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Metastasis is a complex process, which depends on the interaction between

tumor cells and host organs. Driven by the primary tumor, the host organ will

establish an environment suitable for the growth of tumor cells before their

arrival, which is called the pre-metastasis niche. The formation of pre-

metastasis niche requires the participation of a variety of cells, in which

myeloid-derived suppressor cells play a very important role. They reach the

host organ before the tumor cells, and promote the establishment of the pre-

metastasis niche by influencing immunosuppression, vascular leakage,

extracellular matrix remodeling, angiogenesis and so on. In this article, we

introduced the formation of the pre-metastasis niche and discussed the

important role of myeloid-derived suppressor cells. In addition, this paper

also emphasized the targeting of myeloid-derived suppressor cells as a

therapeutic strategy to inhibit the formation of pre-metastasis niche, which

provided a research idea for curbing tumor metastasis.

KEYWORDS
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Abbreviations: Arg-1, arginase-1; BMDCs, bone marrow-derived cells; COX2, cyclooxygenase 2; CSCs,

cancer stem cells; CTCs, circulating tumor cells; DCs, dendritic cells; DDR1, discoidin domain receptor 1,

DDR1; ECM, extracellular matrix; e-MDSCs, early myeloid derived suppressor cells; EMT, epithelial

mesenchymal transition; F-MDSCs, fibrocytic myeloid derived suppressor cells; IDO, indolamine 2, 3-

dioxygenase; iNOS, inducible nitric oxide synthase; MET, mesenchymal epithelial transition; MDSCs,

myeloid derived suppressor cells; M-MDSCs: monocytic myeloid derived suppressor cells; NETs,

neutrophil extracellular traps; PD-1, programmed death-1; PD-L1, programmed death-ligand 1; PMN,

pre-metastatic niche; PMN-MDSCs, polymorphonuclear myeloid derived suppressor cells; ROS, reactive

oxygen species; TDSFs, tumor-derived secretory factors; TGF-b, transforming growth factor; Tregs,

regulatory T cells; TREMs, triggering receptor expressed on myeloid cells; VEGF, vascular endothelial

growth factor; ZO-1, zonula occludens 1.
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Introduction

According to statistics, the number of cancer patients in the

world has exceeded 19.3 million in 2020, with nearly 10 million

cumulative deaths (1). For decades, research of cancer biologist

on cancer metastasis has mainly focused on the causes of

carcinogenic transformation. In recent years, due to the high

mortality related to metastasis, cancer biologists are forced to

turn their research to the process of tumor metastasis. After

massive research, it is found that the host organ has made a

series of preparations for the arrival of tumor cells before tumor

metastasis, such as recruiting immune cells, remodeling matrix,

generating new blood vessels, etc. These changes create a

favorable environment for the colonization and dissemination

of tumor cells, that is, the pre-metastasis niche (PMN) (2).

Myeloid-derived suppressor cells (MDSCs) are a group of

heterogeneous cells from bone marrow with strong

immunosuppressive activity. In the 1970s, MDSCs were first

found in a cancer patient. After years of research, it was found

that these cells are related to the occurrence and development of

inflammation, chronic infection, autoimmune diseases, cancer and

other diseases. In order to better describe the origin and function of

such cells, researchers suggested that this group of cells be named

MDSCs (3). MDSCs play an important role in promoting PMN and

maintaining tumor metastasis due to their immunosuppressive

function. Increasing evidence that MDSCs contributed to cancer

metastasis can bring us the opportunity to develop new therapeutic

approaches and enhance patient’s survival. Therefore,

understanding how MDSCs can promote and maintain

metastasis has laid a foundation for studying some unsolved

problems and developing clinical applications. In this article, we

introduced the phenotype of MDSCs and the process of PMN

formation, and mainly discussed the important contribution of

MSDCs in the induction of the PMN and summarized the clinical

application of MDSCs targeted therapy.
Origin and phenotype of MDSCs

MDSCs are derived from hematopoietic stem cells (HSCs)

(4). Under physiological conditions, HSCs differentiate into

common myeloid progenitors (CMPs) and then differentiate

into granulocyte-monocyte progenitors (GMPs). Immature

myeloid cells (IMCs) such as CMPs and GMPs migrate to

peripheral organs and differentiate into mature granulocytes,

dendritic cells (DCs) and macrophages, and enter the

corresponding tissues and organs to play a normal immune

response. Under pathological conditions, such as trauma,

infection and cancer, inflammatory factors will inhibit the

differentiation of IMCs into mature myeloid cells, make it stay

in various differentiation stages, and finally form MDSCs with

immunosuppressive function (5).
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MDSCs can be divided into polymorphonuclear or

