-independent NHEJ in mammalian cells and suggests that Mre11 

participates in the processing of DSBs for MMEJ in cells lacking Xrcc4.

RESULTS

We developed NHEJ reporters in which translation of a wild-type copy of the gene encoding 

enhanced green fluorescent protein (“GFP”) is suppressed by an upstream, out-of-frame 

translation start site (“Koz-ATG”, Fig. 1a). Tandem DSBs introduced by the rare-cutting 

homing endonuclease, I-SceI, can release (“pop out”) Koz-ATG, and religation of the DNA 

ends allows translation of GFP in the correct frame. We introduced, in parallel, two NHEJ 

reporters – one that generates fully cohesive 4 nucleotide (nt) overhangs (sGEJ) (Fig. 1b) 

and the other containing partially cohesive 4 nt overhangs (vGEJ; Fig. 1c) – into 

Xrcc4flox/flox mouse ES cells, where Xrcc4 alleles can be conditionally deleted 33. We used 

Southern blotting to identify several clones that carry only one, intact, randomly integrated 

copy of the relevant NHEJ reporter. Background levels of GFP in each clone measured by 

fluorescence-activated cell sorting (FACS) were always < 0.01% (Supplementary Fig. 1). 

Expression of I-SceI, but not control empty vector, stimulated production of GFP in each 

cell type up to ∼40% in some reporter clones (Fig. 1b,c and Supplementary Fig 1). We used 

transient expression of the Cre recombinase to generate derivative clones of each reporter 

type that are either Xrcc4+/+, Xrcc4+/− or Xrcc4−/− (confirmed by Southern analysis). 

Homozygous deletion of Xrcc4 diminished the efficiency of NHEJ in all clones, but a robust 

residual end joining activity was noted in Xrcc4−/− cells (Fig. 1b,c). The emergence of GFP+ 

products of NHEJ was delayed in Xrcc4−/− cells compared to wild-type isogenic clones, 

implying that the kinetics of rejoining are slower in alternative NHEJ (Supplementary Fig. 

2a,b). Expression of wild-type human XRCC4 in Xrcc4−/− cells complemented the NHEJ 

defect (Supplementary Fig. 2c).

To determine whether components of the MRN complex influence NHEJ, we used siRNA to 

deplete Mre11 (siMre11) or Nbs1 (siNbs1) and measured the effect on I-SceI-induced 

NHEJ. Depletion of Mre11 reduced NHEJ in both Xrcc4+/+ and Xrcc4−/− cells, whether the 
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reporter was sGEJ or vGEJ, in comparison to control luciferase siRNA (siLuc) (Fig. 1b,c). 

siNbs1 reduced NHEJ only in Xrcc4+/+ cells, but Nbs1 depletion was incomplete; therefore 

a role for Nbs1 in Xrcc4-independent NHEJ, as observed recently in the context of V(D)J 

recombination, cannot be excluded (Fig. 1d) 31. Interestingly, the basal level of Mre11 was 

lower in Xrcc4−/− cells than in wild-type controls, the reasons for which are unclear. Despite 

this, robust knock-down of Mre11 by siMre11 was observed in each genetic background. 

Depletion of Mre11 or Nbs1 in HR reporter ES cells produced the expected reduction in I-

SceI-induced HR (Supplementary Fig. 3a). The effects of Mre11 or Nbs1 depletion on 

NHEJ were also observed with use of a second set of independent siRNAs specific for 

Mre11 and Nbs1 (Supplementary Fig. 3b). Taken together, the data implicates Mre11 in 

both Xrcc4-dependent and Xrcc4-independent NHEJ, in mouse ES cells.

