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Introduction
Aldosterone secretion by the human adrenal cortex is primarily reg-
ulated by the circulating renin angiotensin system (RAS) and plas-
ma potassium [1]. However, in patients under long-term treatment 
with angiotensin converting enzyme inhibitors (ACEi) or angioten-
sin II receptor antagonists (ARA), plasma aldosterone concentra-
tions usually re-increase after an initial decline [2, 3]. This phenom-
enon, called “aldosterone breakthrough”, has been designated as 
a potential factor to explain the reduction of the protective effect 
of ACEis and ARAs against the progression of heart failure and 
chronic nephropathy during long-term therapies [4]. In fact, it is 
now well established that aldosterone exerts profibrotic effects and 

triggers inflammation in the cardiovascular system and kidney [5], 
and antagonists at the mineralocorticoid receptor like spironolac-
tone and eplerenone, have been shown to dramatically reduce mor-
tality in patients with heart failure [6, 7]. The mechanism of aldos-
terone breakthrough is still unclear. Especially, no association be-
tween plasma aldosterone re-elevation and variations of plasma 
potassium and angiotensin II (Ang II) levels could be shown [4, 8]. 
Other regulatory systems which are not influenced by RAS inhibi-
tion, appear thus involved in the activation of the adrenal cortex 
during aldosterone breakthrough. In this regard, it is now well es-
tablished that numerous factors, released in the adrenal gland, are 
able to modulate corticosteroid secretion. These paracrine signals, 
which have been extensively reviewed during the past years, can 
be produced by several cell types, including endothelial cells, chro-
maffin cells, and neurons [9, 10]. Cells of the immune system, like 
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Abstr act

Mast cells are immune cells present in adrenals from various 
species. Proliferation and activation of adrenal mast cells seem 
to be influenced by environment, since they increase during 
summer and in response to sodium restriction in frogs and 
mouse, respectively. Although the physiological factors regu-
lating adrenal mast cell activity have not been identified, they 
might involve neurotransmitters and the renin-angiotensin 
system. Some data indicate that adrenal mast cells stimulate 
proliferation of steroidogenic cells in the zona glomerulosa and 
activate the mineralocorticoid production. In human, mast cell 
degranulation stimulates aldosterone synthesis through the 
release of serotonin (5-HT) and activation of 5-HT4 receptors. 
Increase in mast cell population and upregulation of the 5-HT 
signaling pathway occur in aldosterone-producing adenomas. 
In particular, aldosterone-producing adenoma cells overex-
press 5-HT4 receptors and are hyper-responsive to 5-HT4 re-
ceptor agonists. These data suggest that the intra-adrenal 
serotonergic regulatory system represents a potential target 
for development of both adrenal imaging methods to evaluate 
the lateralization of aldosterone production, and pharmaco-
logical treatments of primary aldosteronism.
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macrophages and lymphocytes, which represent an important con-
tingent of the cells that compose the adrenal cortex, are also capa-
ble of affecting corticosteroidogenesis [11]. In this review article, 
we will summarize our current knowledge on the role of mast cells 
in the regulation of aldosterone secretion in physiological and 
pathophysiological conditions.

Mast cells in adrenal
Mast cells are hematopoietic derived immune cells known for their 
role in the allergy and anaphylaxis processes [12]. Circulating mast 
cell precursors express the Kit tyrosine kinase receptor for the che-
moattractant mast/stem cell growth factor (SCF) [13]. Under the 
influence of SCF produced in numerous organs, circulating precur-
sors infiltrate tissues where they differentiate into mature mast 
cells. Resident mast cells are characterized by secretory granules 
containing various factors, including histamine, serotonin, hepa-
rin, cytokines and diverse proteases, such as tryptase, chymase, 
carboxypeptidase A3, and renin [14–17]. Mature mast cells are 
widely distributed throughout the body, especially in organs direct-
ly exposed to environment (skin, airways, and gastrointestinal 
tract) and in a lesser extent in the pancreas or cardiovascular sys-
tem [12, 18, 19]. The presence of mast cells in the adrenal gland 
has also been reported in several animal species including human.