granulocytic MDSCs (PMN/G-MDSCs) and monocytic MDSCs

(M-MDSCs) according to their phenotypic and morphological

characteristics (6). The phenotypes of MDSCs in different species

are different. Due to the high expression of myeloid differentiation

antigens Gr-1 and CD11b in mice, the phenotype of M-MDSCs in

mice is defined as CD11b+Ly6G−Ly6Chigh, while the phenotype

of PMN-MDSCs is defined as CD11b+Ly6G+Ly6Clow (7). In

2017, Goldmann (8) and others found a new subgroup of MDSCs

in mice infected with staphylococcus aureus and named it Eo-

MDSCs . Because Eo-MDSCs resemble eos inophi l

morphologically and express the eosinophil marker Syglec-F,

their phenotype is defined as CD11b+SyglecF+CCR3lowIL-

5RalowSSC-Ahigh.
Compared with mouse MDSCs, human MDSCs lack the Gr-1,

and mainly express CD11b, CD33, HLA-DR, Lin (including CD3,

CD14, CD15, CD19, AND CD56) (6, 9). Due to the complex

classification of human MDSCs, it is widely accepted that M-

MDSCs are defined as CD11b+CD14+HLA-DR−CD15− and

PMN-MDSCs are defined as CD11b+CD14−CD15+ or CD11b

+CD14−CD66b+ (9). In addition to the well-known PMN-MDSCs

and M-MDSCs, there is another phenotype of human MDSCs. This

class of MDSCs is considered immature due to the absence of

granulocyte or monocyte markers and is therefore described as

early MDSCs, whose phenotype is defined as Lin−HLA-DR−CD33

+ (10). In addition, a subpopulation of MDSCs with a fibrocytic

phenotype, known as fibrocytic MDSCs (F-MDSCs), was identified

in pediatric metastatic sarcoma patients (11) and healthy neonatal

cord blood (12). They defined the F-MDSCs phenotype as CD11b

−CD11c−CD33+IL-4Ra+ (11, 13) (Table 1).
PMN formation

Tumor metastasis is a multi-step process, including invasion,

circulation, exosmosis, colonization and so on (14–16).

Christine Chaffer (17) and others summarized this complex

cascade reaction into two stages. The first stage is the physical

migration of cancer cells from the primary tumor to the host

organ, the second stage is when cancer cells colonize the host

organ and develop into metastases. However, the host organs

that form metastases are not randomly selected, but determined

by the organotropism of the primary tumor. The “seed and soil”

hypothesis proposed by Steven Paget (18) in 1989 explained

organotropism during tumor metastasis, which was also

supported by Fidler (19, 20), who showed that the outcome of

metastasis depended on the characteristics of tumor cells and

host organs. Later researchers also came to light by realizing that

breast cancer was found to predispose to bone, liver, brain, and

lung metastases, colorectal cancers predominantly develop liver

metastases, and tumors originating in the breast, bladder, colon,

kidney, head and neck and melanoma have a tendency to cause

metastases in the lung (21). In 2005, Kaplan found that myeloid
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hematopoietic progenitors expressing vascular endothelial

growth factor receptor 1 (VEGFR1) arrived at the host organ

before tumor cells and changed the microenvironment there (2).

Based on these results, they proposed the concept of

“premetastatic microenvironment”, in which primary tumors

induce host organs to create a microenvironment that supports

tumor cell metastasis. The presence of the PMN more strongly

explains organ tropism during tumor metastasis and illustrates

the importance of the interaction between tumor cells and

host organs.

The formation of the PMN is the result of the joint action of

multiple cytokines or cellular components including tumor-

derived secretory factors (TDSFs), exosomes, bone marrow-

derived cells (BMDCs) and extracellular matrix (ECM) (22)

(Figure 1). Since PMN formation is a complex dynamic change,

this paper mainly summarizes it from the following

three aspects.
Vascular leakiness

In the process of tumor metastasis, cancer stem cells (CSCs)

with self-replication and differentiation ability first lose the cell-

cell adhesion ability and detach from the primary site, invade the

surrounding tissues and enter lymphatic vessels and blood

vessels. In this process, CSCs undergo epithelial mesenchymal

transition (EMT) to become circulating tumor cells (CTCs) (14).

CTCs entering the blood vessels are surrounded by platelets,

clotting factors and fibrin, preventing the killing effect of NK

cells. Meanwhile, selectin and integrin secreted by platelets

mediate the adhesion and adhesion of CTCs to vascular

endothelial cells, preparing for CTCs extravasation (23, 24).

Therefore, the changes of vascular endothelial cells are the key

markers for the initial establishment of the PMN.

The current study revealed a relationship between vascular

stability and TDSFs. Among them, cyclooxygenase 2 (COX2),

mat r i x meta l l opro t e ina se 1 (MMP1) and mat r i x

metalloproteinase 2 (MMP2) secreted by primary tumors were

found to affect vascular integrity by changing the morphology of
Frontiers in Oncology 03
endothelial cells and improving vascular permeability in the lung

metastasis model of breast cancer mice (25). In a melanoma

mouse model of lung metastasis, primary tumors disrupt

pulmonary vascular stability by upregulation of angiopoietin-2

(ANG-2), MMP3, and MMP10 in pulmonary blood vessels (26).

In addition to TDSFs, tumor-derived exosomes are also

involved in regulating intracellular stability. Human colon

cancer cell derived exosomal miR-25-3p increases vascular

permeability in mouse lung and liver metastasis models by

regulating the expression of VEGF2 and zonula occludens 1

(ZO-1), occludin and Claudin5 in endothelial cells (27). MiR-

103, miR-638, miR-663a, miR-3648 and miR-4258 secreted by

HCC attenuated the integrity of endothelial cells by down-

regulating the expression of VE-cadherin and ZO-1 (28, 29).

MiR-3157-3p regulates endothelial cell permeability and

promotes angiogenesis by regulating the expression of vascular

endothelial growth factor (VEGF), MMP2, MMP9 and occludin

in Non-small cell lung carcinoma (30). Changes in the stability

and integrity of vascular endothelial cells prepare for CTCs

extravasation, so timely prevention of endothelial cell changes in

the early stage of cancer can help block the formation of the

PMN and prevent tumor metastasis.
MDSCs recruitment

In fact, primary tumors shed tens of thousands of cancer

cells into the bloodstream each day, but because of oxidative

stress, shear forces, and immune system attacks, only a few make

it into the host organs to formmetastases (31, 32). Therefore, the

host organ needs to establish a good immune microenvironment

to protect CTCs from elimination by NK cells, CD4+T cells and

CD8+T cells. Under the action of TDSFs, BMDCs and immune

cells such as regulatory T cells (Tregs), tumor associated

macrophages (TAMs), and tumor associated neutrophils

(TANs) are recruited to host organs to help establish the

immune microenvironment (33, 34). Among them, BMDCs

are the main participating cells, which protect CTCs by

secreting a large number of cell components, and the MDSCs
TABLE 1 Phenotypes of MDSCs.