MRN activates the Atm signaling kinase at DSBs 3, and the effect of MRN deficiency on 

V(D)J recombination mimicks that of Atm deficiency 32. To determine whether Mre11 

regulates NHEJ indirectly through Atm signaling, we examined NHEJ in the presence of the 

Atm inhibitor, KU55933. Despite evidence of Atm inhibition in KU55933-treated samples, 

no clear effect of KU55933 on NHEJ was observed in either Xrcc4+/+ or Xrcc4−/− cells 

(Supplementary Fig. 4). Therefore, the NHEJ function of Mre11 does not require Atm 

signaling. However, a scaffolding function for Atm, or a qualitative contribution of Atm to 

NHEJ, as observed in V(D)J recombination 32, has not been excluded by our experiments.

To determine how Mre11 affects NHEJ qualitatively, we used FACS to clone individual I-

SceI-induced GFP+ sGEJ reporter cells that had been co-transfected with either siMre11 or 

control siLuc, then expanded clones for preparation of genomic DNA (gDNA) and 

breakpoint sequencing. In Xrcc4+/+ sGEJ reporter cells that had received control siLuc, 70% 

(49/70) of I-SceI-induced NHEJ were precise (Table 1 and Supplementary Fig. 5). 

Consistent with previous work, only 10.2% (5/49) of I-SceI-induced NHEJ events in 

isogenic Xrcc4−/− sGEJ reporter cells were precise 14. The remaining imprecise NHEJ 

events entailed deletions or, in a minority of cases, frame-shifts involving only the second I-

SceI site (Table 1, Supplementary Fig. 5 and Supplementary Table 1). In Xrcc4+/+ sGEJ 

reporter cells that received control siLuc, 76% (16/21) of imprecise NHEJ events entailed 

MMEJ. In isogenic Xrcc4−/− sGEJ reporter cells, 92% (35/38) of deletional repair events 

entailed MMEJ and 9% (6/64) of all imprecise rejoining events contained insertions at the 

breakpoint. Mre11 depletion did not affect the proportions of precise NHEJ in either 

Xrcc4+/+ or Xrcc4−/− cells; however, Mre11 depletion reduced use of MMEJ in Xrcc4+/+ 

sGEJ reporter cells, in comparison to control siLuc-treated cells (Table 1 and Supplementary 

Fig. 5). In siMre11-treated cells, 53% (9/17) of imprecise deletional NHEJ events entailed 

MMEJ, whereas the equivalent frequencies in control siLuc-treated cells was 76% (16/21; P 

= 0.027 by X2 test). This effect is reminiscent of the known role of yeast Mre11 in MMEJ 

27.

To examine whether Mre11 influences processing of the DSB, we developed a new assay to 

quantify end processing in bulk cultures of sGEJ reporter cells undergoing I-SceI-induced 

NHEJ (Fig. 2). Near the tandem I-SceI sites are restriction sites for EcoRI, BglII and PstI. 

These sites are located to the left of the proximal I-SceI site at distances of 17 bp (EcoRI), 

37 bp (BglII) and 64 bp (PstI) (Fig. 2a,b). If resection of the left I-SceI-induced DSB were 
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limited to less than 17 nt, the EcoRI site within the reporter would remain intact. In this 

case, gDNA restricted with NotI and EcoRI would generate a GFP-hybridizing band of 759 

bp by Southern blotting. In contrast, in a clone that had undergone ≥ 17 nt resection of the 

left end of the DSB, the EcoRI site would be lost and gDNA restricted with NotI and EcoRI 

would reveal a larger GFP-hybridizing band of ∼3.2 kb by Southern blotting. This provides 

a way to quantify end processing during I-SceI-induced NHEJ (Fig. 2). We transfected 

Xrcc4+/+ sGEJ reporter cells and isogenic Xrcc4−/− sGEJ reporter cells with an I-SceI 

plasmid and either siMre11, control siLuc or siRNA (siCtIP) to deplete the end processing 

protein, CtIP 21. We FACS sorted pools of I-SceI-induced GFP+ NHEJ products from each 

test group and prepared gDNA from these pools of cells. We digested gDNA from the 

different test groups with NotI alone or, in parallel, with NotI + I-SceI, NotI + EcoRI, NotI + 

BglII, or NotI + PstI, and analyzed restriction digested gDNA by Southern blotting, using a 

GFP probe (Fig. 2b).

