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Abstract

Background: Myoelectric signals offer significant insights in interpreting the motion intention and extent of effort

involved in performing a movement, with application in prostheses, orthosis and exoskeletons. Feature extraction

plays a vital role, and follows two approaches: EMG and synergy features. More recently, muscle synergy based features

are being increasingly explored, since it simplifies dimensionality of control, and are considered to be more robust to

signal variations. Another important aspect in a myoelectrically controlled devices is the learning capability and speed

of performance for online decoding. Extreme learningmachine (ELM) is a relatively new neural-network based learning

algorithm: its performance hasn’t been explored in the context of online control, which is a more reliable measure

compared to offline analysis. To this purpose we aim at focusing our investigation on a myoelectric-based interface

which is able to identify and online classify, upper limb motions involving shoulder and elbow. The main objective is

to compare the performance of the decoder trained using ELM, for two different features: EMG and synergy features.

Methods: The experiments are broadly divided in two phases training/calibration and testing respectively. ELM is

used to train the decoder using data acquired during the calibration phase. The performance of the decoder is then

tested in online motion control by using a simulated graphical user interface replicating the human limb: subjects are

requested to control a virtual arm by using their muscular activity. The decoder performance is quantified using ad-hoc

metrics based on the following indicators: motion selection time, motion completion time, and classification accuracy.

Results: Performance has been evaluated for both offline and online contexts. The offline classification results

indicated better performance in the case of EMG features, whereas a better classification accuracy for synergy feature

was observed for online decoding. Also the other indicators as motion selection time and motion completion time,

showed better trend in the case of synergy than time-domain features.

Conclusion: This work demonstrates better robustness of online decoding of upper-limb motions and motor

intentions when using synergy feature. Furthermore, we have quantified the performance of the decoder trained using

ELM for online control, providing a potential and viable option for real-timemyoelectric control in assistive technology.
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Background
Electromyogram (EMG) signals are nowadays the most

widely used biometric information to translate human

motion intention into action. Their main use ranges from

interfaces in human-machine interaction based appli-

cations like prosthesis [1–3], orthosis [4–6] and tele-

manipulation [7–10], to functional electrical stimulation

as well [11, 12]. Myoelectric signals provide information

like the intent and extent of motion, simplified syner-

gistic model of motion control, and on biomechanics at

the joint level as the impedance characteristics. As much

as they offer useful information, they are also challeng-

ing to use in motion control, due to the fact that EMG

signals are non-repetitive, and are subjected to degrada-

tion due to change in skin conductivity i.e. sweat, muscle

fatigue and shift in electrode position. The two important

factors detrimental to the performance of any decoding

algorithm are: the feature extraction techniques applied,

and the learning algorithm used to build the decoder relat-

ing the input (EMG signals) to the corresponding output

(control-motions).

Feature extraction techniques are used to characterize

the EMG signals and extract useful information, in order

to be able to interpret them better. Two main approaches

are the most widely used (Ison et al. [13]): a first one

named EMG features relying on structural characteris-

tics from each individual EMG channel (like time-domain,

frequency-domain, time-frequency domain characteris-

tics [14, 15]), and a second one namely known as synergy

features which uses information from multiple EMG sig-

nals. Time-domain features are computationally simple

to evaluate [16], and provide good levels of decoding

accuracy, whereas frequency and time-frequency domain

analyses foresee a higher computational process and

furthermore they do not significantly increase the decod-

ing accuracy when compared with the previously men-

tioned features [17]. Synergy features extract coordination

patterns across multiple EMG channels, by means of

time-variant or time-invariant synergies [18, 19]. Muscle-

synergy is hypothesized to be the method by which brain

simplifies motor control, and synergistic muscle activa-

tion patterns have been observed while performing spe-

cific movements, e.g. reaching tasks [20]. These features

showed to be robust and not sensitive to amplitude can-

cellations, and also help control strategy simplification by

reducing the control dimensionality [21]. Furthermore,

synergy features have shown to be consistent and robust

to slight shift in electrode position [22].

Apart from feature extraction techniques, the type and

amount of training data used also does affect the perfor-

mance of the decoder. Incorporating dynamically varying

data [23] and including multiple limb positions [24] have

shown to improve decoding performance, but causes an

increase in the training data-set and ultimately leading

to higher computational burden. Learning algorithms

like artificial neural networks (ANN), linear discrimi-

nant analysis (LDA), support vector machines (SVM),

and Gaussian mixture models have been extensively used

in myoelectric-based motion control, and they provided

good levels of accuracy. Nonetheless the learning effi-

ciency and rate of classification should be fast enough

for effective utilization in real-time applications. Extreme

learning machine (ELM) is a relatively new supervised

learning algorithm and represents a single-hidden layer

feed-forward neural network (SLFNN) [25]. The learning

rates are significantly higher than the traditional back-

propagation based learning machines, and it provides an

efficient solution to generalized feed-forward networks.