Phylogenesis: From interrenal summer cells to 
adrenal mast cells
Henri Stilling has shown as early as 1898 that the adrenal gland of 
the amphibians, that is, the so-called inter-renal gland, contains 
not only “lipidic” (steroidogenic) and chromaffin cells but also a 
third type of cells that he called “summer cells”, their highest den-
sity being observed during summer [20]. These cells, which are now 
called Stilling’s cells, are packed with dense and large metachro-
matic granules, which contain histamine and are thus considered 
as the amphibian counterpart of mammalian mast cells [21–23]. 
Interestingly, Stilling’s cells establish close contacts with steroido-
genic cells allowing direct interactions between the two cell types 
[24]. Mast cells have also been detected in mammal adrenals, in 
particular in the rat, guinea pig, mouse, and human [25–28]. In-
deed, cells producing the mast cell-specific protease tryptase have 
been identified in the human adrenal cortex [29]. As in amphibi-
ans, mammalian mast cells have been detected in the vicinity of 
steroidogenic cells, especially in the subcapsular region of the 
mouse and human adrenals, suggesting the existence of intercel-
lular communication between mast cells and aldosterone-produc-
ing cells (▶Fig. 1) [27–29]. In addition, some mast cells are pres-
ent in the wall of arterioles irrigating rat, guinea pig, mouse, and 
human adrenals (▶Fig. 1a, c) [25–27]. These perivascular mast 
cells have been shown to be involved in the control of adrenal blood 
flow in rat and cattle [25, 30]. Globally, mast cells are present in 
adrenals of all studied species from amphibians to mammals.

Regulation of adrenal mast cells
Histological studies have demonstrated that mast cell proliferation 
in adrenals is a dynamic process, which varies according to physi-
ological conditions. Indeed, as mentioned above, mast cell density 
increases in amphibian inter-renal glands during summer, when 
the animals are terrestrial after the breeding period in water. In ad-

dition, an increase in water salinity affects the morphological ap-
pearance of mast cells in frog adrenals [31]. Interestingly, it has 
been noticed that in mice, mast cell infiltration in adrenals is de-
pendent on strains and gender (more abundant in female), and 
augments with age [32]. As regards human fetal adrenal develop-
ment, tryptase expression, which reflects activation of mast cells, 
raises during the third trimester of gestation, just preceding the 
appearance of aldosterone synthase expression [33]. This obser-
vation suggests that mast cells control differentiation of adreno-
cortical cells involved in mineralocorticoid production. Altogether, 
these data indicate that proliferation and activation of mast cells 
in adrenals is a physiological process regulated by both genetic 
background and environmental factors.

Differentiation of resident mast cells is markedly influenced by 
cellular microenvironment. Especially, mature mast cells display 
different sensitivities to regulatory factors depending on their tis-
sue location. These bioactive signals include numerous neurotrans-
mitters, neuropeptides and hormones, which can stimulate de-
granulation of mast cells [17]. However, the physiological factors 
that regulate mast cell activity in adrenal glands have not been 
clearly established. The observation that, in human, nerve fibers 
establish contacts on adrenal mast cells is indicative of their con-
trol by the autonomous nervous system [29] (▶Fig. 1e, f). In rat, 
adrenal mast cells are responsive to the pituitary hormone corti-
cotrophin (ACTH), suggesting that they may participate to the ad-
renal response to stress [34]. Rat adrenal mast cells also express 
angiotensin 2 receptors (AT2R), supporting a potential influence 
of RAS on this cell type [35]. This hypothesis has been reinforced 
by the recent observation that low sodium diet, which activates 
RAS, upregulates adrenal expression of Tpsb2 encoding the mast 
cell-specific protease tryptase, in both BALB/c and C57Bl6 mice 
[27]. It can be noticed that there is currently no evidence for a pu-
tative control of mast cells by ACTH or Ang II in the human adrenal.