As expected, deletion of Xrcc4 generated more NHEJ products lacking the restriction sites 

close to the I-SceI site in the sGEJ reporter, as reflected by an increased intensity of the 

“uncut” ∼3.2 kb band in comparison to Xrcc4+/+ test groups (Fig. 2b). In Xrcc4−/− cells, we 

noted a reduction in the intensity of this “uncut” band in siMre11-treated groups in 

comparison to those receiving either control siLuc or siCtIP (Fig. 2b). This suggests that 

Mre11 depletion reduces the probability that end processing will extend to the restriction 

sites close to the I-SceI site. We used phosphoimager and densitometry to quantify this 

effect, by measuring the relative intensity of 32P-hybridizing bands for each treatment group. 

The probability that end processing had ablated a given restriction site was calculated as the 

ratio: [“Uncut”:(“Cut” + “Uncut”) × 100]% (Fig. 2b,c and Supplementary Fig. 6). The 

results suggest that Mre11 promotes end processing during Xrcc4-independent NHEJ. In 

contrast, depletion of Mre11 in Xrcc4+/+ cells did not diminish end processing in this assay. 

The reasons for this difference are not yet clear. However, MRN may have both scaffolding 

and enzymatic functions at the break, each of which might contribute to NHEJ 24,34,35.

Mammalian MRN binds the γ-H2A.X-interacting adaptor protein, Mdc1, during the H2A.X-

dependent chromatin response to a DSB 4, and long-range end joining during class switch 

recombination (CSR) or fusion of dysfunctional telomeres is impaired in H2A.X−/− or 

Mdc1−/− cells 36-38. To determine whether the fraction of MRN that is associated with γ-

H2A.X/Mdc1 contributes to NHEJ, we established an intact, single-copy NHEJ reporter 

sGEJ in H2A.Xflox/flox mouse ES cells, where H2A.X alleles can be conditionally deleted 39, 

and used Cre treatment to generate isogenic H2A.X−/− sGEJ reporter clones. Homozygous 

deletion of H2A.X, whether or not accompanied by expression of wild-type H2A.X or the 

S139A mutant in H2A.X−/− sGEJ reporter cells, had no quantitative impact on NHEJ (Fig. 

3a and Supplementary Fig. 7). Depletion of Mre11, Nbs1 or Brca1 reduced the efficiency of 

NHEJ in H2A.X+/+ cells as efficiently as in isogenic H2A.X−/− cells (Fig. 3b), and we noted 

proportionate reductions in I-SceI-induced HR in H2A.X+/+ and isogenic H2A.X−/− HR 

reporter cells (Fig. 3c). The basal level of Mre11 was slightly reduced in H2A.X−/− cells 

compared to wild-type cells, the reasons for which are unclear. However, depletion of 

Mre11 was equally efficient in these two isogenic ES cell lines (Fig. 3d). These results 
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suggest that the key NHEJ and HR functions of Mre11, Nbs1 and Brca1 are executed 

independently of H2A.X.

DISCUSSION

Using a single-copy, chromosomally integrated NHEJ reporter, in which NHEJ can be 

triggered by a site-specific DSB, we show that Mre11 is required for efficient Xrcc4-

dependent and Xrcc4-independent NHEJ in mouse ES cells. Southern analysis of NHEJ in 

Xrcc4−/− cells reveals that Mre11 depletion reduces the extent of deletions associated with 

error-prone NHEJ. This suggests that endogenous Mre11 normally contributes to processing 

of the DSB during Xrcc4-independent NHEJ. We find that both the NHEJ and HR functions 

of Mre11 and Nbs1 are independent of H2AX.

