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Seely J, Chow CC. Role of mutual inhibition in binocular rivalry.
J Neurophysiol 106: 2136–2150, 2011. First published July 20, 2011;
doi:10.1152/jn.00228.2011.—Binocular rivalry is a phenomenon that
occurs when a different image is presented to each eye. The observer
generally perceives just one image at a time, with perceptual switches
occurring every few seconds. A natural assumption is that this
perceptual mutual exclusivity is achieved via mutual inhibition be-
tween populations of neurons that encode for either percept. Theoret-
ical models that incorporate mutual inhibition have been largely
successful at capturing experimental features of rivalry, including
Levelt’s propositions, which characterize perceptual dominance du-
rations as a function of image contrasts. However, basic mutual
inhibition models do not fully comply with Levelt’s fourth proposi-
tion, which states that percepts alternate faster as the stimulus con-
trasts to both eyes are increased simultaneously. This theory-experi-
ment discrepancy has been taken as evidence against the role of
mutual inhibition for binocular rivalry. Here, we show how various
biophysically plausible modifications to mutual inhibition models can
resolve this problem.

cortical circuit; perception; ambiguity; visual competition; computa-
tional neuroscience

PERCEPTUAL RIVALRY IS A COGNITIVE phenomenon where two or
more perceptual interpretations of a given stimulus alternate. In
binocular rivalry, which is a well-studied example of this
phenomenon, two sufficiently different images are presented to
each of the eyes (Clifford 2009; Alais and Blake 2005). The
observer perceives one image at a time, and perceptual
switches occur stochastically on the order of seconds. Mutual
inhibition between neurons that represent different percepts has
been long proposed as a cortical mechanism for rivalry (Blake
1989), and many theoretical models incorporating mutual in-
hibition have been developed (Matsuoka 1984; Lehky 1988;
Arrington 1993; Lumer 1998; Kalarickal and Marshall 2000;
Laing and Chow, 2002; Lago-Fernandez and Deco, 2002;
Stollenwerk and Bode, 2003; Wilson 2003; Noest et al. 2007).
In these models, the activity of a neural population encodes
each percept. The populations inhibit each other with habitu-
ation processes taking the form of spike-frequency adaptation
or synaptic depression. Switches in neural activity are facili-
tated by the habituation mechanisms, noise, or a combination
of the two. An experimental hallmark for testing models of
binocular rivalry is Levelt’s four propositions (Levelt 1968),
which characterize how the average perceptual dominance
durations of the two percepts are affected by the strengths
(contrasts) of the two stimuli.

Levelt’s first three propositions (L1–L3), which characterize
the effect of keeping the strength of one eye’s stimulus con-

stant while changing the other, are as follows: L1) increasing
the contrast to one eye increases the predominance (fraction of
time dominant) of that stimulus; L2) increasing the contrast to
one eye does not affect the dominance duration of that stimu-
lus; and L3) increasing the contrast to one eye increases the
rivalry alternation rate. These first three propositions imply that
an increase in contrast in one eye decreases the dominance time
of the other eye, and in the literature L2 has often been used to
represent this meaning. Levelt only considered the case where
the fixed-contrast stimulus was held at high contrast. Subse-
quent research (Brascamp et al. 2006; Klink et al. 2008;
Moreno-Bote et al. 2010) has found that when the fixed-
contrast stimulus is held at low contrast, the reverse of L2 is
true, i.e., L1 is accomplished primarily by an increase in
dominance duration of the stronger, varying stimulus. There-
fore, the revised L2 reads (Brascamp et al. 2006; Klink et al.
2008; Moreno-Bote et al. 2010): increasing contrast to one eye
mainly affects the dominance durations of the stronger stimu-
lus. Levelt’s fourth proposition (L4), which is most pertinent to
our current study, characterizes the effect of changing both
strengths simultaneously and states: L4) increasing the con-
trasts to both eyes increases the rivalry alternation rate. Equiv-
alently, simultaneously increasing the stimulus strengths de-
creases the average dominance duration of the percepts. Crit-
ically, the relationship between equal stimulus strengths and
dominance duration (or alternation rate) is proposed to be
strictly monotonic.

One appeal of mutual inhibition models is their ability to
successfully replicate all of Levelt’s propositions (Laing and
Chow 2002; Wilson 2007) and even capture the revised L2/L3
(Moreno-Bote et al. 2010). It was once incorrectly believed
that mutual inhibition is unable to capture L2 (Fox and Rasche
1969). Although mutual inhibition models give L4, a recent
study from Shpiro et al. (2007) showed that this compliance is
only true for a limited range of stimulus strengths. Specifically,
Shpiro et al. (2007) analyzed four similar mutual inhibition
models [the Wilson (2003) model and three variations of the
Laing and Chow (2002) rate model] and found that in all four
models increasing input strength simultaneously to both neural
populations yielded an increase in percept duration followed by
a decrease in percept duration for higher input strengths. That
is, for a range of low input strengths, the four mutual inhibition
models disobeyed L4, while for a range of higher input
strengths the models obeyed L4 (Fig. 1). Although Shpiro et al.
(2007) considered only four mutual inhibition models, further
analytical work from Curtu et al. (2008) made a convincing
case regarding the generality of the result. This observation has
challenged the applicability of mutual inhibition to explain
perceptual rivalry.
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This theory-experiment discrepancy is important because
mutual inhibition models are otherwise successful in describ-
ing a wide variety of phenomena related to ambiguous stimuli.
Notably, this class of models still obeys L1 and the revised
L2/L3 even within the stimulus strength regime that fails to
replicate L4 (see Fig. 4C). Additionally, in the presence of
noise, mutual inhibition models replicate the distribution of
dominance durations seen in experiments (Laing and Chow
2002; Shpiro et al. 2009), as well as features of stochastic
resonance (Kim et al. 2006). These models have been success-
fully extended to account for “rivalry memory” phenomena
(Wilson 2007; Noest et al. 2007). They can account for
normalization and disambiguation (winner-take-all) behavior
(Moldakarimov et al. 2005). They can give the recently dis-
covered “maximal alternation rate at equi-dominance” result
from Moreno-Bote et al. (2010). Finally, there is mounting
independent experimental evidence for mutual inhibition, ad-
aptation, and noise as mechanisms involved in rivalry (van Ee
2011; Alais et al. 2010; Kang and Blake 2010; van Ee 2009;
Kim et al. 2006; Lankheet 2006; Brascamp et al. 2006; Suzuki
and Grabowecky 2002; Klink et al. 2010).

One possible explanation for the discrepancy between mu-
tual inhibition models and L4 is that L4 itself may not always
be true. Experimental data on L4 are limited, and it is unclear
whether the proposition holds down to arbitrarily small con-
trasts. Many psychophysics studies on rivalry use stimuli with
contrasts well above detection threshold (e.g., Hollins 1980). It
is therefore conceivable that mutual inhibition models in fact
make the correct prediction, and more experiments would be
needed to verify this. However, data from van Ee (2009) and
indirect evidence from Liu et al. (1992) suggest that L4 is valid

down to contrast detection level (see DISCUSSION). Furthermore,
the purely monotonic decrease in percept duration has been
argued to follow naturally from a normative Bayesian frame-
work for rivalry (Hohwy et al. 2008).

The inability of mutual inhibition models to fully comply
with L4 has motivated alternative cortical models not based on
mutual inhibition, most notably the models from Moreno-Bote
et al. (2007) and Ashwin and Lavric (2010); both models
successfully replicate L4 for all possible stimulus strength
values. Other neural mechanisms for rivalry have also been
proposed, although the issue of L4 has not been fully explored
in these models (Borisyuk et al. 2009). Nevertheless, mutual
inhibition models remain an attractive candidate for describing
perceptual rivalry. Here, we show how biophysically plausible
mechanisms can be easily incorporated into all mutual inhibi-
tion models such that they fully comply with L4, resolving the
theory-experiment discrepancy.

GENERAL MUTUAL INHIBITION MODEL

The basic principle of mutual inhibition models is that each
percept is represented by one of two populations of neurons
under the influence of habituation processes like spike fre-
quency adaptation and synaptic depression (Fig. 2). While this
can be modeled with a neural circuit of a large number of
biophysical Hodgkin-Huxley neurons (Laing and Chow 2002),
the essential elements of the dynamics are captured in reduced
population rate models where the collective activity of each
population is represented by a single rate or activity variable.
We therefore focus on a population rate model, although our
observations generalize to a network of biophysical neurons.
We also include recurrent excitation in the model, which has
been mostly excluded in recent studies (Curtu et al. 2008;
Wilson 2003, 2007; Shpiro et al. 2007, 2009). As we will
show, the inclusion of recurrent excitation can be important for
maintaining L4.

