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Abstract

Background: Radioresistance is a major factor leading to the failure of radiotherapy and poor prognosis in tumor

patients. Following the application of radiotherapy, the activity of various metabolic pathways considerably

changes, which may result in the development of resistance to radiation.

Main body: Here, we discussed the relationships between radioresistance and mitochondrial and glucose

metabolic pathways, aiming to elucidate the interplay between the tumor cell metabolism and radiotherapy

resistance. In this review, we additionally summarized the potential therapeutic targets in the metabolic pathways.

Short conclusion: The aim of this review was to provide a theoretical basis and relevant references, which may

lead to the improvement of the sensitivity of radiotherapy and prolong the survival of cancer patients.
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Background

Cancer is a major health concern, and the conventional

treatments for cancer include surgery, chemotherapy,

targeted therapies, and immunotherapy. Since tumor

cells show sensitivity to the ionizing radiation (IR),

radiotherapy emerged as the main type of cancer treat-

ment [1–3]. Radiotherapy directly induces DNA damage

or indirectly induces the production of reactive oxygen

species (ROS) in cancer cells. Additionally, radiotherapy

combined with immunotherapy and chemotherapy may

reverse tumor hypoxia by reducing tumor oxygen con-

sumption,and alters tumor immune response, which

may lead to considerable clinical improvements in many

different types of tumor [4, 5]. Radiotherapy has the ad-

vantage of localized application, but the IR was shown to

activate several epithelial-mesenchymal transition (EMT)

transcription factors, including SNAI1, HIF1 (hypoxia

inducible factor 1), ZEB1, and STAT3, promoting cancer

cell metastasis [6]. Radioresistance leads to poor progno-

sis in cancer patients and it represents the main reason

for radiotherapy failure, which can ultimately lead to

tumor recurrence and metastases [7].

Cancer is closely associated with metabolic disorders

[8–10]. Metabolic reprogramming, the alteration of the

metabolic pathways in tumor cells during a response to

hypoxia or malnutrition, is considered one of the hall-

marks of cancer [11, 12]. Aberrant activation of onco-

genes and tumor-related signaling pathways can induce

the metabolic reprogramming of prostate or breast can-

cer cells, producing specific metabolic fingerprints [13,

14]. Furthermore, the inactivation of tumor suppressor

genes is an important factor underlying tumor metabolic

changes [15]. In contrast, metabolic changes can pro-

mote the development and progression of cancer as well

[10]. Moreover, many studies confirmed that the meta-

bolic syndrome, which includes obesity, cardiovascular

diseases, and diabetes, has a profound impact on the oc-

currence and development of cancer [16–19]. As an im-

portant type 2 diabetes mellitus therapeutic, metformin

showed efficacy against prostate cancer, breast cancer,
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and ovarian cancer [20–22], suggesting that the targeting

of tumor metabolism may provide a new therapeutic

strategy for cancer [23].

Metabolic changes can induce radioresistance as well

[24], and the alterations in the glycolytic metabolism

were shown to contribute to radioresistance develop-

ment. Radiotherapy effects primarily depend on glucose

metabolism [25, 26], while the mitochondrial metabolic

alterations can be involved in this process as well. A

comprehensive analysis of the metabolic pathways of

cancer patients that underwent radiotherapy revealed an

increased expression of genes that regulate mitochon-

drial functions, autophagy, and lysosomal degradation

activities, as well as a strong reliance on mitochondrial

respiration and diminished dependence on the Warburg

effect [27]. Liu et al. [28] demonstrated that CDK1 medi-

ates the activation of sirtuin 3 (SIRT3), regulates the

mitochondrial protein deacetylation, thus promoting the

metabolic balance, and enhances mitochondrial func-

tions, inducing the anti-radiation effects in colon, gli-

oma, and breast cancer cells.

Therefore, in this review, we discuss glucose and mito-

chondrial metabolisms as the main metabolic pathways

involved in the radioresistance development. Addition-

ally, we review several sensitizing agents targeting these

pathways to enhance the radiosensitivity of cancer

patients.

Radioresistance of cancer cells

Since the discovery of the IR in 1895, radiotherapy

emerged as the treatment-of-choice for many types of

cancer, and has been applied as the first-line therapy for

many human malignancies [29]. Tumor radiotherapy is a

highly targeted and efficient method of destroying can-

cer cells that can lead to the curing of or palliation of

many cancer patients after surgery. The IR induces oxi-

dative stress in cancers cells [30], and free OH radicals

are considered the IR-induced common mediators of

DNA damage, including single-strand breaks (SSB) and

double-strand breaks (DSB), which disturb the DNA

structure, triggering cell death [31]. In addition to the

DNA targeting, the IR can affect plasma membrane and

subcellular organelles, and induce the activation of cell

stress response-related genes and intracellular signaling

pathways, triggering cell death [29]. Additionally, the ir-

radiated cells may affect their non-irradiated neighbors

through the bystander effect, or the transmission of the

apoptotic signals to the surrounding unirradiated cells

through a direct cellular contact or intercellular commu-

nication, which leads the unirradiated cells to exhibit

similar biological effects to those of the irradiated cells

[32]. Combined, these effects lead to the DNA damage,

chromosomal instability, mutation and apoptosis in can-

cer cells, ultimately killing them (Fig. 1).

IR is the most effective therapeutic method for the

treatment of many tumors; however, owing to radioresis-

tance development, it remains only a conservative can-

cer treatment [33]. Radioresistance is a process in which

the tumor cells or tissues adapt to the radiotherapy-

induced changes and develop resistance to the IR. This

is a complex process involving multiple genes, factors,

and mechanisms [34, 35].