MRN is one of many DSB response protein complexes that accumulate on chromatin 

marked by γ-H2AX (the “chromatin domain” of the DSB response – Fig. 4). γ-H2AX and 

its adaptor protein, Mdc1, have defined functions in DSB repair during sister chromatid 

recombination and CSR 37,40-43. Interestingly, although the association of MRN, 53bp1 

and Brca1 with the “chromatin domain” of the DSB response is dependent on H2A.X, these 

proteins can also accumulate in the “DNA domain” of the DSB response (Fig. 4) in cells 

lacking H2A.X or Mdc1 5,44. Importantly, the DSB repair functions of MRN, 53bp1 and 

Brca1 are in part independent of H2A.X (Fig. 3) 37,42,43, suggesting that MRN, 53bp1 and 

Brca1 execute their DSB repair functions primarily in association with the “DNA domain” 

of the DSB response.

The roles of Mre11 in DSB repair have been studied extensively in lower eukaryotes. S. 

cerevisiae mre11 null mutants reveal inefficient religation of both cohesive and mismatched 

ends, and this is reversed by expression of either wild-type or nuclease-defective mre11 

alleles 25,45,46. This suggests that one function of Mre11 in NHEJ is as a scaffold to 

support synapsis 46-48. In contrast, mre11 nuclease-defective mutants reveal a defect in 

MMEJ, suggesting that the Mre11 nuclease resects DNA ends and exposes tracts of 

microhomology 46,49. In the experiments reported here, Mre11 depletion in Xrcc4+/+ 

mammalian cells reduced the efficiency of NHEJ but did not affect the strong preference for 

precise end joining. Since precise NHEJ does not entail end resection, the role of Mre11 in 

this pathway may be to support synapsis between the two DNA ends, thereby promoting 

religation of the DSB (Fig. 4). A recent structural analysis of Pyrococcus furiosus Mre11 is 

consistent with such a role for Mre11 24. In contrast, in Xrcc4−/− cells, Mre11 appears to 

have additional functions in DSB processing, leading to the generation of extensive 

deletions during error-prone NHEJ or MMEJ (Fig. 4). Definitive evidence of the relative 

contributions of Mre11 scaffolding and nuclease functions to mammalian NHEJ will require 

complementation experiments in cells lacking Mre11.

Mammalian NHEJ factors repair unscheduled chromosomal DSBs and also mediate the 

fusion of dysfunctional telomeres and specialized recombination reactions in the immune 

system, such as V(D)J recombination and CSR 11,12,50. It is not yet clear to what extent the 

“rules” governing one NHEJ process apply to other contexts. Our results illustrate a 

difference between short-range NHEJ (studied here), which is H2A.X-independent, and 
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long-range NHEJ processes that are partially H2A.X-dependent 36-38. It will be interesting 

to determine how the distance between the two DSBs influences the quality of DSB repair 

and its genetic dependencies. Similarly, the regulation of NHEJ has been shown to vary 

according to cell type 51,52, raising the possibility that our findings are restricted to mouse 

ES cells. However, recent work implicates MRN in NHEJ in several different cell types, 

suggesting a general role in NHEJ31,32 [+ 53, 54 Ferguson, Lopez papers in press, 
NSMB]. In addition to the effects on DNA damage signaling and HR, Mre11 dysfunction 

may promote genomic instability and cancer in mammals by disabling NHEJ.

ONLINE METHODS

Plasmid and siRNA

To construct the NHEJ reporter sGEJ, we purchased from Invitrogen the 70-mer oligo 

containing two sequential I-SceI sites and the artificial Kozak-ATG translation sequence (5′-

cggaattcattaccctgttatccctaaccgccgccaccatggattaccctgttatccctacggatcc-3′) and its 

complementary 70-mer, annealed, digested with EcoRI and BamHI and inserted into the 