Subsets Phenotypes References

PMN-MDSCs(Human) CD11b+CD14−CD15+/CD11b+CD14−CD66b+ Pawelec (9)

CD15+CD11b+CD33+HLA-DR−Lin− Gabrilovich (3)

M-MDSCs(Human) CD11b+CD14+HLA-DR−CD15− Pawelec (9)

CD14+CD11b+CD33+HLA-DR−Lin− Gabrilovich (3)

e-MDSCs(Human) Lin−HLA-DR−CD33+ Gabrilovich (10)

F-MDSCs(Human) CD11b−CD11c−CD33+IL-4Ra+ Mazza (12)

PMN-MDSCs(Mouse) CD11b+Ly6G+Ly6Clow Youn (7)

M-MDSCs(Mouse) CD11b+Ly6G−Ly6Chigh Youn (7)

Eo-MDSCs(Mouse) CD11b+SyglecF+CCR3lowIL-5RalowSSC-Ahigh Goldmann (8)
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subgroup that constitutes BMDCs is considered to be the most

critical cell group (35).

As an important marker of PMN initiation and evolution,

the recruitment of MDSCs is a multi-step process, which is

mainly regulated by tumor microenvironment and TDSFs.

The hypoxic environment in the tumor microenvironment is

considered to be an important factor in inducing the

recruitment and activation of MDSCs. Sceneay showed that

primary tumor hypoxia provides cytokines and growth

factors capable of creating a premetastatic niche through

recruitment of MDSCs (36). Then more studies found that

hypoxia inducible factor 1 (HIF-1) induced the migration of

MDSCs into PMN by up regulating the expression of CCL26

(37), programmed death-ligand 1 (PD-L1) (38) and

ectonucleoside triphosphate diphosphohydrolase 2 in tumor

cells (39). Among TDSFs, chemokines are the main

components regulat ing the recruitment of MDSCs

(Table 2). In addition to chemokines, other TDSFs, such as

S100A8/A9, are also involved in the recruitment of MDSCs.

S100A8/A9 from breast cancer cells promotes the migration

and accumulation of MDSCs through the NF-kB signaling

pathway. However, S100A8/A9 not only comes from tumor

cells, but also can be synthesized and secreted by MDSCs (60).

Therefore, S100A8/A9 may provide an autocrine pathway for

PMN to recruit MDSCs.
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ECM remodeling

Since the host organ and the primary site of the tumor are

not the same in tissue and structure, in order to establish a PMN

suitable for the growth and colonization of CTCs, the ECM

structure in the host organ will change, promoting tumor cell

migration and invasion into the stromal tissue. During the

formation of the PMN, primary tumors remodel ECM by

inducing stromal cells to deposit new ECM components or

modify old ECM components by TDSFs.

As we all know, Lysyl oxidase (LOX) and MMPs secreted by

primary tumors play an important role in ECM remodeling.

LOX increases the stiffness of ECM by catalyzing collagen and

elastin crosslinking. At the same time, LOX can also promote the

recruitment of BMDCs and drive the formation of osteolytic

lesions, leading to bone metastasis (61–63). While MMPs play a

role in degrading ECM and inducing angiogenesis (64). In

addition, recent studies have found that tumor-produced

peptidylarginine deiminase 4 (PAD4) also helps to remodel

ECM. PAD4 produced by colorectal cancer affects the

citrullination of ECM, which promotes EMT and eventually

leads to tumor metastasis to the liver. Preventing citrullination of

ECM may create an adverse microenvironment for cancer cell

growth (65). Therefore, PAD4 and citrullination may be an

effective target for the treatment of liver metastases.
FIGURE 1

The formation of PMN. (A) Vascular leakage is the initial marker of PMN formation. Cytokines such as COX2, MMP1 and MMP2 secreted by
primary tumors increase the permeability of endothelial cells and help the exudation of tumor cells. (B) Under the induction of hypoxic
microenvironment and TDSFs, MDSCs and other immune cells are recruited to PMN, creating an excellent immune microenvironment for
tumor cells. (C) At the same time, the ECM in the host organ began to change, providing a good environment for the growth of tumor cells. The
accumulation of fibronectin and the crosslinking of collagen I provide a platform for the adhesion of MDSCs. At the same time, MMPs promote
angiogenesis and contribute to tumor cells intrusion. In addition, some cytokines secreted by MDSCs also contribute to the remodeling of ECM.
(D) Tumor cells arriving at the host organ will enter a dormant state, which is regulated by cytokines secreted by tumor cells and MDSCs. When
tumor cells wake up, they continue to grow. (E) The formation of the PMN is a comprehensive result of vascular leakage, MDSCs recruitment
and ECM remodeling. The tumor cells shed from the primary site and colonized the host organ, eventually forming a distant metastasis.
frontiersin.org

https://doi.org/10.3389/fonc.2022.975261
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ya et al. 10.3389/fonc.2022.975261
CTCs entering the host organ either apoptosis or dormant

until all environments become suitable for CTCs to awaken (66).

A growing body of research has shown that the composition of

ECMs and their effect on adhesion signaling not only provides a

favorable environment for the growth of CTCs, but also

regulates the dormancy and awakening of tumor cells (67).

For example, endothelial-derived thrombospondin-1 (TSP-1)

(68) and osteopontin secreted by osteoblasts (69), as well as

matrigel, commonly used for cultured cells in vitro (70), can

induce tumor cell dormancy. Recently, studies have found that

dormant tumor cells assemble a type III collagen-enriched ECM

niche. Type III collagen triggers STAT1 activation and nuclear

translocation to regulate COL3A1 expression by binding to

discoidin domain receptor 1 (DDR1). The increase of COL3A1

expression in turn remodeled the ECM by increasing the curl of

the ECM and brought the cells into a dormant state maintained

by DDR1 binding (71). Thus, the manipulation of these

mechanisms could serve as a barrier to metastasis through

disseminated tumor cell dormancy induction. While the

awakening of tumor cells is associated with neutrophil elastase

and MMP9, which induce the proliferation of dormant CTCs by

exposing laminin epitopes associated with CTCs (72). Given the

central role of the ECM in tumor metastasis, altering the

structure, function, and biological properties of the ECM and

modulating adhesion signaling promises to reduce tumor
Frontiers in Oncology 05
invasion and prevent tumor metastasis, providing new

therapeutic strategies for cancer patients.