ELM offers faster rates of training, less degree of inter-

vention and ease of implementation. Shi et al. [26] shows

that the running time of ELM is much faster than LDA

and SVM; also, the results indicate the classification accu-

racy of ELM is overall higher than LDA, and almost

comparable with that of SVM, thus showing the poten-

tial of ELM for real-time myoelectric control of assistive

devices.

The main focus of this paper is to compare and con-

trast the performance of ELM using the two approaches

EMG features (more specifically time-domain features)

and Synergy features; this study will focus on the differ-

ences between the two approach in decoding shoulder

and elbow motions. Decoding strategies could be either

regression or classification: regression based decoding

strategies are mostly employed in controlling devices,

which are mainly aimed at augmenting the capability in

either healthy or weak subjects, by amplifying human

force/torque [27, 28]. In some cases, a neuromuscu-

loskeletal model is used to relate EMG signals to torques

produced at the joints, and the level of assistance to

be provided by the device is set using a scaling factor

[29, 30]. In the present paper we will focus on a classifi-

cation model, since the target population is intended to

be patients affected by brain injury with specific focus

on stroke. In this kind of subjects, the use of regression

models is particularly challenging due to the degraded

EMG activity, with a resulting acquired signals often hard

to interpret and uncontrolled muscular co-contractions

(hypertonia) leading to unwanted torques generated by

the device [27]. Hence we opted for an approach based on

detection of a preset number of movements (classes) [31]

where the decoder is devoted to classify the movements in

real-time and control a graphical user interface replicat-

ing a human limb. Our hypothesis is that synergy-features

could provide a more reliable and robust means of decod-

ing myoelectric signals, and if proven initially in the case

of healthy subjects, might translate reasonably to stroke

population. Furthermore, synergies have been found to be

either preserved, merged or fractioned in neurologically
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impaired subjects, depending on the extension of the

brain lesion and the elapsed time from the stroke onset

[32]. While ELM has been applied to determine perfor-

mance measures in an offline context, we want to extend

the experiment to online decoding, and determine how

accurate ELM can fare in real-time control of assistive

devices. This paper is a more extensive and comprehen-

sive work than our previous contribution [33]. To our

knowledge, no previous work have employed ELM to test

the performance of the decoder for myoelectric control in

an online scenario. In order to perform online decoding,

a virtual avatar replicating a human limb has been imple-

mented, and it enables a number of movement classes

comprising shoulder and elbow degrees of freedom. The

acquired EMG signals are processed in real-time, the

classified outputs actuate the virtual avatar to provide

feedback to the user, and enables modification of user

learning to improve the performance, and understand

the inverse model of the decoder to better control the

graphical interface. The main target is to implement the

algorithm and be able to interface a soft wearable exosuit

for the upper-limb that is being currently developed in the

lab.

Methods

Subjects

A total of 7 healthy subjects (6 males and 1 female, age

26.85 ± 1.57 years) participated in the experiment, and

they all provided written informed consents. The proce-

dures were approved by the Institutional Review Board at

Nanyang Technological University.

Experimental setup

The setup includes Wireless Electromyografic system

(Trigno wireless, Delsys Inc.), which is used to record the

surface EMG signals. A real-time Data acquisition board

(Quanser QPIDe) is used to acquire the EMG signals as

analog inputs, and the acquisition frequency has been set

to 1 kHz. A MATLAB/Simulink based custom program

is then used to interface the myoelectric signals, pro-

cessing them and running the classification algorithm. A

high level routine converts the decoder output into con-

trol signals to a simulated arm in the virtual environment,

thereby providing visual feedback to the subject during

the testing phase.

Experimental protocol

The investigation was divided into two experiments exe-

cute in two different days. Each experiment included

two phases: a training and a testing phase respectively.

Experiment 1 was performed using EMG features, while

experiment 2 using synergy feature. Figure 1 shows the

phases of the training phase as well as the online testing

phase. EMG signals were recorded by seven channels and

electrodes were placed on the muscles mainly responsible

for execution of the shoulder and elbow movements

involved, and are as shown in Fig. 2. The five different

motion-classes involved in the experiment are as shown in

Fig. 3.

During the training phase, subjects were instructed

to perform all the motion classes and each of them is

repeated ten times, for a total fifty repetitions; in this

phase the main purpose is to acquire the EMG signal cor-

responding to the different movement classes. A graph-

ical user interface indicates the movement (class) to be

performed (trial) with two seconds of rest between two

consecutive movement trials (each 3 s). A ten seconds

resting phase is provided upon completion of ten repeti-

tions for the same class. The EMG signals acquired during

the training phase are used to train the decoder for the

successive online testing phase.