EcoRI-BamHI site of pcDNA3-EGFP-SnaBI where a silence mutation was introduced into 

the GFP gene by PCR to generate an SnaBI site (5′-tacgta-3′) using oligo 5′-

ccaccctcgtgaccacccttacgtacggc-3′. We replaced the original GFP translation site (5′-

gccaccatggtg-3′) with 5′-cttcacatgatc-3′ by PCR using primers 5′-

tgggatccatccttcacatgatcagcaagggcgaggagctgttc-3′ and 5′-gccgtacgtaagggtggtcacgagggtgg-3′ 

to generate pcDNA3-sGEJ. We generated the final ROSA26-PA NHEJ targeting vector 

sGEJ using an approach described previously 42. We similarly constructed the NHEJ 

reporter vGEJ containing two inverted I-SceI sites. The hygromycin resistant (HygR) 

expression vectors for Xrcc4 and HA-tagged wild-type H2A.X and its S139A mutant were 

constructed as described previously 42,43. We purchased RNAi duplex targeting luciferase 

control (cgtacgcggaatacttcga), mouse Mre11 (#1: gctgcttggagctgcttag; #2: 

acaggagaagagatcaact), Nbs1 (#1: gacaggagatagagttacc; #2: gcagttgaatctaagaaac), Brca1 

(ccagaagaaagggccttca) and CtIP (ggaactctggacaaaacta) from Dharmacon.

Cell lines and cell culture

We grew Xrcc4flox/flox and H2A.Xflox/flox mouse ES cells 33,39 in ES medium on either 

mouse embryonic fibroblast (MEF) feeder cells or gelatinized plates. We established 

Xrcc4flox/flox and H2A.Xflox/flox NHEJ reporter ES clones harboring a single, intact, 

randomly integrated copy of the NHEJ reporter as described previously for the 

establishment of the HR reporter mouse ES cells 42,43. We generated isogenic Xrcc4+/+ and 

Xrcc4−/− and isogenic H2A.X+/+ and H2A.X−/− ES reporter clones using adeno-Cre infection 

as described previously 42,43. To generate Xrcc4−/− ES cells stably expressing wild-type 

human XRCC4, we electroporated 6 × 106 Xrcc4−/− ES cells with 8 mg of HygR XRCC4 

expression vector and seeded them on a 10 cm plate. We added hygromycin (400 μg ml−1) 

48 hr later to select HygR clones which were expanded ∼7 days later.

Antibodies and Western blotting

Commercial antibodies used in this study were mouse monoclonal anti-β-actin (Cat# 

ab8226) and rabbit polyclonal anti-Mre11 (Cat# ab397) from Abcam, rabbit polyclonal anti-
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Nbs1 (Cat# NB100-60648) from Novus Biologicals, rabbit polyclonal anti-HA-tag (Cat# 

sc-805) and anti-p53 (Cat# sc-6243) and goat polyclonal anti-human XRCC4 (Cat# sc-8285) 

from Santa Cruz Biotechnology, rabbit polyclonal anti-histone H4 (Cat# 06-598) from 

Upstate, and rabbit polyclonal anti-phospho-p53 Ser15 (Cat# 9284) from Cell Signaling. 

Rabbit polyclonal anti-mouse Brca1 antibody was from Junjie Chen. We analyzed histones 

and non-histone proteins by Western blotting as described before 42.

Sequence analysis and Southern blotting

To sequence repair junctions of I-SceI-induced NHEJ products, we sorted individual I-SceI-

induced GFP+ cells using a 4-laser BD FACSAria (BD Biosciences) and expanded them as 

clones. We prepared gDNA from expanded GFP+ clones as described previously 42. We 

amplified sequences containing the repair junctions by PCR using primers #1 

(tgcacgcttcaaaagcgcacg) and #2 (ctcctggacgtagccttcggg). We purified PCR products and had 

them sequenced using nested primers #3 (ccgcgctgttctcctcttc) and #4 

(gccgtacgtaagggtggtcacgagggtgg). For Southern blotting, we FACS sorted I-SceI-induced 

GFP+ cells as pools and expanded. We purified gDNA from the sorted, expanded pools of 

GFP+ cells, digested with relevant restriction enzymes and analyzed by Southern blotting 

using the GFP cDNA as a probe 42.