After a series of changes, the PMN eventually become

mature, and subsequently more and more tumor cells migrate

to this site to grow, proliferate, and thus form tumor metastases.

Although this article divides the process of PMN formation into

three main parts, the establishment and eventual progression of

PMN into metastases is an integral and dynamic process, and

therefore each of these changes is critical and does not act as an

independent contributing factor.
Role of MDSCs in PMN formation

Since metastasis is intrinsically an inefficient process, most

cancer cells are unable to metastasize to host organs. Primary

tumors therefore need to develop strategies that can both

suppress immune responses and alter the tissue framework

when inducing PMN formation, providing the most effective

aid to tumor metastasis. In this strategy, MDSCs with

immunosuppressive effect are the best partners for tumor cells,

which not only create a favorable growth environment for tumor

cells but also provide much help for their metastasis. The

important roles played by MDSCs are mainly reflected in two

aspects: immunological effects and non-immunological effects.
TABLE 2 Major chemokines involved in regulating MDSCs recruitment.

Chemokines Receptors Source MDSC subsets References

CCL2 CCR2 Pancreatic ductal adenocarcinoma M-MDSCs Gu (40)

Lung cancer MDSCs Hartwig (41)

Gastric cancer MDSCs Zhou (42)

CCL3/4/5 CCR5 Ret transgenic melanoma mice MDSCs Blattner (43)

Prostate cancer PMN-MDSCs Hawila (44)

Breast cancer MDSCs Luo (45)

CCL15 CCR1 Colorectal cancer MDSCs Inamoto (46)

CCL26 CX3CR1 Hepatocarcinoma cell cancer MDSCs Chiu (38)

CX3CL1 CX3CR1 Lewis lung cancer and spindle cell tumour M-MDSCs Okuma (47)

CXCL1 CXCR2 Colorectal cancer MDSCs Wang (48)

Hepatocarcinoma cell cancer MDSCs Xia (49)

Hepatocarcinoma cell cancer MDSCs He (50)

CXCL2 CXCR2 Bladder cancer MDSCs Zhang (51)

Ovarian cancer PMN-MDSCs Taki (52)

Colorectal cancer MDSCs Chen (53)

CXCL5 CXCR2 Renal cell carcinoma PMN-MDSCs Najjar (54)

Bladder cancer MDSCs Lin (55)

Gastric cancer MDSCs Zhou (42)

Breast cancer MDSCs Yu (56)

CXCL8 CXCR1/2 Non-small cell lung cancer MDSCs Zadian (57)

Esophageal squamous cell carcinoma MDSCs Yue (58)

CXCL12 CXCR4 Gastric cancer MDSCs Zhou (42)

Colorectal cancer MDSCs Yu (59)
fr
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On the one hand, the immunosuppressive effect of MDSCs

promotes tumor cell survival. On the other hand, MDSCs

promote tumor cell metastasis by promoting EMT and

mesenchymal epithelial transition (MET), protecting CTCs

and promoting their extravasation, as well as inducing

angiogenesis (73, 74).
Immunological effects of MDSCs

The immunosuppressive effects exerted by MDSCs include

specific immunity and nonspecific immunity, both of which

exert corresponding immunosuppressive effects by suppressing

T cells. During the formation of the PMN, MDSCs, as the main

cell group involved in the establishment of the immune system,

play a key role in the survival of CTCs and the establishment and

maintenance of an immunosuppressive microenvironment in

host organs. The main mechanisms of action include depletion

of amino acids required for T cell activation, production of

reactive oxygen species (ROS), expression of negative immune

checkpoint molecules, expression of relevant enzymes regulating

adenosine metabolism and regulation of other immune

cells (Figure 2).

Depletion of amino acids required for
T cell activation

L-arginine and L-cysteine are considered essential amino

acids for T cell activation (75, 76). Deficiency in L-arginine leads

to a block in the synthesis of CD3z in the T cell receptor (TCR),

which plays a central role in initiating the signal transduction

cascade leading to T cell activation, and therefore

downregulation of CD3z affects T cell activation and function

(77). Concomitant L-arginine deficiency also causes T cell cycle

arrest in G0-G1 phase by upregulating cyclin D3 and cyclin-

dependent kinase 4 (78). Meanwhile, the participation of L-

cysteine is also required during T cell activation. Because T cells

lack cystathionase and an intact cystine transporter, it is unable

to produce L-cysteine or convert intracellular methionine to L-

cysteine. Therefore, the uptake of L-cysteine by T cells depends

on the supply of other cells (76).

MDSCs were first shown by Bronte in 2003 to express highly

active arginase-1 (Arg-1), and MDSCs inhibit T cell proliferation

in an Arg-1-dependent mechanism (79). Subsequently,

researchers in multiple studies have confirmed the mechanism

by which MDSCs break down L-arginine required by T cells to

inhibit T cell proliferation and activation by expressing Arg-1,

and showed that Arg-1 can serve as a breakthrough point to

block the suppressive effect of MDSCs (80–82). However, it was

found that MDSCs mediated T cell suppression does not have to

be Arg-1 dependent. In 2018, Bian found that either Arg-1-

expressing MDSCs or Arg-1-deficient MDSCs exhibited a strong

inhibitory effect on the proliferation of T cells, and found that
Frontiers in Oncology 06
MDSCs inhibited the proliferation of T cells required direct

contact between cells (83). Clearly, further studies are needed to

investigate the remaining question regarding the role of

arginase-1 MDSC function, if not for mediating the inhibition

of T cells.