Mutual inhibition models are often associated with the view
that rivalry occurs as the result of interocular competition in
early stages of the visual pathway (Blake 1989). That is, each
population in the model contains monocular neurons from
lateral geniculate nuclei or layer IV of V1, and local compe-
tition and habituation serve as the sole mechanisms of rivalry.
However, electrophysiological evidence shows strong correla-
tions between percepts and neural activity primarily in extra-
striate visual cortex (Leopold and Logothetis 1999) while
imaging has shown correlations in lateral geniculate nuclei
(Haynes et al. 2005; Wunderlich et al. 2005) and V1 (Lee et al.
2007; Polonsky et al. 2000; Tong and Engel 2001). The

Fig. 2. Two populations encode for each of the two rivalry percepts. The
architecture contains mutual inhibition connections and recurrent excitation. I1

and I2 represent synaptic inputs to each population and are related to the
strengths of the external stimuli.

Fig. 1. Top: schematic of Levelt’s fourth proposition (L4). Bottom: 1 example
of the percept duration dependence on stimulus strength as predicted by mutual
inhibition models of binocular rivalry. Specifically, the models predict that
increasing stimulus strength first yields increasing-duration (ID) followed by
decreasing-duration (DD), while L4 proposes only DD behavior down to
arbitrarily small stimulus strengths. Changes in model parameters can alter the
shape of the curve at bottom, but the mathematical equations of mutual
inhibition models seem to guarantee the existence of both ID and DD behavior.
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emerging consensus is that rivalry does not occur at a single
“site” but is instead a distributed process across early stage
monocular channels and extrastriate sensory cortex, as well as
frontal and parietal brain regions [see Sterzer et al. (2009) for
a review]. Hence, the choice of mutual inhibition architecture
between two populations does not imply that these populations
consist of only early stage monocular neurons. The populations
may contain neurons from several cortical areas. The idea
is that the simplified mutually inhibiting two-population model
is a sufficient and parsimonious description of rivalry dynam-
ics. We note, for example, that the hierarchical Wilson (2003)
model contains a monocular and binocular stage to account for
“flicker and switch” stimuli (Logothetis et al. 1996), but
mathematically reduces to a two-population mutual inhibition
model for standard rivalry stimuli (as in the version of the
model studied in Shpiro et al. 2007). We therefore assume that
strong mutual inhibition may in fact arise from multiple cor-
tical and subcortical areas.

We consider neural activities (u) of the two populations in
the neural circuit to obey

�uu̇1 � �u1 � f��u1d1 � �u2d2 � �a1 � I1�
�uu̇2 � �u2 � f��u2d2 � �u1d1 � �a2 � I2�

(1)

and the adaptation and depression variables (a and d, respec-
tively) to obey

�aȧ1 � �a1 � u1

�aȧ2 � �a2 � u2
(2)

�dḋ1 � 1 � d1 � �d1u1

�dḋ2 � 1 � d2 � �d2u2

(3)

where f(x) is the gain or firing rate function that takes the net
input, x, to the population and translates it into an activity
value. The spike frequency adaptation variables a represent
hyperpolarizing potassium currents (McCormick and William-
son 1989; Sanchez-Vives et al. 2000). The synaptic depression
variables d are modeled after Tsodyks and Markram (1997),
Abbott et al. (1997), and Carpenter and Grossberg (1981).
Specifically, d represents the percent strength of synaptic
connections, which may reflect, for example, the availability of
vesicle pools (Schneggenburger et al. 2002). The mutual inhi-
bition strength is �, the adaptation strength is �, the depression
strength is �, and the recurrent excitation strength is �. External
inputs to each population are I1 and I2. The external inputs I1
and I2 explicitly represent synaptic input to the neural popula-
tions. The inputs can take on both positive and negative values
but their values only have meaning with respect to the thresh-
old of the gain function, which we choose to be zero for
convenience. Thus negative values correspond to subthreshold
inputs. Although the range of the inputs is unimportant for our
purposes here, it can be scaled and shifted to match biophysical
units if desired. In theoretical rivalry studies, it is often as-
sumed that the strengths of the external stimuli (e.g., image
contrasts from 0 to 100%) are linearly related to the scalar
values I1 and I2. We will examine the implications of this
assumption in later sections. We generally focus on the case
where I1 � I2 � I (as per L4). We set the time constant of the
activity variables �u to be 10 ms. The habituation time con-
stants, �a and �d, must be significantly larger than �u for the

system to mathematically give rise to rivalry-like behavior
(Curtu et al. 2008); this is a reasonable assumption since
habituation times are generally much longer than spike gener-
ation and synaptic decay times. The physiological values for �a

and �d can span a wide range of scales (McCormick and
Williamson 1989; Huguenard and McCormick 1992; Abbott et
al. 1997; Varela et al. 1999). For simplicity, we set �a � �d �
1 s since results do not depend strongly on these time con-
stants. We can also consider models where the synaptic de-
pression for recurrent excitation is not the same as that for the
mutual inhibition.

The mutual inhibition model (Eqs. 1–3) generally exhibits
three basic behaviors (Moldakarimov et al. 2005; Shpiro et al.
2007; Curtu et al. 2008): 1) Simultaneous activity occurs when
u1 � u2 is the only attractor of the system. Typically, this
occurs when the net input to both populations is very low,
resulting in both-off behavior (u1 � u2 � 0), or when the net
inputs are very high, resulting in both-on behavior. 2) Winner-
take-all (WTA) behavior occurs when the system has two
attractors: u1 at high activity and u2 � 0, or the opposite. We
term these on-off and off-on states, respectively. The system
evolves to one of these two attractors and stays there indefi-
nitely. 3) Oscillations occur when the system alternates be-
tween on-off and off-on states, corresponding to a limit cycle
of the system and thus rivalry. Examples of oscillatory wave-
forms (u1 and u2 as functions of time) are shown in Fig. 3. The
mechanisms for oscillations are discussed in Mechanisms for
Oscillations. The period of oscillations can either increase or
decrease as a function of (increasing) I, and these cases are
denoted increasing-duration (ID) behavior and decreasing-
duration (DD) behavior, respectively, after Shpiro et al.
(2007). [More exotic behaviors may also occur but they are not
generic (Curtu 2010).]

Fig. 3. Three examples of u1(t) and u2(t) when the model is in an oscillation
(rivalry) regime. Waveforms can assume different shapes depending on pa-
rameters. A and B: Laing and Chow-Spike Frequency Adaptation LC-SFA
model (see Fig. 4) with I � 0.4 (A) and I � 1.2 (B). C: waveform for model
parameters as in Fig. 6c, without noise, and with I � 0.5; such model
parameters are similar to those used in Wilson (2007). Both B and C are in
parameter regimes that comply with L4, while A is not in such a regime, even
though the shapes of both A and C appear to share important similarities.
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The type of behavior that the system exhibits depends on the
external input values I1 and I2. A primary result from Shpiro et
al. (2007) and Curtu et al. (2008) is reproduced in Fig. 4, A and
B, where fixed points and limit cycles (oscillations) are plotted
as a function of I1 � I2 � I. Figure 4 shows that as input I is
increased, the system behavior transitions from both-off, to ID
oscillations, to WTA, to DD oscillations, and finally to both-
on. The WTA regime for intermediate input values seen in Fig.
4A is not always present. It can generally be destroyed by
adding input noise (gray curve), decreasing � (Fig. 4B), or
increasing adaptation strength �. Figure 4, A and B, shows only
two sets of parameter choices of Eqs. 1–3. However, these two
bifurcation diagrams are remarkably general across other pa-
rameter choices. Specifically, the existence of a DD oscillation
regime for high I values is almost always accompanied by an
ID oscillation regime at low I values. Recall that it is the DD
regime at high inputs that complies with L4.

Figure 4C shows that the inability for the mutual inhibition
model to fully comply with L4 need not imply an inability to

fully comply with L1–L3 [despite previous claims from Shpiro
et al. (2007) and Ashwin and Lavric (2010)]. Figure 4C shows
the dominance durations of population activity when one input
is held fixed. As shown in Fig. 4C, left, inputs can be entirely
restricted to ID regime values (here, I � 0.625), yet L1–L3 still
hold. Also, the model predicts that the change in dominance
durations for changes in I1 � I2 � I are relatively modest
(within the range of �0.5–1 s) when compared with the
changes seen with asymmetric inputs (spanning �1–5 s). This
prediction agrees with psychophysics observations (Moreno-
Bote et al. 2010). The same qualitative dynamics appear in a
noise-driven model without any habituation mechanism.