During the testing phase, the subject’s EMG activity

is detected and used to tele-operate a virtual avatar in

the graphical user interface: the purpose is to allow the

subject to learn the inverse model of the decoder and

control the virtual model: in a scenario where an assis-

tive device is used, the virtual avatar is intended to be

a training interface before the user wears the device

itself. The motion planning of the virtual arm is imple-

mented using the minimum-jerk criteria [34]: after the

graphical interface provide the instruction by indicating

the name of the class, subjects were requested to move

their arm in such a way the decoder classifies the move-

ment and reproduce it on the simulated avatar. Each

motion-class is performed twenty times, and the instruc-

tions are provided in a randomly generated sequence.

Each trial is considered to be completed upon success-

ful transition of the virtual arm, from the rest pose to

the respective motion-class indicated, and holding the

position for 0.5 s. There is no time restriction in com-

pleting the task, and a trial is considered successfully

completed when the virtual movement matched the one

requested.

Feature extraction

All the EMG signals are pre-processed by rectification,

followed by low-pass filtering with a cut-off frequency

of 10 Hz, in order to obtain the envelope of the signal.

Experiment 1 involves usage of EMG features, whereas

experiment 2 uses synergy features, for online control of

the graphical user interface. The input signals are repre-

sented by X ǫ R
p×q, where p and q are the number of

original dimensions (number of EMG channels) and the

number of data samples respectively. The features used

are as mentioned below.

EMG features: We considered two time-domain fea-

tures to extract information from the EMG signals [35],

with a sliding window of 100 samples (100 ms) and an
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Fig. 1 Training and Testing phase. a Represents the offline training phase, where the graphical user interface instructs the subject to perform

specific movements for specific period of time. The EMG data is then used to build the decoding model which is specific for each subject. b The

online testing phase, where EMG signals are decoded in real-time, and facilitates the movement of the virtual avatar

overlap of 90 samples between two windows to account

for processing time: which means an output is produced

every 10 ms.

Mean Absolute Value (MAV): It is evaluated by tak-

ing the average of each EMG signal in the window

frame, providing information on movement duration and

effort [36].

MAV =
1

N

N
∑

n=1

|xn| (1)

where N = 100 is the number of samples in the sliding

window.

Variance (VAR): It is a measure of the EMG variability,

and is an indicator of the EMG signal power and helps in

identifying movement onset and contraction [36].

VAR =
1

N − 1

N
∑

n=1

|xn
2| (2)

For each of the seven EMG channels, these two set of

features are extracted, and hence the dimensionality of

the input signals become fourteen. The input matrix after

the EMG features extraction procedures, is represented by

YEMG ǫ R
2p×q, where p and q are the number of origi-

nal dimensions (EMG channels) and the number of data

samples.

Fig. 2Muscles and electrode placement. Illustrates the muscles utilized in the experiment and the respective electrode placement on the muscles
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Fig. 3Motion-classes. The five different motion-class and the rest pose which represents the sixth class. The movement starts from the rest pose

and transitions to the target pose as indicated in the figure, and motion is designed to follow a minimum-jerk trajectory

Synergy feature: Non-negative matrix factorization

(NMF) is the decomposition technique used to transform

the EMG signals from the muscle activity space to synergy

space. It constrains the activation coefficient to be a non-

negative value, which reflects the reality of the neural and

muscle activation (pull-only behavior). Any non-negative

matrix X ǫ R
p×q is decomposed into two non-negative

factors A ǫ R
p×k and Y ǫ R

k×q, where p,q and k are

the number of EMG channels, number of data samples,

and the number of reduced dimensions respectively. The

relation is given by

X = AY + E (3)

⎡

⎣

x11 . x1q
. . .

xp1 . xpq

⎤

⎦ =

⎡

⎣

a11 . a1k
. . .

ap1 apk

⎤

⎦

⎡

⎣

y11 . y1q
. . .

yk1 ykq

⎤

⎦ +

⎡

⎣

e11 . e1q
. . .

ep1 epq

⎤

⎦

where E is the error or residual. Each column in the

matrix X represents multi-variate data points. A is the

basis matrix containing the basis vectors of the synergy

space, and Y is called the coefficient matrix containing

the activation coefficients. The optimization technique

used to converge to a stationary point is based on the

non-negative least squares method proposed in [37]. The

number of basis vectors is chosen based on the explained

variance of the data or by the residual error E obtained

by approximation. In this experiment, the number of

basis/synergy vectors to be used is based on two criteria:

firstly, to ensure that at least 90 % of the variance in the

data could be represented using the reduced dimension

and secondly, the point in the cumulative explained vari-

ance plot where the change in slope is less than 5 % of the

variance.

During the training phase, the input matrix (syn-

ergy feature) obtained after performing the decomposi-

tion algorithm is represented by the coefficient matrix

YSYN ǫ R
k×q, where k and q are as mentioned above. Dur-

ing the testing phase, the coefficient matrix are obtained

in real time by using the following relation.