The mechanisms underlying the development of radio-

resistance have been the focus of many studies, and the

main factors involved in this process were shown to be

the following (Fig. 1):

(1) DNA damage repair. Radiation can induce DNA

damage response (DDR), which protects the cells

against genomic instability, and the cells develop

radioresistance by increasing the DDR rate.

Following the detection of the IR-induced DNA

damage in cancer cells, several main signaling path-

ways can rapidly respond and initiate DNA repair,

including phosphatidylinositol 3-kinase (PI3K),

mitogen-activated protein kinase (MAPK), and

SIRT pathways [36, 37]. PI3K signaling pathway

regulates the steady-state homologous recombination

levels, promoting DNA damage repair, and the PI3K

inhibitor PI-103 can significantly enhance radiation-

Fig. 1 The biological effects of radiation and the mechanism of

radiation resistance. The outer ring indicates the biological effects of

IR under normal conditions. The abnormal alterations of these

effects will further induce the occurrence of radiation resistance. The

inner ring indicates the mechanism of radiation resistance and the

biological changes in the occurrence of radioresistance. These

abnormal changes are the important reasons for treatment failure of

cancer patients
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induced death [38]. MAPK is the mediator of

cellular stress responses, involved in the

phosphorylation of XRCC1 and regulation of

oxidative stress response, promoting the damage

repair [39]. Furthermore, SIRT represents a class

of histone deacetylases, and downregulation of

SIRT1 promotes cell death by decreasing DNA

repair enzyme levels, including MSH2, MSH6,

and APEX1 [40].

(2) Cell cycle arrest. Following the IR-induced DNA

damage detection, molecules in the cell cycle check-

points can regulate and arrest cell cycle progression,

and 14–3-3σ, a member of 14–3-3 protein family,

was shown to be closely associated with the radiore-

sistance development by arresting cancer cells in

the G2/M phase [41]. Moreover, tumor cells can

utilize two distinct kinase signaling cascades for the

DNA damage repair here, including ATM-Chk2

and ATR-Chk1 axes [42].

(3) Oncogene and tumor suppressor alterations. For

example, the cell adhesion molecule vitronectin

(VTN) is an important oncogene, and the

dysregulation of its expression promotes the

migration and invasion of nasopharyngeal

carcinoma (NPC) as well as resistance of the NPC

cells to radiotherapy [43, 44]. Additionally, many

miRNAs, e.g., miR-29c and miR-22, have tumor-

suppressor roles, and the alteration in their expression

in lung and breast cancer cells represents an important

cause of radioresistance [45, 46].

(4) Changes in the tumor microenvironment (TME)

may lead to the radioresistance development. Many

immunosuppressive processes increase the risk of

tumor recurrence and metastasis, and the immune

evasion has emerged as a serious obstacle in cancer

treatment [47]. Changes in the cytokine levels,

EMT-related processes, and hypoxic conditions can

promote radioresistance in tumor cells [48–51].

(5) Autophagy. Autophagy is a metabolic-recycling

pathway that involves a proteasome-independent

degradation of cellular components [52]. Its dys-

functions may promote the development of sys-

temic autoimmune diseases, such as lupus [53],

while in cancer, it may promote or inhibit the sur-

vival and proliferation of cancer cells in the TME

[54]. Temozolomide (TMZ) is an alkylating agent

used to treat glioblastoma multiforme (GBM) and

anaplastic astrocytomas, which induces autophagy

and subsequent treatment resistance. When the

transcription factor nuclear factor erythroid 2-related

factor 2 (NRF2) inhibitor is used in combination with

TMZ, a decrease in NRF2 expression increases

TMZ-induced autophagy, attenuating cancer cell

proliferation [55]. Chrysin, a NRF2 inhibitor, was

shown to be able to overcome drug resistance by

preventing the activation PI3K/AKT and ERK

pathways [56]. P62 is a marker for degradation in

autophagy, and its accumulation leads to the

activation of NFΚB and stabilization of NRF2,

which confers the resistance to hypoxic stress in

tumor cells. Furthermore, autophagy preserves

damaged organelles, including mitochondria [54].

In many cases, autophagy can reduce the rate of

DNA damage-induced apoptosis, playing a

protective role in tumor cells, which induces

radioresistance in tumor cells [57, 58]. Targeting

autophagy can be an effective way to improve

the effects of radiotherapy [59].

(6) The generation of cancer stem cells (CSCs) can

represent a mechanism of resistance to

radiotherapy. CSCs are undifferentiated cancer cells

with high oncogenic activity, with the self-renewal

ability and multi-directional differentiation potential

[52]. CSCs tend to be responsible for the minimal

residual disease (MRD), as they exhibit high

metastatic potential after chemotherapy and radiation

therapy. Furthermore, these cells are responsible for

the development of tumor cell heterogeneity, which

is a key factor in the resistance of anticancer therapy

[52], and they are robust as well, including their cell

cycle regulation, rapid response to DNA damage, de-

toxification or the mediation of cytotoxic agent efflux,

anti-oxidative stress, ROS scavenging, and specific

TME maintenance, which contribute to the develop-

ment of radiation resistance [60–62]. Glioma stem

cells are in contact with the endothelial cells in the

perivascular niche, and display the hallmarks of radi-

ation resistance [63]. The insulin-like growth factor

(IGF) family was shown to be associated with the ac-

quired or adaptive resistance of CSCs to the conven-

tional anti-cancer therapies, including radiation

therapy. Repeated irradiation induces the self-renewal

potential of glioma stem cells by increasing IGF1 se-

cretion and upregulating IGF type 1 receptor expres-

sion. Chronic receptor activation results in the

inhibition of the PI3K-AKT signaling pathway, which

in turn activates the transcription factor FOXO3A,

leading to the cell cycle arrest. However, the acute

irradiation of slow-circulating CSCs induces a rapid

activation of IGF1-AKT signaling, which promotes

radioprotection [64]. Chemotherapy was found to

induce increased IGF2 expression, which paradoxically

leads to the maintenance of dormant state in the

osteosarcoma cells, promoting survival and

conferring resistance to various treatments [65].