The ID regime occurs between the both-off and DD oscil-
lation regime. This implies that for two inactive populations, a
smooth increase in I means that the model must pass through
ID oscillations before reaching DD oscillations. If we assume
that blank stimuli do not evoke significant responses in the
neural populations, then blank presentations would correspond
to the both-off regime. Consequently, starting from blank

Fig. 4. A and B: bifurcation diagram for the LC-SFA model studied in Shpiro et al. (2007) and Curtu et al. (2008) [sigmoid gain function (Eq. 10), adaptation
(� � 0.5), and no depression or recurrent excitation]. Solid lines represent stable fixed points and dotted lines represent unstable fixed points. Solid circles
correspond to rivalry and show the maximum and minimum value of u1 for a limit cycle (oscillations) of Eqs. 1–2. A: case where � � 1.1. A winner-take-all
(WTA) regime exists for intermediate input. Gray curve shows average periods when noise is added to the net input (	 � 0.03; see Eq. 12). B: case where � �
0.75, with no WTA regime. C: plots showing L1–L3 for the model in B and with 	 � 0.03. I1 is fixed at 0.4, 0.625, and 0.85 and I2 is varied. Black and gray
curves show average dominance durations for population 1 and 2, respectively. Vertical line is set at 0.625 as a reference for the value that separates the ID and
DD regimes in B. Arrows 1, 2, and 3 show different points where I1 � I2 (refer to B). Arrows 1 to 2 show ID, and arrows 2 to 3 show DD (the horizontal dotted
line is for reference). Changes in percept duration for L4 (B) are very modest compared with changes for L1–L3 (C). These model predictions are in strong
agreement with experimental observations (see text), with only the modest disagreement of L4, which our study shows can easily be fixed.
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stimuli, a smooth increase in image contrast can yield DD
behavior (L4) only after passing through an ID regime first,
contradicting the proposition. The existence of the ID regime
in mutual inhibition models is something we henceforth refer
to as the “L4 problem.” We note that the L4 problem also
exists for the noise-driven model.

Mechanism for Oscillations

Various versions of Eqs. 1–3 have been studied, yielding
many insights on how the dynamical behavior depends on
system parameters (Shpiro et al. 2007; Curtu et al. 2008;
Wilson 2007). In this section, we present a simple version of
the model with only adaptation (� � 0, � � 0) and a Heaviside
gain function:

f�x� � �0 if x 
 0

1 if x � 0
(4)

This simple example will provide intuition for how the mutual
inhibition model gives rise to different dynamical behaviors
and how these behaviors depend on input I. It will show the
crucial mechanisms for both ID and DD oscillations and it will
help motivate solutions to the L4 problem in general models.

A simple way to study the dynamics of Eqs. 1–2 is to assume
that �a �� �u, which is implicit in our choice of �a � 1 s and
�u � 10 ms. Mathematically, this reduces the dimensionality of
Eqs. 1–2, such that we can essentially assume that ui � 1 if that
population’s net input is above the x � 0 threshold and ui � 0
if its net input is below threshold. Therefore, following the
dynamics of the system simply becomes a matter of following
the net input �ui � �uj � �ai � I to each population. When the
net input crosses threshold a sudden shift in population activity
will occur, potentially giving rise to oscillations. To make these
ideas more explicit, assume that u1 � 1 and u2 � 0. This WTA
configuration (one active, other suppressed) is stable for inter-
mediate input values. For I � � � �, in the absence of any
exogenous perturbation, the active population will never turn
off because the net input will always be above threshold even
for maximal adaptation a1 � 1. Conversely for I � �, the
inactive population can never cross threshold and thus remains
suppressed. Therefore, if � � � � � then WTA behavior
ensues within this input interval. If I is very large, then both
populations will be above threshold and will stay above thresh-
old even after a1 and a2 have saturated, i.e., when I � � � �
� �. For very low I, both populations will stay below threshold
even when a1 � a2 � 0, i.e., when I � 0.

For I � �, which is outside of the WTA regime, the inactive
population, u2, can cross threshold at time T when I � � �
�a2(T), whereupon u2 immediately switches on, inhibits u1,
and causes u1 to switch off. This switch in activity has been
termed escape, since the inactive population escapes from the
suppression of the active population (Shpiro et al. 2007). Note
that escape switches occur because the inactive population
recovers from its adaptation sufficiently to switch back on,
allowing it to suppress the other population, which is relatively
weak from its own buildup of adaptation. Conversely, below
the WTA regime for I � � � �, the active population can drop
below threshold at I � �a1(t � T) � �, whereupon u1
immediately switches off, releasing u2 from suppression. As
such, this type of switch has been termed release (Shpiro et al.
2007).

Oscillations occur when escape or release switches persist
indefinitely. Shpiro et al. (2007) and Curtu et al. (2008) show
that the dominance durations of escape oscillations decrease
with increasing I, while the dominance durations of release
oscillations increase with increasing I. This is easily seen in our
simple example, which is illustrated in Fig. 5. In the escape
regime, increasing I moves the inactive population closer to
threshold, thus facilitating faster switches. In the release re-
gime, increasing I moves the active population further from
threshold, facilitating slower switches. To summarize, escape
oscillations only occur for large external input (I � �) and give
rise to DD behavior, while release oscillations only occur for
low external input (I � � � �) and give rise to ID behavior.
This simple picture of two populations racing to a threshold
holds in general for arbitrary gain functions (Curtu et al. 2008),
and as seen in Fig. 5 implies that the DD oscillation regime
must, in general, coexist with an ID oscillation regime.

SOLUTIONS TO THE L4 PROBLEM

The dynamics of Eqs. 1–3 show that for mutual inhibition
models to be entirely consistent with L4, the ID region must be
removed. If L4 is experimentally invalid for some small range
of very low contrast values, then minimizing the ID regime in
the mutual inhibition model would suffice as a solution. We
show how the ID region can be reduced or eliminated by
manipulating the parameters of Eqs. 1–3 or by preprocessing
the inputs. We elaborate these solutions in the following

Fig. 5. Dynamics of the mutual inhibition model can largely be characterized
by tracking the net inputs to each population. Here we show a case where f(x)
is a Heaviside function and only adaptation is considered (� � 0). We set u1 �
1 and u2 � 0. Net input to population one is therefore � � �a1 (t) � I. Net
input to the inactive population is �� � �a2(t) � I. A switch in activity occurs
when either population crosses the firing rate threshold at zero. Alternatively,
a switch in activity occurs when the “effective net input” [� ��a1(t), black
curve, active population, and �� � �a2(t), grey curve, inactive population]
crosses �I. Input I can therefore be thought of as setting the “effective
threshold” of the firing rate function. Increasing I (black arrows) therefore
decreases the effective threshold (dotted lines). Switches in activity occur
when either curve crosses the �I threshold (events marked by *).
A: when I is low, switches occur when the active population crosses threshold
(release), and increases in I lead to longer time durations before a switch occurs
(ID behavior). For intermediate I, neither population will cross threshold and
WTA ensues. For larger I, switches occur when the inactive population crosses
threshold, and increases in I lead to shorter durations before a switch occurs
(DD behavior). B: parameters can be set such that WTA can never occur for
any value of I.
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sections, giving biophysically plausible implementations for
each.

Control of ID Region Through the Gain Function

Although the work from Shpiro et al. (2007) and Curtu et al.
(2008) suggest the generality of the L4 problem in mutual
inhibition models, two forms of Eqs. 1–3 have been studied
(Taylor et al. 2002; Wilson 2007) that prohibit release, yet
allow escape. Here, we show that both of these solutions,
which rely on sharp thresholds in f(x), are not robust to noise
but do suggest parameter choices that significantly minimize
the ID regime.

In Mechanisms for Oscillations, we included adaptation but
omitted synaptic depression. As shown in Taylor et al. (2002)
and Kilpatrick and Bressloff (2010), the Heaviside model with
depression but no adaptation yields only DD oscillations,
which solves the L4 problem. This occurs because synaptic
depression only weakens the inhibition on the suppressed pool.
Hence, when the inhibition is sufficiently weakened by the
depression, escape can occur. Given that there is no habituating
process acting on the active pool, there is no mechanism for
release, and therefore no ID oscillation regime. However,
Shpiro et al. (2007) studied a synaptic depression model with
a sigmoid gain function (Eq. 10) and found that it included
both ID and DD regimes. The exclusion of release switches in
the Heaviside-depression model is thus dependent on the sharp,
discontinuous threshold in the gain function. When this thresh-
old is smoothed as would occur with noise, release oscillations
become possible because as the synaptic depression weakens,
inhibition from the suppressed population to the active one,
which is always zero in the Heaviside case, increases and
effectively weakens the active population. However, synaptic
depression still favors escape switches over release switches
and makes the DD regime larger because it primarily acts on
the net input of the suppressed pool. This explains why the DD
regimes are larger in simulations of a model with synaptic
depression in Shpiro et al. (2007) (also see our Fig. 8A). This
regime-size asymmetry can be controlled by the shape of the
sigmoid function.