YSYN = A−1 × X (4)

⎡

⎣

y111 . y11q
. . .

y1k1 . y1kq

⎤

⎦ =

⎡

⎢

⎣

a−1
11 . a−1

1p

. . .

a−1
k1 a−1

kp

⎤

⎥

⎦

⎡

⎣

x11 . x1q
. . .

xp1 . xpq

⎤

⎦

where X ǫ R
p×q represents the multi-variate data points,

A ǫ R
p×k represents the basis matrix obtained during

the training phase, and YSYN ǫ R
k×q represents the input

matrix after performing synergy-space feature extraction.

Machine learning algorithm

We decided to use Extreme Learning Machine (ELM) for

decoding the motion classes and consequently control-

ling the virtual arm model. ELM is an emerging learn-

ing paradigm that represents an efficient unified solution

to generalized feed-forward neural networks including
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(but not limited to) single-/multi-hidden-layer neural net-

works, radial basis function networks, and kernel learning.

ELM offers significant advantages such as fast learn-

ing speed, ease of implementation, and minimal human

intervention [38]. It thus has strong potential as a viable

alternative technique for large-scale computing in many

different applications, including image [39], text [40],

speech [41] and multimodal [42] processing, but also

cognitive learning [43] and reasoning [44].

The ELM model [45] implements a single-hidden layer

feedforward neural network (SLFNN) with N mapping

neurons. The function connecting the input layer with the

hidden layer can be expressed as follows, for each neuron

j ∈ {1, . . . ,N} :

hj(Y) = a(Y,Rj) (5)

where Y ∈ R
Z is an input stimulus which is either YEMG

or Ysyn depending on the type of feature used for the

experiment, a(Y,R) is a nonlinear piece-wise continuous

function (activation function), characterized by R which

denotes the set of parameters of the mapping function.

Every j-th neuron has its set of parameters Rj.

The overall output function connecting the hidden and

the output layer is expressed as

f (Y) =

N
∑

j=1

wjhj(Y) (6)

wherewj denotes the weight that connects the j-th neuron

with the output.

The peculiar aspect of ELM is that the parameters Rj are

set randomly. Hence, if one uses, for example, Radial Basis

Functions to implement a(.) :

a(Y,R) = exp
(

−ζ‖Y − c‖2
)

(7)

the parameters to be set randomly are the coordinates

of each centroid, c ∈ R
Z , and the quantity ζ . In this

study triangular basis function was used as the activation

function.

Accordingly, the hidden layer implements an explicit

mapping of the original input space into a new space RN .

Hence, training ELMs is equivalent to solving a regular-

ized least squares problem in a linear space. LetH ∈ R
n×N

be an activation matrix such that the entry Hi,j is the

activation value of the j-th hidden neuron for the i-th

input pattern. Then, the training problem reduces to the

minimization of the convex cost:

w∗ = argmin
w

‖Hw − o‖2 + λ ‖w‖2 (8)

where λ controls the contribution of the regularization

factor.

The vector of weights w∗ is then obtained as follows:

w∗ = (HTH + λI)−1HTo (9)

where I ∈ R
N×N is an identity matrix.

The ELM model can be conveniently described as a

2-stage learning machine. In the first stage, the data orig-

inally lying in the Z-dimensional space are remapped

into a new N-dimensional space (ELM feature space)

by exploiting as many ‘random’ neurons. Then, an RLS

problem is solved for learning the linear classifier in the

N-dimensional space.

The final decision function of ELM for a binary classifi-

cation problem is:

fL(Y) = sign(f (Y)) (10)

For multiclass problems, it is possible to set multi-

output nodes: therefore,m-class classifiers havem output

nodes. If the original class label is c, the expected output

vector of the m output nodes for the i-th input pattern is

oi = [ 0, . . . , 0, 1, 0, . . . , 0]T , with the cth element of oi =

[ oi1, . . . , oim]
T set to one, while the rest of the elements

are set to zero.

The classification problem for ELM with multi-output

nodes can be formulated as:

min
w

{

1

2
‖w‖2 + C

1

2

n
∑

i=1

‖ǫi‖
2

}

(11)

Subject to: h(Yi)w = oTi − ǫTi i = 1, . . . , n

Where ǫi = [ ǫi1, . . . , ǫim]
T is the training error vector of

them output nodes with respect to the training sample Yi.

Therefore, the binary classification problem can be con-

sidered as a specific case of multi-output nodes whenm is

set equal to one. For both cases, the hidden layer matrix

H remains the same, and the size of H is only decided by

the number of training samples n and the number of hid-

den nodes N , which is irrelevant to the number of output

nodes (number of classes)m.