These results shown that the blocking of altered

IGF signaling may represent a novel therapeutic

approach to the selective treatment of glioma
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and osteosarcoma CSCs. The use of metformin,

salinomycin, DECA-14, rapamycin, and other

drugs may help prevent the development of

radioresistant cells by inhibiting CSC self-renewal

or redox capacity [52, 66].

(7) Tumor metabolism. An increasing number of

studies demonstrated that radioresistance is closely

associated with the tumor metabolism alterations

[24, 25]. Clinically, the main cause of radiotherapy

failure is cellular radioresistance, conferred via

glycolytic or mitochondrial metabolic changes [67].

Targeting cellular glucose or mitochondrial

metabolism may improve the clinical response to

cancer therapeutics [25, 68, 69].

Given the high costs of discovery, development, regis-

tration, and commercialization of novel therapeutic

drugs, drug repositioning has attracted attention because

of the well-known safety profiles of these drugs [54]. For

example, terfenadine, commonly used for the treatment

of auto-immune disorders such as allergic dermatitis,

has been shown to prevent the secretion of VEGF from

mast cells localized in the hypoxic microenvironment,

and to induce ROS-mediated apoptosis and autophagy

of malignant melanoma cells [70, 71]. Artemisinin and

disease-modifying anti-rheumatic drugs can affect the

response of cells to radiotherapy by regulating autoph-

agy. Therefore, these drugs can be investigated as poten-

tial radiosensitizers [54].

Glucose metabolism and radioresistance

Carbohydrates, the main source of cellular energy,

mainly participate in the process of the oxidative decom-

position of glucose, which comprises glycolysis and oxi-

dative phosphorylation (OxPhos) [72]. In the 1920s,

Warburg demonstrated that even in the presence of

physiological oxygen levels, cancer cells can have active

glycolytic phenotypes. This aerobic glycolysis is known

as the Warburg effect, characterized by an increased

glucose uptake rate, active glycolysis, and high lactic acid

contents [73, 74]. Additionally, the synthesis of NADPH

in cancer cells is induced through the pentose phosphate

pathway (PPP) and the decrease in OxPhos levels in

mitochondria, thereby reducing intracellular ROS levels

and increasing tumor dependence on glycolysis [75].

Active glycolysis shows proliferative advantages during

somatic cell carcinogenesis, and it represents an import-

ant component of malignant phenotype [76].

AKT is an important kinase that regulates various

biological processes such as cell proliferation, survival,

metabolism, and vascularization. AKT-mediated alter-

ations in the cellular glucose metabolic pathway confer

radioresistance to tumor cells when these cells are

exposed to radiation for a long time [25]. The inhibition

of mitochondrial respiration by mitochondrial respira-

tory modulators (e.g., di-nitro phenol) leads to a consid-

erable increase in the glycolytic index. The elevated

glycolysis rate facilitates the rejoining of radiation-

induced DNA strand breaks by activating both non-ho-

mologous end joining (NHEJ) and homologous recom-

bination (HR) pathways, thus reducing the radiation-

induced cytogenetic damage in cancer cells [77]. Add-

itionally, radiotherapy can result in changes in many

relevant molecules in the glycolytic pathway. In contrast,

some key molecules in the glucose metabolism or its

products, such as glucose transporter 1 (GLUT1), HIF1,

and lactic acid, can affect the efficiency of radiotherapy

[78–80].

GLUT1 role in radioresistance development

GLUT family represents a class of 14 proteins essential

for glucose metabolism and found in the membranes of

various cells. GLUT1 is the most common and widely

distributed member of this family [78, 81], involved in

the glucose transport and its expression is upregulated

under hypoxic conditions, and therefore, it is often used

as a cellular hypoxia marker [82]. GLUT1 overexpres-

sion was shown to be associated with the radioresistance

and poor prognosis in oral squamous cell carcinoma and

head and neck squamous cell carcinoma patients, which

suggests that GLUT1 may be used as an indicator of the

sensitivity to and prognosis of cancer radiotherapy [83,

84]. Radioresistant tumor cells often have high GLUT1

levels, which was associated with oncogene activation,

tumor suppressor inactivation, stimulation of hypoxia,

and the regulation of different signaling pathways, such

as MAPK and PI3K/AKT [78].

Targeting GLUT1 and related signaling pathways may

represent an effective way to improve radiotherapy effi-

cacy [85]. As a natural flavonoid, apigenin was shown to

have anti-proliferative and anti-angiogenic effects,

exerted through the downregulation of GLUT1, HIF1α,

and vascular endothelial growth factor (VEGF) expres-

sion [86]. Apigenin was confirmed to inhibit the expres-

sion of GLUT1 by regulating PI3K/AKT pathway, and

improving the radiosensitivity of laryngeal carcinoma,

prostate cancer, and adenoid cystic carcinoma cells [87–

89]. Additionally, WZB117, a small molecule, acts as a

specific inhibitor of GLUT1, overcoming the resistance

of cancer cells to radiation [90]. WZB117 and radiation

therapy combined can inhibit the growth of breast can-

cer cells and sensitize cancer cells to radiotherapy by in-

creasing the level of intracellular ROS [91]. Furthermore,

the antisense oligonucleotide chain (AS-ODNs) of

GLUT1 can also induce the radiosensitivity of laryngeal

carcinoma cells (Fig. 2) [92, 93]. Co-suppression of

GLUT1 and the members of PI3K/AKT signaling path-

way was shown to improve the radiosensitivity of
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laryngeal carcinoma xenograft cells in nude mice, sug-

gesting that PI3K/AKT signaling pathway plays an im-

portant role in the development of radioresistance [94].