Alternatively, the adaptation-only model with weak recur-
rent excitation and a linear threshold gain function [f(x � 0) �
x; f(x � 0) � 0] can also preclude release switches (Wilson
2007). This gain function is continuous but not smooth at the
x � 0 threshold. The active population weakens due to accu-
mulating adaptation, but it can never push the population
below threshold. This is because as adaptation ai increases, ui
decreases until it reaches a steady state at ui � ai, i.e., ui � I/(1 �
� � �). This value is always above zero for I � 0 (and for small
�), making the escape condition the only possible mechanism for
oscillation. Note that for I � 0, the only attractor is both-off,
implying that the system transitions directly from both-off to
escape oscillations. Compare this to the Heaviside-adaptation
example, where ai approached the fixed value ui � 1; thus the
net input � � �ai � I could fall below threshold. Although the
linear threshold gain function with adaptation yields only es-
cape oscillations, the dominance duration, T, turns out to be
constant for changes in I (see APPENDIX). This can be changed
if the x � 0 portion of f(x) is concave [i.e., f� (x) � 0; Fig. 6A,
black curve]. Such a choice of f(x) yields only DD oscillations
(Fig. 6C, black curve), solving the L4 problem. However, this

solution to the L4 problem by prohibiting release is not robust
to noise. If we smooth out the sharp threshold then we regain
the ID regime, as shown in Fig. 6, A and B. The ID regime
reemerges because the inhibition for the active population is no
longer precisely zero allowing a mechanism for release to
become possible. Notice from Fig. 6B, however, that the DD
regime is larger than the ID regime when we choose a smooth
gain function that approximates a sharp threshold at x � 0.

Thus the lack of ID regimes in Taylor et al. (2002) and
Wilson (2007) is dependent on sharp thresholds in the gain
functions. This is to be expected since Curtu et al. (2008)
proved the coexistence of ID and DD regimes for models with
adaptation only and smooth gain functions. This implies that
the solutions are not robust to noise, because sharp cusps in
input-output functions are “smoothed out” when input noise is
added. For example, a white noise input to a Heaviside func-
tion results in an input-output relationship that can be approx-
imated by a sigmoid. Additionally, the firing rate response
curves of integrate-and-fire neurons have been shown to un-
dergo similar “smoothing” in the presence of noise (Brunel and
Latham 2003). Noise is considered an essential and inevitable
feature of rivalry due to the stochasticity in dominance dura-
tions. Therefore, it may be appropriate to only consider smooth
gain functions in our analysis. However, in both Taylor et al.

Fig. 6. A: 3 gain functions are considered: f(x) � ��x�� (see Eq. 8) with a
sharp threshold at x � 0, f(x) � ��x�* (see Eq. 11) with c � 0.01 (less
smoothing), and f(x) � ��x�* with c � 0.05 (more smoothing). Compare the
shape of the square root function with the sigmoid (inset), which was used for
Fig. 4, A and B. B: period-input curves for f(x) � ��x�* and adaptation only.
C: period-input curves for f(x) � ��x�� without input noise (black curve) and
with input noise (gray curve, 	 � 0.05).
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(2002) and Wilson (2007), the ID regime can be made small by
choosing smooth functions that closely approximate the sharp
threshold function. In fact, the ID regime can be made arbi-
trarily small based on the degree of smoothing.

Control of ID Region Through Recurrent Excitation

Strong recurrent excitation can preclude release oscillations
even with smooth gain functions. Recurrent excitation steepens
the population’s firing rate response curve if it is weak (Fig. 7,
gray curve); while strong recurrent excitation produces a hys-
teresis effect in the population’s firing rate response (Fig. 7,
black curve), where the population jumps to the active state at
some input but drops back down to the inactive state at a lower
level of input. Thus strong recurrent excitation yields a bistable
regime in the population’s response, which can destroy ID
oscillations. Recurrent excitation may also destroy the DD
regime but not with sufficient synaptic depression. In Mecha-
nisms for Oscillations, the analysis showed that the distance
from the beginning of the DD regime and the beginning of the
both-on regime is given by � � �. Likewise, the distance from
both-off to the end of the ID regime is also � � �. This implies
that if � � �, then neither escape nor release oscillations exist
as a result of adaptation. We generally see the same effect for
other gain functions: if recurrent excitation strength overpow-
ers adaptation strength, then this generally destroys both ad-
aptation-mediated ID and DD oscillations.

Once depression is added to the model, the dynamics become
more complicated. We showed that release oscillations are pos-
sible for models with smooth gain functions and depression only

but that the ID regime is relatively small (Fig. 8A). Release
oscillations can occur if the recovery of inhibition to the active
population can cause the active population to drop below
threshold. However, strong recurrent excitation of the active
population can cause a persistent activity effect, overpowering
the effects of the inhibition and ensuring that the active
population remains above threshold. The persistent activity
effect, however, does not necessarily prevent the inactive
population from crossing threshold at higher I values. Simula-
tions clearly show that escape oscillations at high I values
remain possible across a variety of smooth gain functions (see
Fig. 8B for one example). Therefore, strong recurrent excita-
tion is one way to solve the L4 problem without resorting to a
new mechanism. This solution is robust and holds for arbitrary
gain functions.

A potential issue of recurrent excitation is that it can lead to
rhythmogenesis in a single population (Shpiro et al. 2007).
Strong adaptation could cause the population to alternate in-
definitely between on and off states. However, this only occurs
when the range of the adaptation spans the input range where
the population is bistable. Also note that rhythmogenesis
would be impossible if synaptic depression was the primary
habituation mechanism since it only works to weaken the
inhibition to the suppressed pool.

Figure 8B shows that a relatively large WTA regime persists
before DD oscillations for increasing I. Input noise will induce
oscillations in this regime by destabilizing each of the states.
However, strong noise reintroduces ID behavior for low I,
while weak noise does not produce robust oscillations in the
center of the WTA regime. Hence, a smooth increase in I from
I � 0 may not match experiments where rivalry occurs for even
very low contrasts. This forces us to more closely examine how
contrast is related to I, and we expand on this in the following
sections. The model in Fig. 8B also shares important similar-
ities with a L4-compliant nonmutual inhibition model pro-
posed by Moreno-Bote et al. (2007), and this is discussed in
Energy Well Models. Figure 8B also shows a region where
both-on and oscillation behaviors overlap. In this region, the
system evolves to the both-on fixed point when the initial d1
and d2 values are both near their asymptotic steady states.
Sufficient asymmetry in the d1 and d2 initial values yields
oscillations.

Fig. 7. Effect of recurrent excitation on a population’s firing rate response.
Here, f(x) � ��x�* with c � 0.05.

Fig. 8. A: dynamical behavior for a model
with f(x) � ��x�* with c � 0.05 and de-
pression only. � � 2, � � 2. Gray curve
shows the case with input noise (	 � 0.02).
B: Recurrent excitation is added. � � 1.75,
� � 2.5, and � � 1.5 (	 � 0.07; gray curve).
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Control of Inputs

Here, we show how control of the inputs to the mutual
inhibition circuit can lead to robust solutions to the L4 prob-
lem. It is not known how the strength of the external stimulus
(e.g., contrast, which we denote by C) should be translated to
the neural input I. For simplicity, rivalry models often assume
a linear relationship between C and I. Although this assump-
tion is not fully validated, it is nevertheless useful because it
qualitatively captures any bijective map between contrast and
neural input. That is, for any I � g(C), where g is an increasing
one-to-one and onto function of C, the bifurcation diagram
with C as the bifurcation parameter would be qualitatively
unchanged. It would simply compress or stretch the different
behavior regimes. Although we do not know how stimulus
strength translates to input I precisely, the input must be
bounded. For oriented gratings, the stimulus strength is
bounded between 0 and 100% contrast, which places bounds
on the value of neural input I. The lower 0% contrast (blank
stimulus) bound could either translate to an I value that falls
within the both-off regime or within one of the oscillation
regimes. However, a constraint that must be satisfied is that
there be no perception for blank stimuli. Although, the straight-
forward assumption is to assume that blank stimuli correspond
to both-off, as we will discuss in more detail below, there can
be other possibilities.