Performance metrics

In order to compare the accuracy of the ELM algorithm

for EMG features and synergy feature, we evaluate the

offline performance (corresponding to the training phase)

and online performance (corresponding to the testing

phase).

Offline Performance is defined as the accuracy of the

decoder to classify the EMG patterns and associate them

to the correct motion-class. The quantity of data sam-

ples collected during the training phase is split in two

parts: training data-set which is used to train the decoder

and its neural network, and the testing data-set which is

used to test the performance of the decoder in predicting

the motion-classes. A 2-fold cross validation procedure is

used to determine the number of hidden layer neurons,

and avoid over-fitting of the data. The testing data-set

is used to determine the classification accuracy once the
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model parameters are optimized according to the follow-

ing equations:

Accoff =
nc

nc + nw
× 100(%) (12)

where nc and nw represents the number of correctly and

wrongly classified samples respectively, from the testing

data-set.

Online performance: It has the purpose of quantifying

the accuracy of the algorithm during the online testing

phase, where the subject is controlling the virtual arm by

EMG signals and three of the indicators are based on the

work by Li et al. [46] which are described below.

1. Motion Selection Time: It is the amount of time

needed by the decoder to decode the human EMG

patterns, translate them into motor commands to the

virtual arm. It is mainly the time needed by the

decoder to identify the desiredmotion-class.
2. Motion Completion Time: This is the amount of

time subjects take to utilize their EMG signals and

move the virtual arm into the desired position, and

holding it for 0.5 seconds.

3. Learning Trend: It provides the trend ofmotion
completion time through the experiment for each

motion-class. The decreasing slope of the
exponential fitting indicates a positive learning rate,

provided by the general formula:

y(x) = a × e−bx + c (13)

where x ǫ {1, 2, . . . , 20} is the number of repetitions,

y is the time taken to complete the task (a particular

motion class) corresponding to x. While a, b, c

respectively represent the initial performance, the

learning rate, and the steady state value.

4. Online Classification Accuracy: It is used to

calculate the classification accuracy of the decoder

for each class. It is the ratio between the number of

samples from the decoder matching the desired

motion class and the total number of samples for that

particular trial. Classification accuracy is calculated

as:

Accon =
1

N

N
∑

i=1

ni

ni + mi
× 100(%) (14)

where N represents the number of successfully

completed trials in a particularmotion-class for a
subject. ni andmi represents the number of correctly

and incorrectly classified samples respectively in a

single trial i.

5. Variability in muscle activity trends: This is

evaluated for each subject and for eachmotion-class,
across all the seven EMG channels for both EMG
feature and synergy features. It is the mean of the

standard deviation values of the EMG activity across

all EMG channels during the 20 repetitions of each

motion-class. Each trial or repetition is normalized

with respect to the completion time to indicate

percentage of motion and resampled to a common

set of 200 samples. The mean muscle activity and the

deviation from the mean are calculated at each

instant during the entire motion. It provides insight

into the strategy used by the subjects and the

performance consistency (precision) across the whole

experiment and hence, the decoder performance.

Variability =
1

nEMG

1

nSamples

nEMG
∑

i=1

nSamples
∑

j=1

σij

(15)

where nEMG = 7 represents the number of EMG

channels, nSamples = 200 represents the number of

samples during each motion after resampling, and σij
is the standard deviation of the muscle activity for

the ith EMG channel and at the jth time sample. The

lower the variability value the better the decoder

performance.

σij =

√

√

√

√

1

nRep

nRep
∑

k=1

(Ekij − μij)
2 (16)

where nRep = 20 represents the total number of

repetitions for eachmotion-class, Ekij is the EMG

activity for the ith EMG channel at the jth time

sample and kth repetition, and μij is the mean of the

EMG activity for the ith EMG channel at the jth time

sample.

Figure 4 represents the various quantifying measures

used for online decoding. A two-way Anova was per-

formed to compare the statistical significance between

EMG features and synergy feature for the five motion-

classes.

Results

Decoder offline performance

Offline Decoder Classification accuracy has been evalu-

ated for each subject across all the five different motion

classes. The average accuracy in experiment 1 (EMG fea-

tures) resulted in 99.37±0.81 %, whereas the average accu-

racy in experiment 2 (synergy feature) is 65.73 ± 2.60 %.

Based on a validation data-set, it resulted that the opti-

mal number of hidden neurons for experiment 1 (EMG

features) was 5000 units; contrarily 3500 units were cho-

sen for experiment 2 (synergy feature), to avoid overfitting.

The difference in the number of hidden neurons did not

affect the processing time significantly during the test-

ing phase. It took an average of 2.87 ± 0.06 seconds to



Antuvan et al. Journal of NeuroEngineering and Rehabilitation  (2016) 13:76 Page 8 of 15

Fig. 4 Performance metrics. Evaluation of the different metrics for a typical trial. An example of shoulder protraction trial is indicated in this figure in

order to explain each metric. Subjects, starting from the rest position, are instructed by a message on the screen to execute a shoulder protraction.