The role of lactic acid in radioresistance development

Lactic acid is one of the main products of glycolysis and

one of the key factors in the development of malignant

tumors. Alterations in glucose metabolism after radio-

therapy can lead to the accumulation of large amounts

of lactic acid, which is one of the unique malignant

tumor phenotypes [26, 95]. The concentration of lactic

acid in tumor tissues was shown to be significantly

higher than that in the healthy tissues [96], and it can

promote tumor metastasis, recurrence, and radioresis-

tance, resulting in poor prognosis in many cancers [97].

Lactic content can predict metastasis rates, overall sur-

vival of patients, is a genotoxic stress biomarker, and it

was shown to be associated with hypoxia-induced radio-

resistance [98]. In the nude mouse model of human

squamous cell carcinoma, the accumulation of lactic

acid was shown to correlate with radioresistance [80].

Michael et al. [99] demonstrated that the lactic acid ac-

cumulation induces many adverse effects in the cancer-

associated stromal cells, which can help regulate angio-

genesis by affecting proliferation, differentiation, and

maturation of fibroblasts and endothelial cells. Lactic

acid inhibits the activation and differentiation of many

immune cells, such as dendritic and T-cells, by interfer-

ing with their metabolism and mediating immune escape

[100, 101]. Additionally, it can induce the release of hya-

luronic acid by tumor-associated fibroblasts, which pro-

motes cell migration and clustering, VEGF secretion,

and neovascularization [102]. All these represent poten-

tial mechanisms involved in the lactic acid-associated

radioresistance (Fig. 2).

The monocarboxylate transporters (MCTs) can trans-

port lactate through the cell membrane, and these mole-

cules are encoded by the SLC16 gene family comprising

Fig. 2 A schematic model illustrating the relationship between glucose metabolism and radiation resistance. Radiation-resistant cells exhibit an

active glycolytic phenotype, and the enzymes in the glycolytic pathway play an important role in the process of radioresistance and can serve as

targets for improving the efficacy of radiotherapy. In addition, HIF is able to activate glycolytic enzymes and promote the occurrence of radioresistance

by inducing cell autophagy and angiogenesis. * was used to represent the targets to enhance radiosensitivity, the corresponding radiosensitizers are

indicated in the same color in rectangle
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14 members, with only four subtypes (MCT1-MCT4)

known to be proton transporters. Of these, MCT1 shows

the highest affinity for the lactic acid [103]. Shiho et al.

[97] showed that the levels of lactic acid in myeloma

cells are associated with MCT1 expression. A competi-

tive inhibitor of MCT1, CHC reduces the expression of

lactic acid, inducing cell apoptosis (Fig. 2). The downreg-

ulation of MCT1 expression induces the expression of

FAS protein in ovarian cancer cells, significantly inhibit-

ing the activation of its downstream targets, such as

FASL and FAP1, and promoting the expressions of

apoptosis-related protein caspase-3, which indicates that

MCT1 can induce resistance to cisplatin by antagonizing

FAS (Fig. 2) [104], and that it may play the same role in

radioresistance development.

Lactate dehydrogenase (LDHA) is found in almost all

human tissues; it is a major enzyme catalyzing the con-

version of pyruvate to lactic acid, and plays an important

role in the glycolytic process [105]. Michael et al. [106–

108] demonstrated that LDH5 overexpression can indi-

cate hypoxic conditions, which can be associated with

local recurrence, distant metastases, lower overall sur-

vival, and radioresistance of head and neck squamous

cell carcinoma, prostate, and bladder cancers. Further-

more, soluble adenylate cyclase (sAC) promotes the re-

lease of LDHA, accelerates cell proliferation, and

induces the anti-irradiation effects in prostate cancer

cells through the activation of BRAF/ERK1/2 signaling

pathway [109]. FX-11, a specific inhibitor of LDHA, can

promote the generation of DSBs and cell apoptosis by

reducing the EMT, DNA repair capacity, hypoxia, and

autophagy in prostate cancer cells, improving cell sensi-

tivity to radiotherapy [105]. Acting as a tumor suppres-

sor, the expression of miR-34 was shown to negatively

correlate with radioresistance development and to in-

duce the sensitivity of the hepatocellular carcinoma cells

to radiotherapy by inhibiting the expression of LDHA

(Fig. 2) [110, 111].

HIF1 and radioresistance

Hypoxic conditions in cells often have a negative impact

on the radiotherapy outcomes [112]. Tumors rely more

on anaerobic glycolysis for energy production than the

normal tissues. Malignant tumor environments are often

hypoxic, and they rely on exacerbated glycolysis to meet

the increased demand for ATP and biosynthetic precur-

sors [113]. Hypoxic environments promote the trans-

formation of tumor cell metabolism from the oxidative

metabolism to anaerobic glycolysis, which protects

tumor cells and induces the development of radioresis-

tance in tumor stem cells [114]. In human osteosarcoma

cells, hypoxia was shown to confer anti-irradiation ef-

fects and induce the expression of autophagy-related

proteins LC3 and LC3-II, suggesting that hypoxia can

activate cell autophagy and accelerate the removal of

ROS from the cells, leading to radioresistance develop-

ment [115]. Moreover, hypoxia can activate EGFR and

NRF2 expression in lung cancer cells, inducing radiore-

sistance (Fig. 2) [116], together with the activation of

HIF1 transcription, which regulates the adaptive cellular

responses to hypoxia [112]. HIF1 has been identified as

an important mediator of the carbohydrate metabolic

pathway reprogramming from OxPhos to glycolysis

[117], and it is composed of two subunits, HIF1α and

HIF1β, and HIF1α expression is oxygen-dependent due

to the presence of an oxygen-dependent degradation

domain. HIF1β, known as aryl hydrocarbon receptor

nuclear translocator (ARNT), is constitutively expressed,

and therefore, not affected by environmental conditions

[118]. The heterodimer formed by HIF1α/HIF1β

constitutes a functional HIF1 molecule, characterized by

the presence of hypoxia-responsive element within the

promoter or enhancer region [119]. HIF1α is the main

regulatory subunit of this molecule, which binds to the

promoter and upregulates HIF1β expression [120]. A

previous study confirmed that HIF1α can activate the

transcription of target genes that regulate various

biological processes, including cell proliferation, glu-

cose metabolism, and pH regulation, playing a vital

role in the adaptation of cancer cells to hypoxic con-

ditions (Fig. 2) [121].