In addition, MDSCs can competitively take up cystine with

macrophages and DCs, which renders macrophages and DCs

unable to take up cystine and provide its reduction to L-cysteine

to T cells, resulting in limited T cell activation (76).

Production of reactive oxygen species
MDSCs generate ROS, including superoxide anion, H2O2,

hydroxyl radical, NO, and others, by expressing Arg-1, inducible

nitric oxide synthase (iNOS), and NADPH oxidases (NOX) (84).

Although ROS are toxic to most cells, MDSC survive despite their

elevated content and release of ROS (85). H2O2 produced by

MDSC restricts the activation of T cells by reducing the expression

of T cell CD3z (86), while NO blocks the proliferation of T cells by

inhibiting IL-2 signal (87), and also inhibits NK-cell FcR-mediated

functions including antibody-dependent cellular cytotoxicity,

cytokine production, and signal transduction in a contact-

independent manner (88). In addition, MDSCs can promote

peroxynitrite (PNT) production by expressing iNOS, which in

turn can inhibit antigen-specific T cell responses by nitrating the

TCR so that CD8+ T cells are unable to bind to and respond to

peptide major histocompatibility complexs (89, 90).

The production of ROS by MDSCs can inhibit not only T

cells and NK cells but also B cells. Rastad have experimentally

demonstrated the ability of M-MDSCs to suppress B cells in a

cell contact independent manner through the production of

ROS, NO, PNT and others in murine AIDS models (91). And

then Stiff demonstrated that PMN-MDSCs could inhibit B cell

proliferation in a cell contact dependent manner by producing

Arg-1, NO, ROS (88). Moreover, multiple studies have reported

that the regulation of Tregs by macrophages involves ROS

generation (92, 93), and that Tregs are less able to resist

oxidative stress in the tumor microenvironment and can

undergo apoptosis under the induction of ROS compared with

T cells. These apoptotic Tregs mediated immunosuppression via

adenosine and A2A pathways (94). Although the interaction of

ROS in MDSCs and Tregs is unclear, Tregs mediated

suppression has been demonstrated to benefit from oxidative

stress conditions. Therefore, it can be speculated that ROS

produced byMDSCs may induce the suppressive effects of Tregs.
Expression of negative immune
checkpoint molecules

Immune checkpoint molecules are key molecules that regulate

the balance between activation and inhibition of immune responses.

In the physiological state, immune checkpoint molecules block

inhibitory signals for T cell activation and generate potent

antitumor responses, but in tumors, negative immune checkpoint
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molecules mediate tumor immune escape (95). PD-L1 is a common

negative immune checkpoint molecule that induces T cell apoptosis

by binding to programmed death-1 (PD-1) receptors on T cells

(96). PD-L1 is highly expressed in tumor derivedMDSCs, especially

in PMN-MDSCs (97, 98). The levels of PD-L1 expression in

MDSCs was significantly increased under hypoxia, and blockade

of PD-L1 at this time downregulated the immunosuppressive effect

of MDSCs on T cells, suggesting that MDSCs could suppress T cells

by expressing PD-L1 and that HIF-1a contributes to the induction

of PD-L1 expression (37). Later, it was shown that S100A9 secreted

by MDSCs also induces PD-L1 expression and that the mechanism

is related to aberrant activation of the c-Myc (99). In conclusion,

low MDSCs levels before tumor treatment are positively

correlated with patient survival, and therefore, MDSCs can be

considered as a predictive biomarker when treating with immune

checkpoint inhibitors.
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Expression of relevant enzymes regulating
adenosine metabolism

Adenosine is an important signaling molecule in regulating

the body’s immune response. Ectonucleoside triphosphate

diphosphohydrolase 1 (also known as CD39) catalyzes the

dephosphorylation of ATP to generate amp, which is then

dephosphorylated to generate adenosine under the catalysis of

ecto-5’-nucleotidase (also known as CD73). Ultimately,

adenosine inhibits the priming activation and proliferation of

T cells by reducing the expression of effector molecules on T cells

(100, 101). In patients with head and neck squamous cell

carcinoma, CD73 expression on PMN-MDSCs was elevated

and significantly suppressed T cell proliferation (102). In

NSCLC patients, transforming growth factor (TGF-b) induces
CD39 and CD73 expression on MDSCs through the mTOR/
A B

D
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C

FIGURE 2

Immunological effects of MDSCs. (A) MDSCs consume L-arginine and L-cysteine required for T cell activation by expressing Arg-1 and ingesting
cystine. (B) MDSCs produce reactive oxygen species by expressing Arg-1, iNOS and NOX. Different components of reactive oxygen species have
inhibitory effects on T cells and B cells. (C) Under the induction of S100A9 and HIF-1a, the expression levels of PD-L1 on MDSCs increased.
High levels of PD-L1 combined with PD-1 on T cells induced T cell apoptosis. (D) TGF-b Induce MDSCs to produce CD39 and CD73, which can
induce the conversion of ATP to adenosine. The presence of adenosine inhibits the activation and proliferation of T cells. (E) In addition to
inhibiting T cells, MDSCs can also regulate other immune cells to protect tumor cells and establish immune microenvironment. MDSCs inhibit
the killing effect of NK cells by producing TGF-b and NO) they weakened the antigen-presenting function of DCs and macrophages by
producing IL-10, and transformed M1 macrophages into M2 macrophages) they also secrete TGF-b and IL-10 up regulates the expression of
FoxP3 in Tregs and induce the production of FoxP3+ Tregs.
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HIF-1a signaling, which makes CD39+CD73-MDSCs highly

enriched in tumor tissue and produces adenosine to inhibit T

cell activity (103).