I-SceI-induced repair assays

To analyze I-SceI-induced GFP+ frequencies in NHEJ or HR reporter mouse ES cells, we 

transfected I-SceI expression plasmids into these reporter cells as described previously 42,43 

to induce a break and thus NHEJ or HR42,43. We performed parallel transfection of a wild-

type GFP expression vector, at an amount one tenth of that of the I-SceI expression vector, 

to determine transfection efficiency. Unless otherwise stated, statistical analysis was by 

Student's two-tailed unpaired t-test (unknown variance) or, for paired samples, by Student's 

two-tailed paired t-test.

Atm inhibition

We prepared Atm kinase inhibitor KU55933 (Calbiochem, Cat# 118500) and DNA-PKcs 

inhibitor NU7026 (Sigma, Cat# N1537) in DSMO as 10 mM stock solutions and diluted to a 

final concentration of 20 μM for KU55933 and 40 μM for NU7026 for I-SceI-induced 

repaired assays. In these assays, we added these inhibitors at 22 hrs post-transfection. After 

incubation for additional 72 hrs, we analyzed cells for NHEJ levels using flow cytometry. 

For effect of Atm inhibition on ionizing radiation (IR)-induced phosphorylation of p53 

Ser15 and H2A.X Ser139, we preincubated cells in media with chemical inhibitors for 1 hr, 

exposed to 5 Gy of irradiation, incubated for another 2 hrs and lysed for Western blotting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mre11 regulates both Xrcc4-dependent and Xrcc4-independent NHEJ. (a) Structure of the 

NHEJ reporter. PGK: phosphoglycerate kinase. “Koz-ATG”: an artificial Kozak-ATG 

translation start site. ORF: open reading frame. PolyA: polyadenylation signal. (b, c) I-SceI-

induced NHEJ in Xrcc4+/+ and Xrcc4−/− isogenic mouse ES cells containing the sGEJ 

reporter (b) or the vGEJ reporter (c). In upper sections, each point represents the mean of 

triplicates in one experiment for each reporter clone; error bars indicate standard error of 

mean (s.e.m). Unpaired t-test (unknown variance) for Xrcc4−/− cells versus Xrcc4+/+ cells, P 

= 0.00000037 (b) or P = 0.0038 (c); for Xrcc4−/− cells versus Xrcc4+/− cells, P = 0.000015 

(b) or P = 0.0025 (c). In lower sections, Xrcc4+/+ and Xrcc4−/− NHEJ reporter cells were co-

transfected with siRNA to Mre11 (siMre11), Nbs1 (siNbs1), or control luciferase (siLuc), 

together with I-SceI expression plasmids. Percentages of I-SceI-induced GFP+ cells were 

measured. Bars represent the mean of triplicates in one representative experiment. Error bars 

indicate s.e.m. Student's paired t-test (two-tailed): in Xrcc4+/+ cells, siMre11 versus siLuc, P 

= 0.00045 (b) and P = 0.000035 (c); siNbs1 versus siLuc, P = 0.0037 (b) and P = 0.0012 

(c); in Xrcc4−/− cells, siMre11 versus siLuc, P = 0.0037 (b) and P = 0.0018 (c); siNbs1 

versus siLuc, P = 0.07 (b) and P = 0.467 (c). (d) Protein abundance in Xrcc4+/+ and 

Xrcc4−/− NHEJ reporter mouse ES cells treated with siRNAs shown. Whole cell extracts 

were analyzed three days after siRNA transfection. β-actin is a loading control.
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Figure 2. 
Mre11 promotes end processing in Xrcc4-independent NHEJ.(a) Junction sequence of the 