A number of studies demonstrated that HIF1 pro-

motes tumor invasion, metastasis, and mediates the

anti-irradiation effects [112]. The mechanisms under-

lying the development of radioresistance may include

the following:

(1) The promotion of tumor angiogenesis. HIF1

activates the expression of angiogenic cytokines

such as VEGF and platelet-derived growth factor

(PDGF), enabling radioresistance development in

endothelial cell and increasing tumor vascular

proliferation and regrowth (Fig. 2) [122].

(2) Inhibition of apoptosis. N-Myc downstream

regulatory gene 2 (NDRG2) is a downstream target

of HIF1, which inhibits the expression of pro-

apoptotic protein BAX, promoting the development

of radioresistance. HIF1α can also directly inhibit

p53-induced apoptosis, and the p53 status is a

major determinant of the HIF1 effects on tumor

radiosensitivity [123, 124].

(3) Activation of radioresistance-related signaling

pathways. HIF1α can induce the expression of

CXCL8, a chemokine with tumorigenic and angio-

genic roles. CXCL8 expression further activates

AKT/mTOR/STAT3 signaling pathway, supporting

liver cancer progress and metastases and inducing

radiotherapy resistance [125]. Additionally, the MEK/
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ERK signaling transduction pathway mediates the

sustained expression of DNA protein kinase (DNA-

PKcs), which regulates the expression and activity of

HIF1 protein, thereby inducing radioresistance in

glioblastomas [126].

(4) Hypoxia-induced autophagy. Autophagy is activated

in response to stress (e.g., hypoxic conditions), and

HIF1α was shown to be involved in the radiation-

induced autophagic cell death in breast cancer cells.

Elevated autophagy levels reduce the IR-induced

DNA damage [127]. Sun et al. [128] found that

hypoxia-induced autophagy can lead to the resist-

ance of colon cancer cells to radiotherapy through

the activation HIF1/miR-210/BCL2 pathway. High

HIF1 levels can trigger autophagy activation and in-

duce the expression of autophagy-associated protein

LC3 and the degradation of p62. Furthermore,

HIF1α can increase the phosphorylation of c-JUN, a

downstream HIF1α molecule, and the expression of

autophagy gene BECN1, which mediates radioresis-

tance in lung cancer cells (Fig. 2) [129].

(5) Hypoxia-induced CSC activation. A hypoxic or

perinecrotic microenvironment was found to be

advantageous for the survival and proliferation of

other types of CSCs. Hypoxic cells express higher

levels of CSC markers such as CD44, CD133,

OCT3/4, and SOX2 [130, 131]. CD44 promotes

CSC phenotype and resistance to radiation [132],

and its isoforms, the standard isoform, CD44s, and

several variant isoforms (CD44v), have different

functions. Following the irradiation, CD44s

expression is strongly upregulated in a dose-

dependent manner, compared with that of CD44v,

and contributes to the longer-term cell survival by

maintaining ERK phosphorylation and the

radiation-induced EMT [133]. CD44v is produced

by alternative splicing regulated primarily by

ESRP1/2 and has recently been shown to stabilize

anti-ROS machinery by stabilizing xCT (cysteine/

glutamate antiporter) on the cell membrane [134].

Anticancer therapy leads to the ectopic expression

of CD44v in osteosarcoma and hepatic cancer cells

of patients with Li-Fraumeni disease [135]. This

may be because an undetectable number of

CD44v8–10-positive CSCs produces excess ROS

levels due to radiotherapy and chemotherapy. A

mutually exclusive expression pattern of CD44v8–

10 and c-MYC was observed based on the activa-

tion of the ROS-mediated β-catenin/Wnt signaling

pathway [136, 137]. The ubiquitin ligase Fbw7 fam-

ily regulates c-Myc expression, exerting the anti-

tumor effect [138]. CD44 has been reported as a

useful marker for the prediction of tumor radiosen-

sitivity, and its levels can be used for the prediction

of local recurrence after laryngeal cancer radiother-

apy [139]. Decreased levels of ROS and apoptosis in

CD44+ CD24+ cells may contribute to the

development of radioresistance in pancreatic cancer

[140]. Radical cystectomy is preferred for the cases

where the overexpression of CD44 and/or IL6 is

observed in the preoperative specimens [132]. Both

HIF1 and HIF2α are activated under hypoxic

conditions and promote the stem-like properties of

cancer cells. Furthermore, HIF2α was recently

shown to contribute together with the intracellular

domain of CD44 generated by γ-secretase to the ac-

quisition of radioresistance by glioma stem cells in a

perivascular niche rich in osteopontin [141].