Potential role of mast cell on adrenal growth
Some reports have suggested that adrenal mast cells might pro-
mote proliferation of steroidogenic cells. In fact, it has been ob-
served that the highest densities of mast cells are both concomi-
tant with amphibian adrenal hypertrophy during summer and as-
sociated with subcapsular adrenal cell hyperplasia in different 
mouse strains like the IQI/Jic strain [20, 32, 36]. Mast cell-deficient 
mice (KitW-sh/W-sh) exhibit normal adrenal morphology but it is con-
ceivable that, in this model, the absence of mast cells may be com-
pensated by activation of other proliferative signals [27]. Especial-
ly, mast cell-deficient mice exhibit overexpression of the adrenal 
RAS, an autocrine/paracrine system which is known to favor ZG hy-
pertrophy [37]. It would be thus interesting to further examine the 
role of mast cells on adrenal expansion in mammals, in particular 
by performing xenograft of both human mast cells and adrenocor-
tical cells under the renal capsule of adrenalectomized immuno-
deficient mice [38].

Mast cells control aldosterone secretion
Concomitance of adrenal mast cell proliferation and elevation of 
plasma aldosterone concentrations in amphibians during summer 
reported in the 1960s, was highly suggestive of a role of mast cells 
in the control of steroidogenesis (▶Fig. 2). This assumption has re-
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cently been reinforced by data obtained in mouse models. Indeed, 
a positive correlation between expression of genes encoding re-
spectively tryptase (Tpsb2) and aldosterone synthase (Cyp11b2) 
has been observed in adrenals of BALB/c and C57BL/6 mice [27]. 
Moreover, concurrent upregulations of tryptase and aldosterone 
synthase have been detected in adrenal mice in response to sodi-
um restriction. These data may suggest the existence of a common 
mechanism of regulation of the two genes or an interdependent 
relationship between mast and adrenocortical cell types. The lat-
ter hypothesis is supported by the observation that mast cell-defi-
cient mice show a dysregulation of aldosterone secretion [27]. In 
fact, although KitW-sh/W-sh and wild type mice display similar plas-
ma and urine aldosterone levels under normal sodium diet, mast 
cell-deficient mice develop an exaggerated aldosterone response 
to low sodium diet. This unexpected hyperaldosteronism seems to 
result from adrenal renin and angiotensin type 1 receptor overex-
pression [27]. Activation of adrenal RAS may represent a compen-
satory mechanism aimed at stimulating aldosterone secretion in 
the absence of mast cells. It is not known whether similar compen-

satory system can also be activated in human adrenal to supply 
mast cell dysfunction, in particular in patients with mast cell defi-
ciency due to inactivating KIT mutation (i. e. patients with piebald-
ism) or those treated with mast cell stabilizers to prevent allergic 
disorders. Globally, all these data indicate that adrenal mast cells 
promote mineralocorticoid secretion in concert with circulating 
RAS. The observation that human plasma aldosterone reaches max-
imum levels in summer while plasma Ang II show no seasonal var-
iations [39] (▶Fig. 2b), suggests that, in humans as in amphibians, 
mast cells might play a role in control of mineralocorticoid produc-
tion to optimally adapt the hydromineral homeostasis to sweating 
due to warm environment temperatures.

Paracrine control of mast cells on aldosterone-producing cells 
has also been investigated by ex vivo experiments. It was shown 
that degranulation of resident mast cells induced by compound 
48–80, increases aldosterone production by perfused rat adrenals 
or perifused explants of human adrenals [25, 40]. In very much the 
same way, in vitro experiments have revealed that mast cell secre-

▶Fig. 1	 Distribution of mast cells in the human adrenal: a–d, Pres-
ence of mast cells closed to arteries (Ar) irrigating adrenals a, c and in 
the zona glomerulosa (ZG; b, d) of the adrenal cortex revealed by 
immunohistochemistry using antibodies against the receptor of the 
stem cell factor (CD117; a, b) and the mast cell specific protease 
tryptase c, d. e, f: Innervation of mast cells revealed by double im-
munolabeling using antibodies against tryptase (pink) and protein 
S100 (PS100; brown), a marker of myelinated nerves, in the vicinity 
of arteries and in ZG. Immunoreactive mast cells are indicated by 
arrows. Ca: Capsule. Scale bar = 50 μm.
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▶Fig. 2	 Season variations of adrenal mast cell density and plasma 
aldosterone concentrations in amphibians and human: a Circannual 
variation of adrenal Stilling’s cell (amphibian mast cell) density in the 
frog Rana ridibunda (data from [65]). b Circannual variation of plasma 
aldosterone levels in the toad Bufo japonicas formosus (data from 
[98]). c Seasonal variations of plasma aldosterone and angiotensin II 
(Ang II) concentrations in human (data from [39]).
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tory products enhance transcription of CYP11B2 and aldosterone 
synthesis by the human adrenocortical cell line H295R [29].