Restriction of input. A simple way to solve the L4 problem
is to assume that the biophysical I values lie only within the
DD oscillation regime. For example, we can assume that for
the model in Fig. 6B, I values are restricted to I [2, 6]. This
implicitly assumes that C � 0 corresponds to I � 2 and the
circuit will be active and undergoing rivalry in the absence of
a stimulus. Neural activity in the absence of a stimulus is not
necessarily problematic since spontaneous activity is prevalent
throughout the brain, and sensory neurons exhibit background
firing rates even when no stimuli are being presented (San-
severino et al. 1973; Ringach 2009). Associating blank stimuli
with an I value within the model’s oscillation regime, however,
predicts that spontaneous activity would exhibit neural firing
that rivals (i.e., modulates) over a time scale of seconds. This
would be in contrast to the both-off state, which would corre-
spond to low spontaneous background activity with no tempo-
ral structure. The both-off regime corresponds to a u1 � u2
steady state that is low but nonzero given that a smooth (e.g.,
sigmoidal) gain function never goes completely to zero. For
example, in Fig. 4, A and B, at the upper end of the both-off
regime, we have spontaneous activity represented by u1 � u2
� 0.1, which is �10% of the maximal firing rate given by the
gain function of that model. In either case, we must assume that
this spontaneous activity would be below a perceptual thresh-
old so that the observer does not hallucinate one of the percepts
during a blank presentation.

It is unclear which input regime, both-off or oscillations,
best represents the spontaneous activity in the absence of a
stimulus that is observed in cortex. Spontaneous activity is
often regarded as a noisy background firing rate (Tolhurst et al.
1983), although there is evidence that spontaneous activity has
coherent spatio-temporal structure (Ringach 2009), with mod-
ulations occurring over multiple time scales (Kohn and Smith
2005). In either case, it is important for rivalry models to be
explicit on how they behave in the absence of stimuli if they

are to replicate findings from psychophysics experiments that
incorporate blank presentations [e.g., as in the on/off sequences
that probe the phenomena known as “rivalry memory” (Pear-
son and Brascamp 2008)]. In the DISCUSSION, we argue that it is
more difficult to reconcile findings from these experiments in
a mutual inhibition framework if 0% contrast is taken to fall in
an oscillation regime. Current rivalry memory models (Wilson
2007; Noest et al. 2007) indeed presume both-off behavior for
blank stimuli (SEE DISCUSSION).

Mathematically, however, the restriction of input solution
implies that if a nonmutual inhibition model solves the L4
problem but also assumes rivalrous activity in the absence of a
stimulus [e.g., as in the models from Moreno-Bote et al. (2007)
and Ashwin and Lavric (2010)], then this cannot be taken as
evidence for that model over the mutual inhibition model, at
least with regard to its ability to replicate L4. [We will analyze
the models from Moreno-Bote et al. (2007) in Energy Well
Models].

Preprocessing of input. If we assume that the spontaneous
activity is not modulated during blank presentations, then we
require that both rivalry populations are inactive (where inac-
tive implies nonrivalrous spontaneous firing rate) for subdetec-
tion contrasts. Here, we propose a solution that constrains the
model to predict both-off activity for contrasts below detection
threshold, and DD oscillations for contrasts above detection
threshold. In Restriction of input we suggest that if we only
require DD oscillations for some bounded range of inputs, then
this can be accomplished trivially in mutual inhibition models.
If we require a sharp transition from both-off to DD oscilla-
tions, then this cannot be accomplished trivially since mutual
inhibition models generally pass through the ID regime first.
Note, however, that such transitions are not uncommon in
dynamical systems. As an example, the Hodgkin-Huxley
model exhibits purely DD oscillations as input is increased.
The stable fixed point at low inputs (resting membrane poten-
tial) undergoes a subcritical Hopf bifurcation (action potential
threshold), yielding a monotonic decreasing-period depen-
dence for repetitive action potentials. The Hodgkin-Huxley
equations per se, however, are not likely candidates for rivalry
because they lack an inherent symmetry between two percepts
(e.g., as in Eq. 1 where equations for the two populations are
identical but with opposite indexes). This symmetry makes
finding the both-off to DD oscillation transition nontrivial.

A way to accomplish this transition is to preprocess the
inputs I. One such preprocessing function could be

I � g�C� � �0 if C 
 �C

C if C � �C
(5)

where �C is set at any value in the model’s DD oscillation
regime. This would indeed predict the desired both-off to DD
transition, since I values would be prohibited from the interval
(0,�C). However, this jump discontinuity would not be robust
to noise. Alternatively, we could set the function g(C) to be a
smooth approximation of Eq. 5 such that the ID regime is
traversed quickly (Fig. 9A, gray curve). As discussed previ-
ously, this would not destroy the ID regime, but it could make
it arbitrarily small. As a third mathematical possibility, we
could replace the parameter I in Eq. 1 with a dynamical
variable I:
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İ � C �
1

3
I3 �

m1 � m2

2
I2 � m1m2I (6)

where m1 and m2 indicate the two limit points of the bifurcation
diagram (Fig. 9A, black curve). As I evolves at some fast time
constant (say, on the order of the activity variables), then I
approaches either the top or bottom branch of Fig. 9A but is
asymptotically restricted from values in [m1,m2]. We can
therefore arbitrarily set [m1,m2] to encapsulate the ID regime
of, say, the model in Fig. 6B. By setting m1 � �0.2 and m2 �
2.8 (vertical lines in Fig. 6B), the system exhibits the behavior
seen in Fig. 9B. As input is increased, the system jumps from
both-off behavior directly to DD oscillations. When I is on the
bottom branch of Fig. 9A, then both-off behavior is the only
attractor of the system. When I is on the top branch, the system
exhibits rivalry (and for very large inputs, both-on behavior).
The choice of Eq. 6 is similar to Eq. 5 in that it restricts I values
from an interval, but Eq. 6 contains no mathematical discon-
tinuities. However, both equations require tuning the parame-
ters to skip the ID regime. Equation 6 might be considered an
explicit model for contrast detection, where the difference

between the two branches represents a perceptual threshold.
The form of Eq. 6 was chosen for mathematical simplicity.
Alternative forms with the same qualitative behavior could be
chosen such that the abscissa of Fig. 9A has appropriate
quantitative values (e.g., C from 0 to 1). An experimental
consequence of Eq. 6 is that there will be coexistence of rivalry
and no perception over a range of contrasts and the transition
between the two behaviors will exhibit hysteresis. The quali-
tative relationship between C and I seen in Fig. 9A is general
and may result from various biological mechanisms. In Multi-
ple populations, we show how the same input control can be
achieved through simple extensions to the mutual inhibition
model.

Multiple populations. The ID regime can be removed by
suppression from a background population consisting of one or
more populations (see Fig. 10A). As an example, consider a
single additional population that is responsive to other features
of the visual field and has mutually inhibitory connections to
both rivalry populations. Suppression from this background
activity prohibits activity in the rivalry circuits for low contrast
while allowing rivalry activity for higher contrast. The three
populations obey

�uu̇1 � �u1 � f1���1u2d2 � �2u3 � �a1 � I1�
�uu̇2 � �u2 � f1���1u1d1 � �2u3 � �a2 � I2�
�uu̇3 � �u3 � f2���2�u1 � u2� � Ibg�

(7)

where �1 is the inhibition strength between the rivaling popu-
lations and �2 is the inhibition strength of the connections to
and from a third population. We use different firing rate
functions, f1 and f2, for the rivaling populations and the third
population, respectively. Ibg represents a constant input to the
third population, although mathematically we could omit this
and just replace f2(x) with f2(x � Ibg). Figure 10B shows an
example bifurcation diagram. Note the similarity of Figs. 9B
and 10B. In particular, the entire ID regime is destroyed due to
the suppression by the third population. This three population
model also includes a bistable regime between both-off and
DD oscillations for low I. The features of Eq. 7 can be
understood with a simple analysis. The total external input to
populations one and two can be taken to be I ��2u3. Due to the
connectivity of the network, u3 is bistable between active and
inactive states. The Ibg term assures that u3 is active when the
rivalry populations are not activated. As I increases, input to
populations one and two will overcome the suppression of
population three, causing u3 to shut off. The state of u3 is
analogous to the dynamical variable I from Eq. 6.

This multiple population solution is identical to the prepro-
cessing solution in terms of perceptual behavior as a function
of increasing contrast. They both yield sharp transitions from
the both-off to DD oscillations. The form of input control
captured qualitatively by Eq. 6 may have other possible im-
plementations. The central idea is that mutual inhibition dy-
namics serve as the substrate of the rivalry process while
external components can mediate access to the input regimes.
A feature of these models is that their ability to resolve the L4
problem is robust to noise as long as noisy inputs are them-
selves not strong enough to bridge the gap between inactive
and active states (of I in Eq. 6 or of u3). This is notable because
as we have mentioned previously, adding noise in the mutual
inhibition model generally broadens the ID regime, even if it

Fig. 9. A: relation between external stimulus strength C and neural input I as
described by a simple dynamical system given by Eq. 6 (black curve). For a
given stimulus strength, the neural input simply takes on the value of one stable
attractors (solid lines). In the bistable regime, the value of neural input depends
on its initial condition (above or below the unstable fixed point, dashed line).
Gray curve shows a hypothetical preprocessing I � g(C) that would not
destroy the ID regime, but would make it very small. B: The dynamical
behavior for the model given in Fig. 6B {f(x) � ��x�* with c � 0.05 and
adaptation only} when the parameter I is replaced with the variable I from Eq.
6. m1 � �0.2 and m2 � 2.8 as to encapsulate the ID regime of Fig. 6B (see
vertical lines of Fig. 6B).
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was made to vanish through parametric manipulations (see
Control of ID Region Through the Gain Function).