An increasing number of studies have shown that, by

targeting HIF1 activity, tumor antioxidant capacity can

be reduced, as it affects the TME and promotes the sen-

sitivity of solid tumors to radiotherapy. By combining

HIF1 targeting and radiotherapy, improved therapeutic

effects can be achieved [142]. For example, the use of

chetomin, a chemical HIF1α inhibitor, can disrupt the

interactions between this molecule and p300, attenuate

hypoxia-induced gene expression, and increase radiosen-

sitivity of cancer cells under severe hypoxic conditions

[143]. Additionally, HIF1α inhibition leads to the down-

regulation of stem cell markers and a decrease in radio-

resistance of cervical cancer cells [144]. Various HIF1

inhibitors function through different signaling pathways,

thereby enhancing the efficacy of radiotherapy. KNK437

is a benzylidene lactam compound that inhibits the synthe-

sis of heat shock proteins (HSPs), which increase DNA

damage repair and inhibit cell death, stabilizing HIF1α ex-

pression and promoting radioresistance. KNK437 can abro-

gate hypoxia-induced anti-radiation effects by targeting

both AKT and HIF1α [145]. Furthermore, 2-

methoxyestradiol is an estrogen metabolite that suppresses

HIF1α levels and its transcriptional activity. It depolymer-

izes microtubules and prevents HIF1α nuclear accumula-

tion [146], increasing the radiosensitivity of NPC stem cells

and melanoma cells by inactivating NF-κB/HIF1 or HIF1α/

PDK1 signaling pathway [147, 148]. Berberine can inhibit

tumor metastasis, tumorigenicity, and growth, and trans-

forming growth factor-β (TGF-β)-induced tumor invasion

and EMT [149]. Moreover, it enhances the radiosensitivity

of NPC cells by inhibiting the expression of HIF1α and

VEGF [150]. NVP-BEZ235, an inhibitor of PI3K/mTOR

signaling pathway, can inhibit the activation of HIF1α/

VEGF signaling pathway in endometrial cancer and sup-

press radioresistance development [151]. As STAT3 inhibi-

tors, NSC74859 and Stattic can improve the radiosensitivity

of esophageal cancer through the inhibition of hypoxia and

radiation-induced STAT3 activation, as well as the expres-

sion of HIF1α and VEGF [152, 153]. Additionally, docetaxel
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is a semi synthetic paclitaxel derived from European yew,

which has been widely applied in the clinical treatment of

gastric, non-small cell lung (NSCL), ovarian, and breast

cancers [154], and which was shown to induce the activa-

tion of JNK2 signaling pathway, mediate the phosphoryl-

ation of PHD1, and inhibit the expression of HIF1α, leading

to the apoptosis of the tumor cells in hypoxic conditions

[155]. Finally, paclitaxel pretreatment was shown to inhibit

the radioresistance of HIF1α-induced hepatocellular carcin-

oma and lung adenocarcinoma, suggesting that it can be

used as a sensitizer for radiotherapy (Fig. 2) [156].

In addition to the inhibitors of HIF1, many miRNAs

can promote or inhibit hypoxia-induced radioresistance.

MiR-210 was shown to be expressed in the different

types of tumor and normal cells in hypoxic environ-

ments [157]. The expression of miR-210 promotes the

DSB repair, increases the production of lactic acid, and

HIF1α stability [158]. The downregulation of miR-210

significantly inhibits cell viability, inducing G0/G1 phase

cell cycle arrest, and increasing apoptosis rates and the

radiosensitivity of hypoxic hepatocarcinoma cells [157,

159]. Furthermore, miR-21 was shown to regulate the ra-

diosensitivity of cervical cancer cells through the PTEN/

AKT/HIF1α feedback loop and the AKT-mTOR signaling

pathway [160]. Hypoxia-responsive miR-124 and miR-

144 overexpression can inhibit hypoxia-induced au-

tophagy and enhance the radiosensitivity of prostate

cancer cells by downregulating the expression of the

PIM1 oncogene [161], while miR-216a can enhance

the radiosensitivity of pancreatic cancer cells by

inhibiting BECN1-mediated autophagy (Fig. 2) [162].

Additionally, a decrease in miR-23a expression pro-

motes the radioresistance of NPCs, determining their

response to radiotherapy [163].

The role of other molecules associated with glucose

metabolism in radioresistance development

Pyruvate kinase (PK) can convert phosphoenolpyruvate

and ADP into pyruvate and ATP, which makes it one of

the major rate-limiting enzymes in glycolysis. A previous

study demonstrated that the PK expression positively

correlates with the radiotherapy resistance in tumor cells

[164]. The M2 isoform (PKM2) is a key regulator of gly-

colysis, expressed only in cancer cells [165], and target-

ing this molecule can inhibit cell viability, induce G2/M

arrest, and promote apoptosis. Additionally, this can

increase the radiosensitivity of NSCLCs and the IR-

induced apoptosis and autophagy rates, which are

associated with the inhibition of AKT and PDK1 phos-

phorylation [166]. PKM2 is targeted by miR-133 as well,

and this miRNA is downregulated in radioresistant lung

cancer cells. MiR-133b resensitizes radioresistant lung

cancer cells by inhibiting PKM2-mediated glycolysis

[167]. Nitric oxide (NO) levels were shown to be

significantly associated with cellular metabolism, and a

decrease in the NO levels leads to a significant reduction

in PDK1 expression, enhancing the radiosensitivity of

hypoxic NSCLCs [168]. Furthermore, dichloroacetate, a

PDK inhibitor, can effectively radiosensitize glioblastoma

cells [164], while the treatment of esophageal squamous

cell carcinoma cells with diisopropylamine dichloroace-

tate (DADA) can increase their sensitivity to radiation

(Fig. 2) [169].

Hexokinase 2 (HK2) is a key glycolytic enzyme in glu-

cose metabolism, highly expressed in a variety of human

solid tumors. Its upregulation can induce glycolysis, and

it is essential for tumor progression and maintenance.