Serotonin secreted by mast cells stimulates 
aldosterone synthesis
Mast cells have the capacity to respond to stimulatory signals by 
the release of various biologically active mediators, including his-
tamine, heparin, serotonin (5-HT), cytokins and various neurohor-
mones. By inducing vasorelaxation and increase in adrenal blood 
flow, histamine stimulates aldosterone secretion in rat, bovine and 
dog [25, 30, 41]. Although expression of histamine type 1 receptor 
has been detected in the human zona glomerulosa [42], there is 
no clear evidence for a direct control of histamine on steroidogen-
esis. Indeed, some contradictory data reported that histamine aug-
ment, inhibit or do not affect aldosterone synthesis in rat, bovine 
or human [25, 30, 43, 44].

The effect of heparin on the mineralocorticoid production is 
poorly documented in the literature. Nevertheless, Oster et al. have 
reported that heparin reduces plasma and urine aldosterone levels 
in rat and human [45]. They have also stated that prolonged treat-
ment of patients with the anticoagulant decreases the sensitivity 
of aldosterone-producing cells to Ang II. Mast cells have also the 
ability to release renin [46] but, to our knowledge, renin produc-
tion by intra-adrenal mast cells has never been investigated.

In the opposite, the involvement of 5-HT in the control of adre-
nal steroidogenesis has been extensively documented. First, it has 
been demonstrated that human mast cells express tryptophan hy-
droxylase type 1 (Tph1), the rate-limiting enzyme synthesizing 
5-HT from tryptophan [47]. Second, the presence of 5-HT in adre-
nal mast cells has been evidenced by histological studies [28, 47]. 
Third, in vitro experiments conducted on human adrenal explants 
have demonstrated that mast cell degranulation provokes the re-
lease of 5-HT which in turn stimulates aldosterone production 
(▶Fig. 3) [40]. The decrease in the aldosterone response of adren-
ocortical H295R cells to mast cell-secretory products by concom-
itant application of 5-HT receptor antagonists has confirmed the 
crucial role of 5-HT in the paracrine communication between the 
two cell types [29]. Finally, it has been shown that 5-HT stimulates 
aldosterone synthesis by isolated adrenocortical cells from frog, 
rat, and human adrenals [28, 48].

Studies on the mechanism of action of 5-HT have revealed that 
the steroidogenic response to the amine is relayed by activation of 
5-HT type 4 receptors (5-HT4) in frog and human adrenals (▶Fig. 3), 
whereas it involves 5-HT type 7 receptors (5-HT7) in rat [48–50]. Ex-
pression of 5-HT4 receptor in human zona glomerulosa cells has been 
confirmed by histological studies [47, 51, 52]. In agreement with 
these data, clinical trials have demonstrated that 5-HT4 receptor ag-
onists (metoclopramide, cisapride, zacopride) or 5-HT reuptake in-
hibitors increase plasma aldosterone levels [50, 53–56]. In all stud-
ied species, adrenal 5-HT receptors are positively coupled to the 
AMPc/protein kinase A pathway and membrane calcium channels 
[57–59], which are important signaling pathways for the stimulation 
of steroidogenesis [1].