Energy Well Models

A number of recent studies (Moreno-Bote et al. 2010; Kang
2009; Moreno-Bote et al. 2007; Suzuki and Grabowecky
2002; Brascamp et al. 2006) employ an energy well scheme
to describe the dynamics of rivalry (Fig. 11B). Since such
models have been shown to be capable of solving the L4
problem (Moreno-Bote et al. 2007), we examine how they
relate to our current findings. The idea is that the energy
landscape of the rivalry circuit can be described by a double
well potential. The system evolves to the bottom of one of
the two wells, which represent WTA states of one percept
active and the other suppressed. The system switches be-
tween states via noise or adaptation effects that modulate the
energy landscape.

Energy well models are often presented as a normative
framework of rivalry. Equations can be prescribed to the
energy landscape that governs the dynamics of the system
(Moreno-Bote et al. 2007), and this can be done without

supposing which cortical mechanisms might be responsible for
generating these dynamics. Arguably, the simplest way to
implement energy well dynamics (i.e., two attractor states) in a
mechanistic model is mutual inhibition. Any Lyapunov func-
tion of the neural activity equations (Eq. 1) would represent
two potential wells in the u1–u2 domain, thus retrieving the
same schematic in Fig. 11B, but in two dimensions. That is,
mutual inhibition models (Eqs. 1–3) are energy well models.
However, there is a distinction between one-dimensional en-
ergy well models [e.g., Moreno-Bote et al. (2007)] and the
neural activity equations (Eq. 1) in that energy well models
have a one-dimensional activity space, while mutual inhibition
models have two dimensions (i.e., the firing rates of the 2
populations are individually described). Therefore, one-dimen-
sional energy well models describe only the WTA on-off and
off-on states. Alternatively, the two-dimensional rate equations
(Eq. 1) can describe both-off and both-on states in addition to
the two WTA states. Therefore, any one-dimensional energy
well model that gives L4 also assumes rivalrous activity in the
absence of a stimulus. Thus the energy well solution to the L4
problem presented in Moreno-Bote et al. (2007) falls within the

Fig. 10. A: 3-population model architecture. Popu-
lations 1 and 2 encode the rivalry percepts, while
population 3 represents background activity. Third
population receives a small background input Ibg to
ensure it remains active when I1 � I2 � 0. Inhibi-
tion from population three prevents activity in u1

and u2 when I1 � I2 is low. This prevents the circuit
from operating in the ID oscillation regime. Inhibi-
tion to the third population allows u1 and u2 to
assume activity when I1 � I2 become sufficiently
high. B: dynamical behavior of the model. In terms
of general dynamical behavior, Figs. 9B and 10B
are identical. We set �1 � 2, �2 � 4, � � 1, and � �

3. Firing-rate functions are f1(x) � ��x�* with c �
0.05 and f2(x) is a sigmoid with r � 1.5 (see
APPENDIX).

Fig. 11. A: global-excitation, local inhibition (GELI)
architecture. B: energy well model. C: dynamical
behavior for the GELI model. Vertical lines are set at
I � 0 and I � 0.1, showing the range of inputs
studied in Moreno-Bote et al. (2007). Noise case is
given by 	 � 0.07.
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realm of solutions to the mutual inhibition model via restriction
of input (see Restriction of input).

Moreno-Bote et al. (2007) also used the energy well frame-
work to motivate a more general global-excitation, local inhi-
bition (GELI) model (Fig. 11A). The equations for the GELI
model are similar to Eqs. 1–2 (and thus can describe the
both-off state). The GELI architecture is one example in which
two attractor states can be achieved without strict mutual
inhibition, although the effect of mutual inhibition is present
indirectly via connectivity with a shared excitatory pool [there-
fore, it might be appropriate to call this an indirect mutual
inhibition model, as in Moreno-Bote et al. (2010)]. The GELI
model yields only DD oscillations (Fig. 11C). Since a cortical
model not based on mutual inhibition can yield L4 for all input
values, this has been taken as evidence against the standard
mutual inhibition architecture (Moreno-Bote et al. 2007). How-
ever, the dynamics of the GELI model (seen in Fig. 11C) are
qualitatively identical to the mutual inhibition model with
strong recurrent excitation (Fig. 8B). Namely, both transition
from the both-off regime to the WTA regime (such that the ID
regime is surpassed) and then to the DD oscillation regime.
Strong recurrent excitation is also present in the GELI model,
which is how the model achieves WTA states for I � 0. We
claim that the lack of an ID regime is exclusively due to
recurrent excitation, and this can be also be achieved in a strict
mutual inhibition framework (see Control of ID Region
Through Recurrent Excitation). Nevertheless, the GELI model
emphasizes that “mutual inhibition” need not imply direct
connectivity between perceptual neurons.

The GELI model and our recurrent excitation model assume
WTA activity for I � 0. This implies that switching between
the two percepts can occur in the presence of noise. This is
similar to the restriction of input solution; here, rivalrous
activity in the absence of a stimulus is enforced via recurrent
excitation as opposed to a shift in accessible I values. If we
consider negative I values as well, then these models exhibit a
both-off to WTA transition (Figs. 8B and 11C) instead of the
both-off to DD transition we presented in previous sections.
Although input noise induces rivalrous switching in WTA
regimes, typical input noise strengths produce unreasonably
long dominance durations near the center of the WTA regime,
while higher noise strengths can reintroduce ID behavior. Thus
it is unclear whether these models can capture realistic both-off
to oscillation transitions. Nevertheless, due to the qualitative
effect of removing the ID regime, recurrent excitation might be
worth exploring further through implementations different
from a linear �ui term. One example could be with spatially
extended connectivity (Laing and Chow 2002; Kilpatrick and
Bressloff 2010).

Moreno-Bote et al. (2007) also emphasized the role of noise
in their models, distinguishing between “noise-only” and “ad-
aptation-only” models. As we mentioned earlier (GENERAL MU-
TUAL INHIBITION MODEL), mutual inhibition models produce the
general L1–L4 behavior regardless of whether it is noise,
adaptation, or a combination of the two that facilitate switches.
The same observation applies to other two-attractor (i.e., en-
ergy well) models.

Although the energy well model from Moreno-Bote et al.
(2007) assumes rivalrous activity in the absence of input, it
may offer may offer important insights into the dynamics of
rivalry. An interesting result from Moreno-Bote et al. (2010) is

that when the contrast of one eye is held constant and the other
changed, then the maximum alternation frequency occurs when
C1 � C2 [note that this is not a trivial consequence of L1–L3;
see Moreno-Bote et al. (2010) for details]. The authors found
that the energy well model developed in Moreno-Bote et al.
(2007) matched perfectly with this “alternation rate is maximal
at equi-dominance” result. Mutual inhibition models, as well as
the GELI model, were also capable of replicating the result, but
only after a rescaling (normalization) of the asymmetric inputs.
The energy well framework has also been useful in describing
the effect of perceptual “trapping” in binocular rivalry (Suzuki
and Grabowecky 2002).

DISCUSSION

Our work was primarily motivated by Shpiro et al. (2007),
which showed that mutual inhibition models disobey L4 at low
contrasts. Since mutual inhibition architecture remains an at-
tractive candidate for modeling perceptual bistability phenom-
ena, we have proposed simple modifications to the general
mutual inhibition model that resolve this discrepancy. Our
proposals are quite general and would apply to any circuit with
mutual inhibition.