Movement onset initiates when decoder starts predicting themotion-classes.Motion selection time is defined as the interval between movement

onset and decoder output which corresponds to the desiredmotion-class.Motion completion time is the time duration between movement onset

and the final configuration of the virtual arm corresponding to the requested movement. Classification accuracy is the decoding accuracy

throughout the trial

predict the output of 10000 samples in the case of EMG

features, whereas it took around 2.01 ± 0.02 seconds to

predict in the case of synergy feature. Therefore, for real-

time predictions, the difference in the number of hidden

neurons would hardly impact the motion selection time

or the motion completion time, especially because ELM is

considered to have a very fast running time. The number

of synergy vectors to be used in the experiment is based

on two criteria, as mentioned previously. From the ini-

tial analysis it was determined that, using the first four

synergy vectors matched the requirements, and was fixed

for all the subjects to have uniformity. The average resid-

ual error obtained for all the subjects had an R2 value of

5.38 ± 3.6 %.

Decoder online performance

Online Classification Accuracy: The average classifica-

tion performance of the decoder in the case of experiment

1 is 84.09±14.35%, whereas in the case of experiment 2 is

91.79± 9.86%. The online classification accuracy reached

with the synergy feature differs from the one reached

with the EMG features with high statistical significance

(two-way Anova, F1,1284 = 107.81, p < 0.001), for all the

five motion-classes. The classification accuracy for each

motion-class and for both types of features are as shown

in Fig. 5a. The confusion matrix of the classification accu-

racy is represented in Figs. 6 and 7 corresponding to

EMG features and synergy feature respectively, and help

to get a better understanding of the misclassifications in

decoding.

Considering the metrics used to characterize online

decoder performance during the testing phase, it was

found that Motion Selection Time for experiment 1 was

0.15 ± 0.21 seconds, while it was 0.11 ± 0.19 for experi-

ment 2. A high significant difference was found between

the two types of feature (F1,1284 = 12.428, p = 0.00044);

Anova test revealed a significant interaction between

the type of the feature and the motion-class (F4,1284 =

14.265, p < 0.001), in particular for elbow extension and

shoulder retraction, the difference between EMG features

and synergy feature did not reach significance (accord-

ing to a post-hoc Fisher test). The selection time for each

motion-class and for both types of features are as shown

in Fig. 5b.

For Motion Completion Time the average time taken

to complete each task across all the subjects and motion-

class, in experiment 1 is 3.09 ± 1.98 s, whereas it is

2.09 ± 0.30 s in experiment 2. According to the two-way

Anova test, there is a high significant difference (F1,1284 =

101.85, p < 0.001) between the classification accuracy

between the EMG features and the synergy feature, and

the difference is significant for all the five motion-classes

as observable for Fig. 5c.

The Learning Trend values have been evaluated for

each motion-class across all subjects and for both the

experiments are as shown in Tables 1 and 2. A nega-

tive value indicates the occurrence of learning, leading

to an improvement in performance, and contrary for the

case when the value is positive. There is no consistent

indication for learning trend across subjects and task,
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Fig. 5 Decoder performance for each metric. Figures represent a polar plot indicating the mean and standard deviation for all themotion-classes, in

the case of EMG and synergy features across all subjects. a indicates the plot of online classification accuracy, b indicates the plot of motion selection

time, and c indicates the plot of motion completion time

meaning that the decoder performance is strictly depen-

dent on the features (EMG vs synergy) used for training

and classification.

Variability in muscle activity trends: A typical mus-

cular activation pattern in a subject when performing

the shoulder protraction and shoulder retraction move-

ments (multi-articular movements) is shown in Fig. 8. A

reduced set of motion-classes are shown for better visual

clarity and understanding. It can be observed that the

EMG activity is smoother and less variable in the case

of synergy feature decoded action, than in the case of

EMG features. The variability values for each subject and

for each motion-class are as shown in Fig. 9. The values

are very high for the shoulder movements in the case of

EMG features when compared to synergy feature, and the

trend is pretty much similar for most cases in the elbow

movements as well. A possible reason for the aforemen-

tioned difference might be in the presence of visual feed-

back provided to the subject by the virtual avatar, which

was present in the testing phase and not in the training

one. In the training phase the subjects were instructed to

execute a movement and EMG channels were acquired

to train the decoders. The testing phase consisted in ask-

ing the subject to perform movements corresponding to

the selected classes and the results of the decoded move-

ments were promptly shown as the decoded motion of

the virtual arm in the visual feedback. There is a signif-

icant difference between the EMG features and synergy

feature decoders in the case of online classification accu-

racy, with the synergy feature decoder performing better

and allowing subject to control the virtual arm in a faster

way (see motion completion time metric). The differ-

ence in online performance between the two decoders

may alter considerably the muscular activation pattern

by the subjects, who perceive the delay in decoding the

desired movements provided by visual feedback. When

instructed to move in a particular direction (motion-class)