Up to now, the physiological conditions that activate 5-HT release 
by intra-adrenal mast cells remain to be identified. Since mouse ad-
renal mast cells are activated by sodium restriction, it would be rel-
evant to evaluate whether the 5-HT synthesizing enzyme Tph1 is dif-

ferentially expressed in adrenal from mice under normal and low so-
dium diets. The impact of sodium depletion or pharmacological 
inhibition of RAS on 5-HT release by adrenal mast cells might also be 
indirectly estimated by examining aldosterone production in mice 
with selective Tph1 deficiency in mast cells (KitTph1–/– mouse model 
[60]) in comparison with wild type or KitW-sh/W-sh animals.

It will be interesting to study involvement of adrenal 5-HT re-
ceptors in the adaptation of mineralocorticoid synthesis to differ-
ent physiological conditions, especially in 5-HT7 receptor-deficient 
rats [61] or in wild type animals and healthy volunteers treated with 
5-HT7 and 5-HT4 receptor antagonists, respectively. In this regard, 
it has been reported that treatment of healthy volunteers with pi-
boserod, a 5-HT4 receptor antagonist, abolished the plasma aldos-
terone response to the 5-HT4 receptor agonist cisapride [62]. How-
ever, this clinical trial was not designed for examining the effect of 
piboserod on basal aldosterone secretion nor in response to ortho-
statism and sodium restriction, which are physiological conditions 
stimulating the mineralocorticoid production. Unfortunately, pi-
boserod is no more available for clinical use hampering thus fur-
ther in vivo investigations. We have tried to overcome this difficul-
ty by using l-lysine, which acts as a partial 5-HT4 receptor antago-
nist [63]. We found that diet enriched in this amino acid (5–8 g/
day) did not modify plasma aldosterone levels in healthy subjects 
in supine and upright positions, or under low sodium diet [64]. The 
lack of effect of l-lysine on aldosterone production could be as-
cribed to the low efficiency of the amino acid to antagonize activa-
tion of 5-HT4 receptor. Indeed, food supplementation with l-lysine 

▶Fig. 3	 Adrenal mast cells control aldosterone secretion through 
direct and indirect effects in physiological conditions: Adrenal mast 
cells are innervated by fibers of the autonomic nervous system. In 
response to neural inputs, they are capable of releasing numerous 
bioactive factors including biogenic amines and cytokines, which can 
modulate the adrenal vascular tone and steroidogenesis. In this way, 
degranulation of mast cells provokes vasodilation and a consecutive 
increase in adrenal blood flow which indirectly stimulates aldoster-
one secretion by adrenocortical cells. In addition, mast cells release 
serotonin (5-HT) which directly activates aldosterone synthesis via 
activation of 5-HT4 receptors in frog and human, and 5-HT7 recep-
tors in rat.
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only weakly reduced the plasma aldosterone increase induced by 
administration of the 5-HT4 receptor agonist metoclopramide [64]. 
Development of other potent 5-HT4 receptor antagonists which 
can be administered in humans is therefore required to explore the 
contribution of 5-HT in the paracrine control of the mineralocorti-
coid production by mast cells.

Other bioactive signals may be involved in the steroidogenic 
cell/mast cell interaction such as endozepins in the frog inter-renal 
gland or cytokine like IL-6 in the mammalian adrenal [65–67].

Mast cells in pathophysiology of hyperaldosteronism
Resident mast cells have been observed in many organs. Interest-
ingly, their density has been shown to increase in various patholog-
ical conditions [14, 18, 19]. Consequently, the role of mast cells in 
pathogenesis has become a subject of raising interest. Especially, 
a growing body of evidence indicates that mast cells are implicat-
ed in tumor development [68–73]. Indeed, these cells are known 
to favor immunologic tolerance and secrete both growth and an-
giogenic factors which enhance tumor expansion [74–76]. Nota-
bly, a positive effect of mast cells has been observed on growth of 
endocrine neoplasias, including neuroendocrine tumors of thyroid, 
pancreas, and adrenal (pheochromocytomas) [77–79]. In 1985, 
Aiba et al. detected for the first time mast cell infiltration in an 
adrenocortical tumor producing deoxycorticosterone [80]. They 
have also observed mast cell infiltration in aldosterone-producing 
adenomas (APAs) but not in cortisol-secreting adenomas. Subse-
quently, an increase in mast cell population has been confirmed in 
a large series of APAs (▶Fig. 4) [29]. This process can be ascribed 
to the diffuse expression of SCF, the mast cell growth factor, in ad-
enoma tissues [29]. Furthermore, transcriptomic analysis have re-
vealed that mast cell gene expression levels discriminates APA tis-
sues from normal adrenals [29]. This observation may be regarded 
as a molecular signature of mast cell hyperplasia in APA tissues. Al-
together, these data suggest that mast cells facilitate proliferation 
of glomerulosa cells and aldosterone synthesis.