One focus of our work was on how rivalry models behave in
the absence of stimuli. If we presume that significant neural
activity in the model explicitly represents a percept then this
would constrain activity to be below the perceptual threshold
for blank stimuli. This can take the form of the both-off regime,
where background spontaneous activity would resemble sta-
tionary noisy activity (since u1 and u2 are generally small but
nonzero in this regime). Alternatively, blank stimuli may
correspond to an oscillation regime, where the circuit rivals in
the absence of any stimuli (implying highly structured, large
amplitude spontaneous activity). Mathematically, the models
of Moreno-Bote et al. (2007) and Ashwin and Lavric (2010)
follow the latter assumption, although they were generally
presented as capturing the dynamics of rivalry for only non-
blank stimuli. Such an approach may indeed be beneficial as
evident by general insights offered by the energy well frame-
work (Moreno- Bote et al. 2010; Hohwy et al. 2008; Suzuki
and Grabowecky 2002). Nevertheless, the distinction is impor-
tant because the L4 problem arises precisely because of the
transition from both-off to oscillations. By also assuming
rivalrous activity in the absence of a stimulus, the mutual
inhibition model can indeed fully account for L4 via the
“restriction of input” (see Restriction of input) or strong recur-
rent excitation (see Control of ID Region Through Recurrent
Excitation). This implies that nonmutual inhibition models that
give L4 but also assume rivalrous activity in the absence of
stimuli cannot be taken as evidence against mutual inhibition
(with regard to L4). Our proposed solutions that allow the
mutual inhibition model to transition directly from both-off to
DD oscillations could also be applied to other models.

Understanding how rivalry models behave in the absence of
stimuli is important for replicating psychophysics experiments
incorporating on/off presentations of ambiguous images. For
example, the Wilson (2003) model replicates results from
Logothetis et al. (1996) that use flicker and switch stimuli,
where ambiguous images are presented in an on/off cycle of 18
Hz (and images are swapped between the eyes three times per
second). Also, the Wilson (2007) and Noest et al. (2007)
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models replicate rivalry memory, a phenomena that emerges
when continuous presentations are interrupted by a blank
stimulus for a second or more; upon reintroduction of the
ambiguous images the previously dominant percept tends to
reappear (Leopold et al. 2002). This phenomena is novel
because on/off timings can be set such that one percept remains
dominant for minutes at a time. All of these models assume the
both-off attractor for the blank portions of the on/off cycles,
and results could not be replicated in these models otherwise.
To see this, consider rivalry memory. The Noest et al. (2007)
and Wilson (2007) mutual inhibition models include facilita-
tion terms that bias the previously active percept to regain
dominance. The activity variables quickly decay to the both-off
attractor during the blank stimulus interval. When the im-
ages are reintroduced, the system immediately assumes two
WTA attractors, and the model must “choose” one of the
two states. A memory trace from the previously active
percept is incorporated into facilitation terms that ensure
that the both-off “initial condition” falls within the basin of
attraction of the appropriate (i.e., previously dominant)
state. These facilitation inputs are weak enough that they do
not significantly affect the rivalry process but are strong
enough to successfully bias the value of the both-off attractor
state. Alternatively, models that assume rivalrous activity in
the absence of a stimulus would not predict rivalry memory.
For a blank interval lasting several seconds, the model would
simply continue to rival (presumably below some perceptual
threshold) and not replicate the ability of certain on/off timings
to reliably stabilize a single percept for minutes at a time.

The Wilson (2007) and Noest et al. (2007) models are
extensions of general mutual inhibition models, and the exten-
sions that account for rivalry memory do not significantly
affect the dynamics of standard rivalry. The extensions are
necessary because Eqs. 1–3 do not, in themselves, predict
rivalry memory. The habituation variables during blank inter-
vals bias the previously suppressed percept to attain domi-
nance. This phenomena is indeed observed experimentally
when blank intervals are sufficiently short (less than �500 ms),
whereas the rivalry memory effect requires longer blank dura-
tions. Importantly, the Noest et al. (2007) model successfully
captures both experimental features: forced percept switches
for short blank durations and percept stabilization for long
blank durations.

The Noest et al. (2007) model is a mathematical variation of
Eqs. 1–2 involving the same general dynamics, i.e., mutual
inhibition enforces two attractor states where switches can
occur due to adaptation or noise. Under the presence of noise,
the Noest et al. (2007) formulation indeed includes both ID and
DD behaviors (data not shown). Our input preprocessing so-
lution or its biophysical implementations would allow this
model to transition from both-off to DD oscillations to comply
with L4. These extensions would not affect the model’s ability
to replicate phenomena that utilize on/off sequences, since
these solutions only affect behavior for contrasts near detection
threshold. Importantly, these solutions would not affect the
“memory trace” of the model. The facilitation variable would
still be allowed to grow and decay across a continuum of
values, allowing it to replicate experimental features not cap-
tured by the binary memory trace of the Wilson (2007) model
[see Pearson and Brascamp (2008)]. Our extensions also do not
conflict with other variations of the Noest et al. (2007) model

that allow it to account for flash suppression and flash facili-
tation (Brascamp et al. 2007), memory effects across multiple
time scales (Brascamp et al. 2008), and the effects of voluntary
control on the percept-choice process (Klink et al. 2008). The
general idea is that the Noest et al. (2007) model incorporates
a mathematically parsimonious extension to mutual inhibition
models to account for various phenomena involving on/off
presentations, and our solutions to the L4 problem fit in nicely
with the Noest et al. (2007) framework because they do not
affect the evolution of the model’s facilitation variable.

In binocular rivalry, fused percepts or fusion (i.e., a super-
position of both left- and right-eye stimuli) may occur for a
significant portion of viewing duration, even when steps are
taken to minimize their occurrence. For example, van Ee
(2009) used stimuli that yielded a 2% occurrence of fusion for
high contrast stimuli and up to a 30% occurrence for low
contrast stimuli [other experiments also show that the predom-
inance of fused percepts decrease with increasing contrast
(Hollins 1980)]. It is unclear how fused percepts should be
modeled in a mutual inhibition framework. A natural assump-
tion is that the both-on state corresponds to fusion. However,
this state only occurs for high contrast stimuli in the mutual
inhibition model, which raises the question of what could
represent fusion for low contrast. One possibility is that this is
represented by a third population in the multipopulation model.
This hypothesis would predict that high contrast and low
contrast fusion are inherently different. High contrast fusion is
a coexistence of the two percepts, whereas low contrast fusion
is a combination of the two stimuli into a different distinct
percept. Another prediction would be that low contrast fusion
would form more easily if the combination of the two stimuli
more naturally form a single gestalt such as oblique gratings
(i.e., parallel lines) into a plaid, whereas high contrast fusion
would be relatively independent of the congruity of the two
stimuli. In experiments, high contrast fusion occurs reliably if
stimulus presentations are very short (�100 ms; Wolfe 1983),
and this effect is captured by mutual inhibition models if u1 �
u2 � 0 is assumed to yield a fused percept [upon stimulus
introduction, u1 and u2 increase simultaneously for a brief
duration until the system chooses one of the two WTA states;
see Noest et al. (2007)].

Although our work showed how mutual inhibition models
can fully comply with L4, it is possible that L4 itself is invalid
at low contrasts. Although published data on L4 is sparse, DD
behavior does appear to hold down to the contrast detection
threshold for oriented gratings [e.g., Fig. 1B of van Ee (2009)].
However, convincing confirmation of L4 would require high
resolution sampling of contrast values just above detection
threshold (where one would expect ID behavior to occur, if it
exists). Liu et al. (1992) examined ambiguous oriented gratings
at very low contrasts and reported that at stimulus onset,
subjects initially perceive a fused overlap of the two gratings.
The fused percept lasts several seconds but eventually rivalry
occurs. This could be modeled by a third population represent-
ing the fused percept competing with the two others represent-
ing the two stimuli. The authors did not report on dominance
durations during rivalry, but they did show that in this very low
contrast regime, an increase in contrast resulted in a monotonic
decrease in the transient duration of the initial fused percept.
This result might be taken as evidence that L4 holds down to
contrast detection threshold. That is, we may suppose that for
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increases in contrast, the reported decrease in stability of the
initial fused percept would imply a similar decrease in stability
for the individual percepts once rivalry begins. This would
imply faster perceptual switches or L4. Therefore, solutions to
the L4 problem in the mutual inhibition model that eliminate
the ID regime altogether may be favorable to the solutions that
merely minimize the regime.