the participants can instantaneously perceive the efficacy

of the decoder, and in the case of EMG features decod-

ing, they tended to adjust by modifying the contraction

Fig. 6 Normalized confusion matrix. Normalized confusion matrix across all subjects in experiment 1 when the decoder uses EMG features. This plot

gives an idea of the misclassifications happening during decoding. The rows indicate the actual or requestedmotion-class, and the columns

indicate the decoder prediction accuracy under each of themotion-classes, averaged across all the trials and subjects
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Fig. 7 Normalized confusion matrix. Normalized confusion matrix across all subjects in experiment 2 when the decoder uses synergy feature. This

plot gives an idea of the misclassifications happening during decoding. The rows indicate the actual or requestedmotion-class, and the columns

indicate the decoder prediction accuracy under each of themotion-classes, averaged across all the trials and subjects

patterns, and that’s why the EMG signals appear to be

less smooth and present higher variability than in the case

when synergy feature decoding was used.

Discussion
In this paper our aim was to point out the differences

in classification strategy using two approaches for feature

extraction procedures. The offline classification accuracy

indicated better performance in the case of EMG features

when compared to the synergy feature, whereas one can

observe an exact opposite trend in the case of online

classification accuracy. This result is in line with other

previous contributions showing that there is no corre-

lation between offline and online classification accuracy

[47, 48]. The main difference between the offline and

online motion decoding is that in the second case, a real-

time visual feedback of the user’s performance is provided.

The visual feedback enables the subject tomodify the neu-

ral activations, so as to recalibrate and account for the

error in motion decoding. Real-time performance met-

rics are important in order to examine the robustness and

accuracy of pattern recognition and eventually implement

a control strategy able to precisely detect subject motor

intention by means of EMG signals [46]. Therefore, the

online classification metrics allowed to estimate the relia-

bility of the decoder for both EMG and Synergy features

and compare them. In the work by Jiang et al. [49], the

authors claim that a perfect model relating muscle activity

to control outputs is not essential, but rather continuous

interaction and adaptation of the user with the myo-

electric interface through feedback can help in achieving

reliable performance. Irrespective of whether the model

is intuitive or not, users are still capable of learning the

inverse dynamics of the model itself, and its mapping

function [50]. The level of intuitiveness of the model and

the time taken for familiarization with the decoder, are

factors which influence the improvement in performance.

In our experiments, each motion-class was performed 20

times by each subject during the online testing, and yet

we did not observe a consistent learning trend (Tables 1

and 2); which means that the optimum level of learning

has not been reached yet: relatively to our primary tar-

get, which was the comparison between two extraction

features, the absence of a learning trend or adaptation

is not detrimental and does not affect the final results.

Since the number of repetitions is constant in both the

Table 1 Learning trend. Learning rate values for all the subjects for each of themotion-class in experiment 1 (EMG features)

Subject Elbow flexion Elbow extension Shoulder protraction Shoulder retraction Shoulder flexion

Subject 1 −0.0019 0.0023 0.0029 0.0308 0.0150

Subject 2 −0.0074 0.0104 −0.0103 0.0233 −0.0150

Subject 3 −0.0381 −0.0187 −0.0373 −0.0499 −0.0194

Subject 4 0.0061 −0.0090 0.0347 0.0188 0.0101

Subject 5 0.0031 −0.0082 −0.0004 −0.0012 0.0138

Subject 6 0.0132 0.0096 −0.0010 −0.0047 0.0018

Subject 7 −0.0033 0.0034 −0.0045 −0.0170 −0.0075
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Table 2 Learning trend. Learning rate values for all the subjects for each of themotion-class in experiment 2 (synergy feature)

Subject Elbow flexion Elbow extension Shoulder protraction Shoulder retraction Shoulder flexion

Subject 1 −0.0000 0.0036 −0.0066 0.0002 −0.0004

Subject 2 −0.0000 −0.0120 0.0002 −0.0006 0.0029

Subject 3 −0.0156 0.0023 −0.0027 −0.0010 0.0032

Subject 4 −0.0009 0.0046 0.0029 −0.0001 −0.0040

Subject 5 −0.0007 0.0098 −0.0007 −0.0009 −0.0029

Subject 6 −0.0075 −0.0292 0.0002 −0.0001 −0.0008

Subject 7 −0.0046 0.0017 −0.0006 −0.0007 0.0018

feature types, the absence of subjects adaptation implies

that synergy feature based decoder is more effective than

EMG features, and does not require familiarizing time in

order to improve the performance; contrarily there might

be the possibility that for higher number of trials the two

decoders might converge to the same accuracy level, but

still the synergy feature based decoder remains the opti-

mal one, especially because it resulted to be more versatile

and efficient in translating user biometric signals into

motor command to the simulated virtual environment as

reported in the previous sections.