Recent studies, however, have found a dual role for CD73 for

proliferation and survival of T cells. On the one hand, CD73

favors the expression of IL-7 receptor a chain on CD8+ T cells

and their homeostatic survival; On the other hand, under

conditions of antigenic stimulation, CD73 reduces the IL-2

receptor a chain and expression of the antiapoptotic molecule

Bcl-2 thereby reducing CD8+ T cell survival (104). It is therefore

important to note its dual effects on CD8+ T cells when

designing CD73 as a target for antitumor therapy.
Regulation of other immune cells
Although the immunosuppressive effects of MDSCs are

mainly directed against T cells, numerous studies have shown

that MDSCs can also regulate immune cells such as NK cells,

macrophages, DCs, and Tregs to exert tumor promoting effects.

NK cells have played an important role in antitumor

immune responses by directly killing tumor cells. It was found

that after co-culture with MDSCs, NK cells had decreased

cytolytic capacity, IFN-g production capacity and natural killer

group 2, member D (NKG2D) expression capacity, which was

related to TGF-b produced by MDSCs (105). In addition,

MDSCs can also affect NK cytotoxicity by producing NO, and

this mechanism has been mentioned above.

DCs and macrophages, as antigen-presenting cells, are

considered key players in antitumor immune responses.

Studies have shown that MDSCs and both can interact to alter

the inflammatory environment in the tumor microenvironment.

IL-10 produced by MDSCs impairs the antigen-presenting

function of DCs and macrophages by downregulating the

expression of MHC class II, CD80 and CD86 (106). Since IL-

10 is a key factor in regulating IL-12 transcription, an increase in

IL-10 leads to a decrease in IL-12, which promotes the

transformation of macrophages into M2 phenotype (107).

Tregs, as an important component in tumor associated

immunosuppression, are able to inhibit the activation and

proliferation of T cells. Under the stimulation of INF-g, MDSCs

secrete TGF-b and IL-10 up regulates the expression of Foxp3, a key
transcriptional regulatory protein that determines the

differentiation and function of Tregs, and upregulation of Foxp3

enhances the suppressive activity of Tregs (108, 109). In addition, in

a study of F-MDSCs, it was found that the suppressive effect of F-

MDSCs was not mediated by Arg-1 or iNOS mechanisms but was

exerted through the generation of IDO inducing effector T cells to

convert into Foxp3+ Tregs and that IDO mediated depletion of

tryptophan also downregulated CD3z of the TCR leading to

blocked T cell activation (110–112).
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Non-immunological effects of MDSCs

In addition to establishing and maintaining an immuno

suppressive microenvironment, MDSCs recruited into host

organs also play a role in various steps of tumor metastasis,

promoting tumor cell growth and colonization. As the best

partners of tumor cells, MDSCs play many roles, such as

inducing tumor cell invasion and proliferation, aiding tumor

cell extravasation, and providing trophic support to tumor cells,

and their mechanisms mainly include the following three

points (Figure 3).

Involve in EMT and MET of tumor cells
The mesenchymal phenotype induced by EMT in primary

tumors makes tumor cells lose their intercellular junctions to

acquire high migratory and invasive abilities, contributing to the

completion of the complex cascade of invasion metastasis (16).

Cell transdifferentiation from epithelial to a mesenchymal state

is mediated by key transcription factors, such as the basic helix-

loop-helix factors TWIST1 and TWIST2 (113), the zinc-finger

E-box-binding homeobox factors ZEB1 and ZEB2 (114), and the

zinc-finger binding transcription factors SNAI1 and SNAI2

(115), which act as master regulators of cell-cell adhesion, cell

polarity and motility. They repress genes associated with an

epithelial phenotype and induce the expression of mesenchymal

genes, ultimately leading to the cellular hallmarks of EMT.

The most direct evidence for the role of EMT in metastasis

comes from the analysis of cancer patients, where it has been

reported that immune cells in cancer patients regulate the

induction of tumorigenic EMT by secreting cytokines and

chemokines, and that tumor cells undergoing EMT also

produce immunosuppressive factors and chemokines, which

further induce an immunosuppressive state of the tumor

microenvironment and thus promote cancer development

(116, 117). Various types of cytokines produced by MDSCs,

such as VEGF (118), TGF-b (119, 120), IL-6 (121, 122) and IL-

10 (123) have been shown to induce EMT in tumor cells.

Reported that secreted protein acidic and rich in cysteine

(SPARC) from MDSCs was immunosuppressive and tumor

promoting in vivo in breast cancer patients, and deletion of

SPARC rendered MDSCs with reduced suppressive function and

restored EMT, which illustrated that the occurrence of EMT in

tumor cells may depend on SPARC secreted by MDSCs (124).

In addition to participating in the induction of EMT,

MDSCs also play a role in the met process of tumor cells.

Different subpopulations of MDSCs have been shown to play

roles at different stages in the tumor invasion metastasis cascade.

For example, induction of EMT by M-MDSCs promotes tumor

invasion from the primary site to distant site, whereas induction
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of MET by PMN-MDSCs promotes tumor cell proliferation to

support metastatic growth. This illustrates that the regulation of

tumor phenotype by MDSCs changes with tumor progression

(125). In addition, MDSCs also stimulate MET in tumor cells by

secreting versican to attenuate phospho-Smad2 levels (126). In

summary, because tumor metastasis is a multistep process and

various cancers have different classification criteria, tumor

location, tumor type, and tumor stage will all be important to

consider in studies on the effects of MDSCs on EMT and MET.
Promote the survival and extravasation
of CTCs

After CTCs detach from the primary tumor into the blood

vessels, the mechanical and shear forces present inside the vessels

will adversely affect CTCs survival as well as metastasis (127). In

addition to the ability of platelets, leukocytes, and macrophages to

help CTCs escape from the distress caused by these stresses,

MDSCs, because of their potent immunosuppressive properties,

can also contribute to the survival of CTCs (128). In pancreatic

cancer patients, researchers found a positive correlation between

the number of MDSCs and the number of K-RASmut mRNA+
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CTCs, which suggested that the presence of MDSCs may promote

the proliferation and survival of CTCs (129). Moreover, existing

studies have found that MDSCs can interact with CTCs and form

CTC/MDSCs clusters to promote CTCs metastasis. CTC/MDSCs

cluster promoted the survival and proliferation of CTCS and

enhanced their metastatic potency by activating the ROS/Notch/

Nodal signaling pathway (130). Recently, it has been reported that

vascular cell adhesionmolecule-1 (VCAM-1) is required for CTC/

MDSCs cluster formation, thus VCAM-1 inhibition could be one

of the important factors hindering CTC/MDSCs cluster

formation, and developing drugs targeting VCAM-1 may reduce

tumor metastasis to some extent (131).