Globally, two profiles of distribution of mast cells have been 
identified in APAs. In the majority of tissues, mast cells are mainly 
visualized in the peritumoral cortex adjacent to adenoma. This dis-
tribution of mast cells is more frequently observed in female pa-
tients and in the largest tumors. This finding is consistent with the 
fact that peritumoral mast cells are more efficient to enhance 
tumor expansion than intratumoral mast cells [81]. In this subtype 
of APAs, nerve fibers establish connections on mast cells located in 
periadenoma tissues [29], suggesting that, as in the normal adre-
nal gland, the autonomous nervous system might indirectly con-
trol aldosterone biosynthesis via activation of mast cells. In support 
of this hypothesis, it has been noticed that the distribution of the 
aldosterone synthetizing enzyme is correlated with the presence 
of mast cells in peritumoral cortex but not in adenomas. Indeed, 
mast cells present in the subcapsular region of peritumoral tissues 
are associated with aldosterone-producing cell clusters (APCC) in 
the zona glomerulosa [29]. Thus, mast cells might contribute to 
the previously shown persistence of aldosterone synthesis in per-
itumoral tissue [82]. A second subtype of APAs, characterized by a 
highest mast cell density in adenoma, displays predominant ex-
pression of aldosterone synthase in tumors [29]. In these patients, 
both plasma aldosterone and aldosterone/renin ratio levels corre-

late with the tumor mast cell density. These findings indicate that 
intra-adenomatous mast cells activate aldosterone biosynthesis by 
adenoma cells. Altogether, these data suggest that mast cells con-
tribute to the pathogenesis of APA with proliferative and steroido-
genic effects depending on their localization.

Recent genetic analyses have revealed that APAs are frequently 
associated with somatic mutations of KCNJ5, CACNA1D, ATP1A1 or 
ATP2B3 genes, encoding membrane ionic channels or ATPases [83]. 
All these mutations promote an increase in calcium signaling path-
way, the main trigger for aldosterone production [83, 84]. It is not 
known whether the somatic mutations responsible for aldosterone 
overproduction may also influence mast cell infiltration in APA tis-
sues. The preferential distribution of mast cells in adenomas ver-
sus peritumoral tissue does not seem to be influenced by the CAC-
NA1D or KCNJ5 mutational status but this observation would have 
to be confirmed in larger series of APAs. However, it is noteworthy 
that mast cell density in adenoma has been reported to be higher 
in CACNA1D-mutated APAs than in other tumors [29]. It can thus 
be hypothesized that elevation of calcium concentration in steroi-
dogenic CACNA1D-mutated cells might upregulate expression of 
SCF reinforcing mast cell chemoattraction in adrenal lesions. In 
support of this assumption, it has been reported that the L-type 
calcium channel blocker nifedipine reduces expression of SCF and 
lowers cardiac mast cell density in a mouse model of viral myocar-
ditis [85]. It is also conceivable that aldosterone overproduction 
may activate adrenal mast cells, since this cell type is known to ex-
press the mineralocorticoid receptor [86, 87]. Consistently, epler-