Despite significant better online performance in synergy

feature than EMG feature, there are still some cases in

which the two decoders are comparable. Taking a closer

look at the classification accuracy in the confusion matrix

(Figs. 6 and 7) between the target class (requested to the

subject) and the predicted class (decoded from subject

movement) we can observe that the highest percentage

of wrong classifications is in the decoding of shoulder

protraction movement with a misclassification towards

shoulder flexion movements and vice versa. A possible

explanation could be found in the similarity between the

two movements for what concern the muscular activation

sequences during the executions forcing the decoder in

misleading the prediction, which gets refined only when

the execution has past the movement onset stage. More-

over, we can also notice that motion-classes involving

shoulder movements have lower classification accuracy

than the elbow movements in the case of EMG features:

this effect is mainly due to the recruitment of multi-

Fig. 8 EMG activity during training and testing phase. Represents the mean and standard deviation plot of the EMG activity for subject 4 in each of

themotion-classes. The plots in black and red pertains to the EMG activity during testing phase (20 repetitions) corresponding to EMG features and

synergy feature respectively
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Fig. 9 The average standard deviation of muscle activity. The mean of the standard deviation values of the muscle activity across all muscles during

the entire motion (standard deviation values are as shown in Fig. 8) is indicated for each subject and eachmotion-class, in the case of EMG features

and synergy feature

articular joints which involves a higher number of muscles

compared to single joint (i.e. elbow), and hence the level

of uncertainty in decoding increases.

However, in the present paper we have not addressed

the challenge of simultaneous decoding of multiple

motion-classes which is recently being explored by Young

et al. and Jian et al. [49, 51] on groups of healthy subjects

and trans-radial amputees but neurologically intact. Jiang

et al. [49], have used synergy based NMF techniques in

order to simultaneously control two of the three degrees of

freedom at the wrist joint. Contrarily brain damagesmight

hamper our approach because of the resulted abnormal

muscular activation and the consequent disruption of

synergy formation: it has been found that synergies are
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either preserved or fractioned in neurologically impaired

patients, depending on the extension of the brain lesion

and the elapsed time from the stroke onset [32]. There-

fore, we believe that extracting synergy information would

represent a viable strategy for decoding user intentions

even in a simultaneous classification scenario. The main

focus of the proposed work was twofold: to highlight the

importance of choosing both the extraction features and

the decoding algorithm: we demonstrated that synergy

features and ELM in the context of myoelectric decod-

ing provided good results and we envision that they might

be used in the specific context of assistive technology

based on discrete action classification and user intention

detection.

Conclusion
The present paper focuses on comparing the two

approaches in feature extraction techniques for real-time

motion control of upper limb movements. Outcomes

showed that the classification performance is better and

more robust while using synergy feature than EMG feature

sets.

Apart from contrasting the performance of these two

types of control strategies, the aim of this investigation

is to highlight the advantage of using the information

provided by muscle synergies, to get a more accurate

decoding ofmovements which involve a coordinatedmus-

cle activity. This approach would be highly beneficial for

all those applications which rely on bio-signals in gen-

eral(and not only EMG) to drive systems ranging from

human augmentation to assistive technology, and this is

particularly true when multiple degrees of freedom are

involved. The use of ELM in synthesizing the decoder

has provided tremendous advantages with the high rate

of learning, and convergence to minimal error. In future

we would like to incorporate the classification strategy in

a soft wearable exosuit which is being designed for the

upper limb [52, 53]. One drawback with this decoding

scheme, is that the classification of motions is sequen-

tial and does not allow to classify a coordinated sequence

of movements involving different joints. In future, it is

our tenet to implement a simultaneous/parallel classifi-

cation and using the classifier for assistive technology. It

is worth mentioning that a robust algorithm for motion

classification, would add an enormous benefit especially

in those fields when a reduced muscular activity conse-

quential to a neurological damage makes it difficult to

detect the motor intention from the patient, and almost

impossible to drive any kind of robotic device to support

and provide assistance. That’s why we believe that using

the proposed approach would bring additional trust and

efficacy to those technologies which are mainly based on

passive motion algorithm instead of boosting the capacity

of detecting and discriminating motor intention.

Additional file

Additional file 1: Training and Testing phase. This video depicts the

training phase, where a graphical user interface is used to instruct the

subjects to perform specific motions for a specific period of time. The next

section demonstrates the testing phase using synergy features, where EMG

signals of the subject are used to drive the virtual arm to perform discrete

motion tasks. https://www.youtube.com/watch?v=1riHz2TtT4o.

(MP4 20582 kb)
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