CTCs that survive overcoming the mechanical and shear

forces of blood vessels when they move closer and adhere to

endothelial cells, MMP2, MMP9, VEGF and Ang-2 produced by

MDSCs effectively increase vascular permeability, and

upregulate E-selectin, which contributes to adhesion and

extravasation of CTCs (26, 132–134). Studies have shown that

the formation of neutrophil extracellular traps (NETs) can

induce the intravascular coagulation cascade (cancer-related

thrombosis), which contributes to the growth of primary

tumors, cancer invasiveness, progression and metastasis.
A

B C

FIGURE 3

Non immunological effects of MDSCs. (A) MDSCs promote EMT of tumor cells by producing IL-6, IL-10, TGF-b and VEGF, which makes tumor
cells obtain high migration and invasion ability. When CTCs reach the host organ, MDSCs will induce CTCs to undergo MET, restore their
epithelial phenotype and promote their proliferation. (B) MMP2, MMP9, VEGF and Ang-2 produced by MDSCs effectively increase the
permeability of blood vessels and are conducive to the extravasation of CTCs. At the same time, MDSCs combine with CTCs through VCAM-1
and NETs to form CTC/MDSC clusters, which promote the survival and extravasation of CTCs. (C) MDSCs promote angiogenesis in PMN by
producing cytokines such as VEGF, MMP9, TGF-b and FGF-2. In addition, MDSCs derived exosomes miR-126a and miR-210 also induce
angiogenesis.
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Through the use of cecal ligation, Cools Lartigue et al. observed

the presence of lung cancer cells encapsulated in NETs in a

mouse model of infection. These circulating “packages” were

seeded in the liver, forming micrometastases within 48 h and

secondary liver cancer 2 weeks after the cancer cell injection

(135). Evidence consistent with these observations was provided

by Najmeh et al. from the same group, who found a significant

association between upregulation of b1-integrin and NET-

related entrapment of circulating lung carcinoma cells, further

facilitating metastasis formation and cancer spread (136).

Theoretically, NETs may play an anti-tumor role by directly

killing tumor cells or activating the immune system, but it has

been proved that due to partial vascular obstruction and the

coagulation microenvironment around NETs, circulating tumor

cells can be captured. At the same time, NETs damage

endothelial cells and promote the adhesion and extravasation

of CTCs.

In recent years, studies have found that PMN-MDSCs are

also able to induce the formation of NETs. Alfaro et al. found

that IL-8 induced PMN MDSCs to form NETs in the process of

studying whether IL-8 secreted by tumors could recruit MDSCs,

and observed that tumor cells were captured after NETs were

formed (137). In a mouse model of lung metastatic cancer, C5a

was shown to induce the expression of high mobility group box 1

(HMGB1) receptors TLR4 and rage in PMN-MDSCs, while the

formation of NETs was in turn dependent on HMGB1 produced

by cancer cells (138). Thus, CTC/PMN-MDSCs cluster could

form NETs under the induction of complement C5a (139).

Therefore, hindering the formation of NETs may affect the

extravasation of CTCs and thus hinder tumor metastasis,

however the presence of MDSCs can directly increase vascular

permeability to enhance the extravasation of CTCs. So, the

effects of MDSCs and other cytokines on CTCs need to be

taken into account when developing therapies that target NETs.

Induce angiogenesis
In order for CTCs to colonize the PMN efficiently, PMN

would generate new blood vessels to provide nutrients for CTCs

to proliferate (24). MDSCs have been shown to induce the PMN

angiogenesis through a variety of mechanisms, the most

prominent of which is that secretion of VEGFA by MDSCs

promotes neovascularization via JAK2/STAT3 signaling (140).

In addition to VEGF, other cytokines derived from MDSCs

promote tumor angiogenesis, such as MMP9 (141), TGF-b
(142), fibroblast growth factor-2 (FGF-2) (143), IL-1b (143),

bombina variegata peptide 8 (Bv8) (144), stromal cell-derived

factor-1 (SDF-1) (145) and so on. Recently researchers showed

that MDSCs expressed high levels of platelet-derived growth

factor-BB (PDGF-BB), and they found that this not only

promoted tumor angiogenesis but also increased tumor cell

metastatic growth (146). In addition, MDSCs derived

exosomes also contribute to tumor angiogenesis. MiR-126a
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released by MDSCs induced tumor angiogenesis and enhanced

CTCs adhesion to endothelial cells, which promoted tumor cell

metastasis (147). Under hypoxic conditions, HIF-1a upregulates

MDSCs derived exosomal miR-210, which not only enhances

the function of MDSCs by increasing Arg-1 activity and

producing NO, but also regulates endothelial cell activation to

induce tumor angiogenesis (148, 149).
Application of MDSC in PMN
detection and therapy

Early detection of the PMN formation during the course of

cancer treatment helps to optimize treatment regimens and

improve patient prognosis. Although there is no clinical

technique at this stage available to directly visualize the

dynamic process of tumor metastasis, the detection of certain

specific immune cells or associated molecules in the PMN by

radiological imaging offers a viable option to detect the PMN

formation. In 2012, Shokeen and others used PET/CT to image

very late antigen-4 (VLA-4, also known as a4b1 integrin)

expressing MDSCs in PMN (150). Li and others evaluated the

effectiveness of CT images in quantifying the microenvironment

changes in the premetastatic lung. Their results suggested that

changes in the lung microenvironment can be identified by CT

before primary breast cancer lung metastasis (151). Based on the

role of S100A8/A9 in promoting MDSCs accumulation and

inducing the PMN, researchers reported the application of

antibody-based SPECT for detection of S100A8/A9 in vivo as

an imaging marker for pre-metastatic tissue priming (152). In

addition to S100A8/A9, other MDSCs derived exosomes, such as

miR-126a and miR-210 mentioned earlier, have also been

implicated in PMN formation. But there are no effective

tracers for these molecules, and their distribution profile in the

pre metastatic microenvironment is unclear. Therefore, further

studies are needed to test MDSCs derived exosomes as an

indicator of the PMN.