By inhibiting HK2 signaling in cancer cells, their radio-

sensitivity may increase [170]. Additionally, 2-deoxy-D-

glucose (2-DG) is an inhibitor of glucose metabolism

and ATP production, which can help suppress the IR-

induced radioresistance [171]. Following the phosphoryl-

ation of HK2 by 2-DG, this molecule can disrupt the

radiation-induced DNA damage repair in tumor cells

and promote their apoptosis by reducing intracellular

energy levels [172]. The combination of 2-DG and his-

tone deacetylase transferase inhibitors can induce apop-

tosis in glioblastoma cells [173], while 2-DG can also

significantly inhibit the expression of HK2 and induce

apoptosis (Fig. 2) [174].

Mitochondrial metabolism and radiotherapy resistance

In addition to glucose metabolism, mitochondrial me-

tabolism is closely related to radioresistance develop-

ment as well. Mitochondria exist in most cells and are

the main sites of cellular aerobic respiration, with differ-

ent energy metabolic pathways. Mitochondria adapt to

the rapid tumor growth requirements by regulating the

energy production process [175]. Radiotherapy resist-

ance in cancer cells is associated with changes in the

mitochondrial energy metabolism, mitochondrial size,

morphology, and functions. Furthermore, mitochondrial

mutation rate, respiration, and intracellular ATP levels

are increased as well [176]. Mitochondrial membrane

potential (MMP) and the expression of several proteins

involved in mitochondrial energy metabolism play im-

portant roles in tumor radiotherapy resistance.

Mitochondrial oxidative stress and radioresistance

The redox environment, representing a balance between

the generation of ROS species and their removal by anti-

oxidant enzymes, is a key regulator of oxidative stress in

cells. Excessive superoxide levels, if not removed by en-

dogenous antioxidants or related enzymes, can cause

oxidative stress damage in mitochondria. Manganese

superoxide dismutase (MnSOD) is the main antioxidant

enzyme, which can catalyze the disproportionation of

superoxide anion radicals, protecting the body from
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ROS-induced damage. Moreover, MnSOD regulates the

response of cells, tissues, and organs to the IR, which is

essential for the protection of mitochondria and cells

from oxidative stress (Fig. 3). The increased activity of

MnSOD was shown to increase significantly the viability

of pancreatic cancer cells after γ-ray irradiation and acti-

vate G2 checkpoint block, ultimately inducing radiore-

sistance in pancreatic cancer cells [177].

Many studies demonstrated that the protection of cells

against the mitochondrial oxidative stress-induced cell

death can promote radioresistance development. Maus

et al. [178] showed that the glial cell antigen 2 (NG2)

can protect oligodendrocyte precursor cells from oxida-

tive stress by interacting with mitochondrial serine pro-

tease OMI/HtrA2. NG2 downregulation can increase the

apoptosis and cell sensitivity to oxidative stress. This

interaction between NG2 and OMI/HtrA2 may contrib-

ute to radioresistance development in gliomas (Fig. 3).

Additionally, following treatment with Il6, rat glioma

cells developed radioresistance by suppressing mito-

chondrial oxidative stress. Therefore, Il6 treatment in-

duces radioresistance in tumor cells by inhibiting the

increase in ROS levels (Fig. 3) [179].

In contrast, enhanced mitochondrial oxidative stress

can promote tumor cell radiosensitivity. Sorafenib is a

novel anti-cancer drug that can induce the apoptosis of

drug- and radiation-resistant hepatoma cells through

mitochondrion-dependent oxidative stress mechanisms.

The mechanism of its action includes rapid formation of

ROS in mitochondria, triggering of the mitochondrial

calcium overload, and activating apoptotic processes by

releasing cytochrome C and activating caspase 3/7

pathway [180]. Ceramides induce ROS accumulation as

well, through the activation of mitochondrial/caspase

apoptosis pathways, and inhibiting radioresistance [181].

Moreover, DADA regulates the switch from glycolysis to

OxPhos and induces intracellular ROS level increase,

thereby enhancing the radiosensitization of esophageal

squamous cell carcinoma (Fig. 3) [169].

Mitochondrion-associated protein and radioresistance

The mechanisms underlying cell irradiation are com-

plex, and they are involved in the inhibition of cell

proliferation and induction of cancer cell apoptosis.

Mitochondrial proteins are involved in apoptosis as

well, and therefore, they may play a key role in the

radiation signal transduction. The mitochondrial pro-

teomes derived from Burkitt lymphoma before and

after irradiation were analyzed and 23 differentially

expressed proteins were identified [182]. This suggests

that radiotherapy can lead to the considerable alter-

ations in the mitochondrial protein expression, and

therefore induce radioresistance.

Currently, the mitochondrion-associated proteins that

were shown to be associated with radioresistance include

the following: (1) Adenosine monophosphate family

protein 3A (ATAD3A), often expressed in cancer pa-

tients and shown to be related to the sensitivity of can-

cer patients to chemotherapeutics. Increased ATAD3A

expression can inhibit the IR-induced apoptosis in glio-

blastoma cells. After silencing ATAD3A, the expression

of ATM, histone H2AX, and H3 was shown to decrease,

inhibiting the DNA damage repair and ultimately pro-

moting tumor cell radiosensitivity [183]. (2) NAD+-

Fig. 3 A schematic model illustrating the relationship between mitochondrial metabolismand radiation resistance. IR inhibits the oxidative stress

of mitochondria, causes abnormal expression of mitochondrial protein and increases the mitochondrial membrane potential, thereby promoting