NHEJ reporter sGEJ “pop-out” product (i.e., with excision of the Kozak-ATG translation 

start site). Sequences of two partial I-SceI sites are indicated in bold. Start codon of the GFP 

ORF is in bold and underlined. Restriction sites in the reporter are as follows. P: PstI; B: 

BglII; E: EcoRI; I: I-SceI. PGK: phopshoglycerate kinase promoter. (b) Structural analysis 

of pooled I-SceI-induced GFP+ NHEJ products. Upper section shows sizes of expected 

GFP-hybridizing restriction fragment sizes following digestion of gDNA with enzymes 

shown (I: I-SceI; E: EcoRI; B: BglII; P; PstI; N: NotI). Lower section shows Southern blot 

analysis of gDNA from pooled I-SceI-induced GFP+ NHEJ products from Xrcc4+/+ and 

Xrcc4−/− sGEJ reporter mouse ES cells co-transfected with I-SceI expression vector and 

either control siLuc (L) or test siMre11 (M) or siCtIP (siRNA to CtIP) (C). Southern blots 

were probed with GFP cDNA. Arrows indicate NHEJ products that had either retained 

(“Cut”) or lost (“Uncut”) the relevant I-SceI-proximal restriction site. PGK: 

phopshoglycerate kinase promoter. pA: polyadenylation signal. *: non-specific 

hybridization product. (c) Effect of Xrcc4 status and Mre11 depletion on the probability of 

restriction sites being processed during NHEJ, calculated from the intensities of the DNA 

bands in the Southern blot in (b), quantified by phosphoimager and densitometry, as the 

intensity of the “uncut” band divided by the combined intensities of “cut” and “uncut” bands 

(expressed as a percentage). The probability is plotted against the distance of each site from 

the I-SceI-induced break indicated along the x-axis.

Xie et al. Page 12

Nat Struct Mol Biol. Author manuscript; available in PMC 2010 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The HR and NHEJ function of Mre11 is at least in part independent of H2A.X. (a) I-SceI-

induced NHEJ in parental H2A.X+/+ and isogenic H2A.X−/− sGEJ NHEJ reporter mouse ES 

clones. Points represent mean of triplicates for independent clones. Error bars indicate s.e.m. 

(b, c) Percentage of I-SceI-induced GFP+ cells from H2A.X+/+ and H2A.X−/− sGEJ reporter 

mouse ES cells (b) or HR reporter mouse ES cells (c) depleted of Mre11, Nbs1 or Brca1 by 

siRNA duplex, with siLuc as a control. Bars represent mean of triplicates. Error bars 

indicate s.e.m. Student's paired t-test (two-tailed) in (b): in H2A.X+/+ cells, siLuc versus 

siMre11, P = 0.000048; versus siNbs1, P = 0.0009; versus siBrca1, P = 0.0024; in H2A.X−/− 

cells, siLuc versus siMre11, P = 0.00089; versus siNbs1, P = 0.0013; versus siBrca1, P = 

0.0046. Student's paired t-test in (c): in H2A.X+/+ cells, siLuc versus siMre11, P = 0.0023; 

versus siNbs1, P = 0.0046; versus siBrca1, P = 0.00026; in H2A.X−/− cells, siLuc versus 

siMre11, P = 0.00055; versus siNbs1, P = 0.0059; versus siBrca1, P = 0.000043. (d) Steady 

state protein levels in H2A.X+/+ and H2A.X−/− reporter mouse ES cells treated with 

indicated siRNAs. Whole cell extracts were analyzed by Western blotting three days after 

siRNA transfection. β-actin serves as a loading control.
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Figure 4. 
Model for MRN's functions at a mammalian DSB. Mre11 nuclease activity may resect the 

DNA ends for either HR or Xrcc4-independent NHEJ/MMEJ. MRN may also promote 

synapsis during NHEJ (and possibly during HR). “Short-range” NHEJ of repairable DSBs 

by MRN appears to be independent of H2A.X.
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