We considered models with adaptation and/or synaptic de-
pression (with and without noise). Shpiro et al. (2009) showed
that both a deterministic adaptation process and noise are
required to reproduce the gamma distribution of dominance
durations seen experimentally. A consequence of an adaptation
process is that it produces successive correlations in dominance
durations. Although early studies have shown such correlations
(Fox and Herrmann 1967; Lehky 1995; Leopold and Logothe-
tis 1996), they have been regarded as too small to be signifi-
cant, implying that adaptation is not involved in rivalry. On the
other hand, noise-only models (Moreno-Bote et al. 2007) while
showing no correlations, yield an exponential distribution of
dominance durations that is not observed. A recent study from
van Ee (2009) showed significant nonzero correlations for
successive dominance durations by accounting for previously
ignored experimental impurities (reaction time, drift, and in-
complete percepts). Several other experimental studies (van Ee
2011; Alais et al. 2010; Kang and Blake 2010; Kim et al. 2006;
Suzuki and Grabowecky 2002) suggest that adaptation mech-
anisms play a role in rivalry. This is in contrast to other
modeling efforts that emphasize the role of noise in causing
perceptual switches (Moreno-Bote et al. 2007; Gigante et al.
2009). As we stated earlier, the L1–L4 dynamics of the mutual
inhibition model are independent of whether it is noise or
adaptation (or both) that facilitate switches. For example, if we
removed adaptation and included only noise in the model of
Fig. 4, then all plots (average dominance duration as a function
of I) would remain qualitatively unchanged. The main differ-
ence is that noise induces perceptual switches in WTA re-
gimes. If both noise and adaptation are indeed involved in
rivalry, then one question is which of the two ultimately
“causes” each perceptual switch. If noise is the primary switch-
ing mechanism, then switches would not occur if noise was
removed. If switches are due to adaptation, then a noise-free
system would oscillate with perfect periodicity. In our current
study, we focused primarily on the deterministic dynamics so
as to capture the qualitative ID/DD behavior of the model as
clearly as possible. However, if noise is the primary “cause” of
perceptual switches, then we could account for that with a
broader WTA regime by increasing inhibition strength or
reducing adaptation strength. For a set of parameters that
produces an intermediate WTA regime, our input preprocess-
ing and multiple population solutions to the L4 problem still
hold as long as input is restricted from the “noisy” ID regime
(e.g., gray curves in Figs. 4A, 6C, and 8A). Hence, our
solutions hold even if we require the model to operate in a
regime where noise is the primary cause of switches.

The input preprocessing solution and its implementations
predict that as image contrast is increased from subthreshold
detection levels, the images will “pop in” at the detection
threshold and give way to rivalry [although our model does not
capture the initial summation period (Liu et al. 1992)]. Percepts
will “pop out” of perception at a lower threshold when contrast
is approached from above. The models predict that a similar

perceptual hysteresis occurs for nonambiguous stimuli. This
has been observed by Kleinschmidt et al. (2002) who increased
and decreased the contrast of an object (the letter “K”) against
a noisy background and observers reported perceptual hyster-
esis: the object “popped in” to perception at a higher contrast
than when it “popped out.” This study suggests that existence
of a percept cannot be captured by a fixed detection threshold.
For our assumption that sufficient neural activity in our model’s
populations corresponds to a percept, the results of Klein-
schmidt et al. (2002) suggest we cannot model the I � g(C)
relationship as a smooth, increasing function. Rather, a hyster-
etic relationship between C and I, such as that given by Eq. 6
or with a multiple population model, would fit the Klein-
schmidt et al. (2002) results and, as we have shown, is also
capable of solving the L4 problem.

There is increasing evidence that binocular rivalry shares
several key characteristics with other bistable stimuli. For
example, Klink et al. (2008) used a rotating structure-from-
motion sphere, where the stimulus could be perceived as either
rotating clockwise or counterclockwise. Here, parametric
changes in dot luminance can alter the average dominance
durations of the percepts (e.g., higher luminance for left-
moving dots biases the clockwise percept). Klink et al. (2008)
showed that all four of Levelt’s (revised) propositions held.
Interestingly, although the averaged data for the five subjects in
Klink et al. (2008) followed L4, two of the subjects exhibited
ID regimes. It is unclear whether these ID regimes are due to
statistical variation or represent actual perceptual dynamics.
Also, their data show only modest changes in dominance
durations down the C1 � C2 diagonal (L4) compared with
changes along vertical or horizontal cross-sections (C1 or C2
fixed, i.e., L1–L3). This is similar to observations for binocular
rivalry (Moreno-Bote et al. 2010) and mutual inhibition dy-
namics (Fig. 4C). This suggests that if ID behavior indeed
occurs, it may be relatively difficult to observe experimentally.
It may be fruitful to find a class of stimuli (whether in binocular
rivalry or other bistable stimuli) that reliably produces ID
behavior for low stimulus strengths. This would lend evidence
toward mutual inhibition as a mechanism for perceptual ri-
valry, since by default they do predict an ID regime. Though
for cases where only DD behavior occurs for all accessible
stimulus strengths (as it appears to be the case in binocular
rivalry), our current study provides plausible mechanisms to
account for this.

Finally, we note that the modifications made to the mutual
inhibition model in this study are not mutually exclusive. The
multiple population model is a biophysical implementation of
the input preprocessing solution, but the parametric manipula-
tions that minimize the ID regime fit nicely with this form of
input control. If the ID regime is minimized via the gain
function or choice of habituation mechanism, then this implies
that the input need only skip over a small range of values to
comply with L4.

APPENDIX

Linear Threshold Gain Function

Here we show how the dynamics of Eqs. 1–2 behave when f(x) is
taken to be a linear threshold gain function:
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f�x� � �x�� ��0 if x 
 0

x if x � 0
(8)

We omit recurrent excitation and synaptic depression, but include
adaptation, which is the case that was presented in Wilson (2007).
Assume that population one is active and is suppressing population
two. The switch threshold is at x � 0, but the choice of gain function
precludes release switches. This is because u1 has an asymptotic value
that is above threshold. Specifically,

u1��� �
I

1 � �
� 0

[see Wilson (2007)]. Therefore, switches only occur when the off
population crosses threshold, i.e., when

I � �u1 � �a2 � 0

The adaptation variables obey

a1�t� � �a1�0� �
I

1 � �	e��1���t⁄� �
I

1 � �

a2�t� � a2�0�e�t⁄�

Then using u1 � I � a1 we could solve for T(I), but due to the
different time constants in a1(t) and a2(t) there is no closed form
expression. As in Wilson (2007), a useful approximation is to assume
that u1 is at its asymptotic value at the time of the switch, i.e., u1(T) �
u1(	). This assumption also gives the value for a2(0), namely a2(0) �
u1(	) � a1(	), since we also assume that u2 was at its asymptotic
value before the switch at t � 0. Therefore, the condition for switches
is given by

I � �u1��� � �u1���e�T⁄� � 0

Solving for T(I) yields

T � ��log� I � �u1���
�u1��� 	 � ��log� I

�u1���
�

�

�	 (9)

[Note: this is a special case of Eq. 8 from Wilson (2007).] Notice that
the u1(	) � I/(1��) term has a single factor of I, therefore, all factors
of I cancel and T is constant with respect to I. Through simulation we
can confirm that the above two assumptions [i.e., �u � 0 and u1(T) �
u1(	)] do not affect this result. Even changing the slope of the linear
threshold function for x � 0 does not affect this result (since the
multiplicative factor would just absorb into the parameters I, �,
and �). Interestingly, despite the flat T(I) curve, a linear threshold
function can still predict L1–L3 (Wilson 2007). That is, asymmet-
ric changes in I1 and I2 follow L1–L3, yet predict no change in
percept duration when I1 � I2.

To produce DD oscillations, we need to ensure that u1(	) is not
linearly dependent on I (but monotonically increases with I), so that
the terms in Eq. 9 do not cancel. Therefore, we can replace the linear

threshold function with f(x) � ��x��. The function T(I) is still given
by Eq. 9, but now u1(	) is determined by x. Specifically,

u1��� �
�� � ��2 � 4I

2

which we can plug back into Eq. 9. Hence, dominance time is now a
monotonically decreasing function of I. Therefore, choosing a square
root gain function and including adaptation yields purely decreasing-
duration oscillations in Eqs. 1–2.

Equations

In Figs. 4 and 10, the choice of firing rate function is a sigmoid:

f�x� � 1 ⁄ �1 � e�rx� (10)

with r � 10. Note that in all of our functions, we could also include
a threshold parameter, �, and replace x with x � �. We omit � since
it is simply an additive mechanism, like I, and thus does not change
the qualitative behavior of the model with respect to changes in I (i.e.,
it would simply shift the abscissa of our bifurcation diagrams by an
amount �).

We also considered a smooth variant of the linear threshold gain
function given by

f�x� � �x�* � clog�1 � ex⁄c� (11)

The parameter c determines the level of “smoothing” around x � 0.
As c ¡ 0, [x]* ¡ [x]�.

Finally, as in recent rivalry studies (Moreno-Bote et al. 2007;
Shpiro et al. 2009), we model input noise as an Ornstein-Uhlenbeck
process:

�̇ � �
�

�s
� 	
 2

�s
��t� (12)

where �s � 100 ms in our simulations and �(t) is a white noise process
with zero mean. The parameter 	 determines the strength of the noise
and assumes different values across our simulations. Two independent
noise processes, �1 and �2, are simply added to the net inputs of each
population.
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