DNA damage repair and inhibiting apoptosis, leading to the occurrence of radioresistance. * was used to represent the targets to enhance

radiosensitivity, the corresponding radiosensitizers are indicated in the same color in rectangle
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dependent protein deacetylase SIRT3 is a member of

the sirtuin family, present in mitochondria, that promotes

metabolic homeostasis by modulating mitochondrial

protein deacetylation. Following the SIRT3 transcription,

cyclin B1/CDK1 further induce SIRT3 activity. Mutations

in the SIRT3 Thr150Ala/Ser159Ala lead to a decrease in

MnSOD activity and the production of mitochondrial

ATP, increasing sensitivity to radiotherapy. Therefore, the

targeting of CDK1-mediated phosphorylation of SIRT3

may represent an effective way to sensitize tumor cells to

radiation therapy [28]. (3) Mitochondrial MAPK phos-

phatase (MKP1) represents a potential target for the

treatment of human epidermal growth factor receptor

2 (HER2)-positive breast cancers. MKP1 is overex-

pressed in radioresistant breast cancer cells and it can

translocate to mitochondria after irradiation, preventing the

activation of apoptosis by inhibiting the accumulation of

phosphorylated JNK. MKP1 is the major downstream ef-

fector of the HER2-activated RAF/MEK/ERK1/2 pathway.

Mitochondrial MKP1 confers radioresistance to HER2

overexpressing breast cancer cells, and by co-suppressing

the expression of MKP1 and HER2, breast cancer cell

apoptosis can be induced, while inhibiting radioresistance

(Fig. 3) [184].

MMP and radioresistance

During respiratory oxidative processes, the MMP is gen-

erated due to the asymmetric distribution of protons

and other ions on both sides of the inner mitochondrial

membrane. A physiological MMP is a prerequisite for

the maintenance of the physiological cell functions.

Studies have shown that some molecules and related sig-

naling pathways induce radioresistance by increasing

MMP or inhibiting its decrease. Therefore, targeting the

MMP can be an effective way to increase radiosensitiv-

ity. The main molecules and processes underlying MMP

effects on radiosensitivity include the following: (1)

Growth differentiation factor-15 (GDF15), a member of

the TGF-β superfamily, participates in homeostasis

maintenance and regulates radiosensitivity. Li et al. [185]

demonstrated that GDF15 contributes to radioresistance

development in head and neck cancer (HNC) cells by

activating MMP and inhibiting intracellular ROS gener-

ation. Therefore, GDF15 levels may indicate radioresis-

tance levels and its expression may represent a potential

therapeutic target for the treatment of HNC. (2) MEK/

ERK-mediated signaling selectively inhibits IR-induced

decrease in MMP and inhibits FAS-mediated cell death

by inhibiting caspase-8 activity. MEK-specific inhibitor

PD98059 was shown to prevent the observed effects of

MEK/ERK on MMP and the development of radioresis-

tance [186]. (3) Histone deacetylase inhibitors increase

radiosensitivity by reducing MMP and promoting ROS

production, G2/M phase arrest, and the IR-induced

apoptosis of the esophageal cancer cells [187]. (4) In the

radiation-resistant cells (CRR) treated with paclitaxel,

ROS levels can increase through the decrease in MMP

and OxPhos activation, thus overcoming the radioresis-

tance of these cells (Fig. 3) [188].

Furthermore, mitochondrial ion channels are involved

in radioresistance development as well. Different types

of ion channels can be found on the inner and outer

mitochondrial membranes, and they are involved in

many important cellular processes, including ATP

production, apoptosis, and cell proliferation [189]. Some

ion channels as therapeutic targets have been widely

used in clinic. Mitochondrial KATP channel (mtKATP

channel) is an important member of this family.

MtKATP overexpression was found to be closely related

to the degree of malignancy of gliomas and the overall

survival of patients. Importantly, mtKATP channel can

regulate glioma radioresistance development by modu-

lating the ROS-induced ERK activation (Fig. 3), suggest-

ing that the mtKATP pathway is a key regulator of

radiosensitivity in gliomas, and the blockers and inhibi-

tors of mtKATP channel and MAPK/ERK kinase,

Table 1 Metabolism-associated targets in radioresistance and the radiosensitization methods

Items Targets Radiosensitizer Reference

Glycose
metabolism

GLUT1 Apigenin,WZB117 [77, 81]

MCT1 CHC [94]

LDHA FX-11, miR-34 [95, 100, 101]

PKM2 miR-133, DADA [145, 147]

HK2 2-DG [149, 150]

HIF Chetomin, KNK437, 2-ME2, [121, 123, 124]

Barberin, NVP-BEZ235, miR-216a [128, 129, 140]

NSC74859, Stattic, Docetaxel [130–133]

miR-21, miR-124, miR-144 [138, 139]

Mitochondrial metabolism Oxidative stress Sorafenib, Ceremides, DADA [147, 158, 159]

MMP PD98059, HDIs, Paclitaxel [164–166]
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respectively, may represent novel therapeutics of the

treatment of gliomas [190].

Conclusions

Radioresistance emerged as one of the major obstacles

to cancer treatment, and it is caused by numerous fac-

tors. An increasing number of studies demonstrated that

radioresistance development can be associated with

tumor metabolism, as the radiotherapy may induce

alterations in many molecules and signaling pathways in-

volved in the tumor cell metabolism, and metabolic

changes may affect the efficacy of radiotherapy. Therefore,

previous studies investigated the changes in glucose,

mitochondrial, and other metabolic processes, and the

effects of these changes on cellular radioresistance. Based

on these results, many molecules or inhibitors were

developed, as shown in Table 1, which can target specific

metabolic processes or molecules, to be used as radiother-

apy sensitizers for the inhibition of radioresistance develop-

ment in tumors. However, these sensitizers induce side

effects in many non-cancerous cells, since they do not

show high specificity and efficacy. Taken together, the

mechanisms underlying the development of radioresistance

should be further studied, together with the roles of tumor

metabolism in these processes, in order to identify novel,

more efficient and specific radiosensitizers, and provide

novel strategies for the treatment of malignant tumors.
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