▶Fig. 4	 Putative role of mast cells in the pathophysiology of prima-
ry aldosteronism: Aldosterone-producing adenomas (APAs) are 
associated with mast cell hyperplasia, likely in response to overpro-
duction of stem cell factor (SCF; the mast cell growth factor) by 
adenoma cells. Increased SCF expression may result from the eleva-
tion of cytosolic calcium concentration consecutive to somatic 
mutations of membrane ion channels and ATPases. Mobilization of 
the calcium signaling pathway is also known to stimulate aldoster-
one production through expression of aldosterone synthase. In fine, 
the increase in mast cell density, together with ectopic production of 
5-HT by a subpopulation of steroidogenic cells, lead to enhancement 
of the local serotonergic tone in APA tissues. The elevation of in-
tra-adrenal 5-HT production is concomitant with overexpression of 
5-HT4 receptors by aldosterone-producing cells. The global en-
hancement of the mast cell/5-HT regulatory system may contribute 
to the pathophysiology of primary aldosteronism in patients with 
APAs.
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enone, a selective aldosterone receptor antagonist, inhibits expres-
sion of mast cell proteases in the mouse myocardium [87]. Taken 
collectively, these findings suggest that mutations responsible for 
an increase in cytosolic calcium concentration in aldosterone-pro-
ducing cells might lead to mast cell hyperplasia and the develop-
ment of an intra-adrenal amplification loop reinforcing aldoster-
one production.

The increase in mast cell density in APA tissues may reinforce 
the intra-adrenal production of 5-HT (▶Fig. 4). In addition, a sub-
population of steroidogenic cells able to synthesize 5-HT has been 
identified in APAs, that may further enhance the 5-HT-ergic control 
of aldosterone synthesis [52]. The increase in local production of 
5-HT is not the sole pathological event affecting the serotonergic 
signaling pathway in APAs. In fact, some in vitro experiments have 
shown that adenoma cells are hypersensitive to 5-HT and 5-HT4 
receptor agonists [88]. Hyper-responsiveness to 5-HT4 receptor li-
gands has been ascribed to overexpression of 5-HT4 receptors in 
APAs [52, 89–92]. Upregulation of HTR4, the gene encoding the 
5-HT4 receptor, may be due to hypomethylation of its promoter 
region [92]. Hypersensitivity of tumor cells to 5-HT may also be ex-
plained by abnormal HTR4 mRNA splicing resulting in expression 
of 5-HT4 receptor isoforms different from those detected in nor-
mal adrenals [52]. In agreement with these data, clinical trials have 
demonstrated that the 5-HT4 receptor agonists cisapride, meto-
clopramide and tegaserod provoke exaggerated plasma aldoster-
one responses in patients with APAs in comparison with healthy 
volunteers [55, 88, 89, 93, 94]. Collectively, these data indicate that 
the intra-adrenal release of 5-HT by mast cells and steroidogenic 
cells contribute to the pathophysiology of primary aldosteronism 
in patients with APAs.

Perspectives
Identification of the mast cell/5-HT regulatory pathway in the ad-
renal cortex offers new interesting perspectives for the clinical man-
agement of primary aldosteronism. Especially, some data suggest 
that the 5-HT4 receptor may represent a valuable target for the de-
velopment of innovative adrenal imaging methods aimed at deter-
mining the source (i. e., unilateral versus bilateral) of aldosterone 
excess. In fact, in patients who underwent unilateral adrenalecto-
my for APA, administration of the 5-HT4 receptor cisapride shortly 
after surgery has no effect on plasma aldosterone levels [88]. It 
seems thus that the 5-HT4 receptor is repressed or not functional 
in the adrenal controlateral to the tumor. Consequently, adminis-
tration of radiolabeled specific 5-HT4 receptor agonists to patients 
with APA may show unilateral adrenal uptake. However, the ques-
tion is whether adrenal glands may actually be viewable through 
this approach. In this regards, radiolabeled 5-HT4R ligands have 
successively been used for positron emission tomography (PET) 
scan imaging in monkeys and humans [95, 96]. Interestingly, mon-
key adrenals have been well visualized in whole-body PET images 
[97] but such observations are still lacking in man.

Finally, upregulation of the 5-HT signaling pathway in APA tis-
sues also suggests that counteracting the synthesis of 5-HT by 
using a tryptophan hydroxylase inhibitor, or reducing the action of 
5-HT with new 5-HT4 receptor antagonists may represent poten-
tial therapeutic approaches to decrease aldosterone production in 
patients with primary aldosteronism.
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