With the development of cancer treatment technology, the

rise of immunotherapy exemplifies the shift in cancer

treatment from predominantly tumor suppressor to

predominantly PMN modulating. Although targeted

therapies to PMN can potentially inhibit tumor metastasis, it

is difficult to target drugs to PMN owing to the aberrant tumor

microenvironment generation that results from increased

vascular permeability in PMN (33). Currently, clinical

therapeutic strategies targeting PMN have shifted to

specifically targeting PMN composition to suppress tumor

metastasis. As one of the most important cells driving PMN

formation, MDSCs can serve as an important target for

inhibiting tumor metastasis. Currently, therapeutic strategies

targeting MDSCs both inhibit MDSCs differentiation and

accumulation as well as their function (Figure 4).
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Inhibit the differentiation of MDSCs

As described previously, IMC differentiates into mature

granulocytes, macrophages, and DCs under normal

circumstances, and when this process is blocked by certain

cytokines, it results in the accumulation of MDSCs. Therefore,

the induction of MDSCs into mature myeloid cells may be a

potential strategy for the treatment of cancer.

Vitamin A has been shown to induce MDSCs differentiation.

Studies have shown that all trans retinoic acid (ATRA), a

metabolite intermediate of vitamin A, induces the rapid

differentiation of MDSCs into macrophages and DCs by

activating the ERK1/2 pathway, which reduces the suppressive

function of MDSCs (153). However, it has been shown that

ATRA also promotes Foxp3 expression and enhances the

function of CD4+ Tregs. Therefore, while using ATRA to

target MDSCs for therapy, it is important to note that ATRA

may induce the generation of Tregs and thereby promote tumor

development (154).

Furthermore, Chinese scholars have proved that Icariin, the

main active component of Herba Epimedii, can mediate anti-

inflammatory function. Here, they showed that treatment of

tumor bearing mice using icariin derivatives could significantly

decrease the percentage of MDSCs and their differentiation into

macrophages and DCs (155).
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Inhibit the accumulation of MDSCs

Because MDSCs express high levels of chemokine receptors

and are recruited to PMN by tumor derived chemokines,

preventing the recruitment of MDSCs could be achieved by

targeting chemokine receptors on MDSCs. Chemokine receptor

antagonists in multiple clinical trials, such as the CCR2

antagonist 747 (156), the CXCR1/2 antagonist Reparixin (157),

and the CXCR4 antibody Ulocuplumab (158), have all been

shown to reduce the infiltration of MDSCs in tumors, ultimately

reducing their metastatic potential.

In addition to chemokine antagonists, aminobisphosphonates

have also been shown to inhibit the recruitment of MDSCs.

Aminobisphosphonates reduce MMP9 expression and the

number of macrophages in the tumor stroma and decrease

MDSCs infiltration in bone marrow and peripheral blood by

decreasing serum pro-MMP9 and VEGF (159). In a mouse model

of pancreatic cancer, the use of zoledronic acid reduced MDSCs

accumulation and slowed tumor growth (160).

Depleting MDSCs recruited into PMN is also an effective

therapeutic strategy. Low dose chemotherapeutic drugs have

been shown to effectively eliminate MDSCs in tumor bearing

mice. Given to tumor bearing mice, a significant decrease in the

number of MDSCs can be observed after treatment with various

chemotherapeutic agents, such as 5-fluorouracil (161),
FIGURE 4

Treatment strategies for MDSCs. (A) Inhibit the differentiation of MDSCs. (B) Inhibit the accumulation of MDSCs. (C) Inhibit the function of MDSCs.
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irinotecan (162), gemcitabine (163), and sunitinib (164). In

addition to chemotherapeutic agents, researchers have

developed fusion proteins capable of targeting MDSCs. Qin

developed a novel therapeutic peptide-Fc fusion protein that

specifically depletes MDSCs without affecting other pro-

inflammatory classes of immune cells (165). Subsequently,

Feng synthesized an NKG2D-Fc fusion protein, which reduced

infiltrating MDSCs in tumors by binding to NKG2D expressing

MDSCs (166).
Inhibit the function of MDSCs

Because MDSCs play an important role in the tumor

microenvironment and PMN due to their powerful

immunosuppressive function, alleviating the immunosuppressive

mechanisms of MDSCs has become a major therapeutic target to

re-establish T-cell activity.

COX2 inhibitors have been reported to act as immuno

suppressive agents to improve tumor patient survival. COX2

induces ROS production in MDSCs through the production of

prostaglandin E2 (PGE2), and disruption of COX2/PGE2

signaling contributes to the attenuation of the suppressive

function of MDSCs. In a murine mesothelioma model, the use

of a single COX2 inhibitor, celecoxib, was able to reduce MDSCs

levels and reverse T cell function (167). It was subsequently

shown that treatment with celecoxib in combination with 15-

hydroxyprostaglandin dehydrogenase (15-PGDH) (168),

sunitinib (169), and PD-1 (170) in a murine metastatic tumor

model more effectively reduced MDSCs levels as well as

increased T cell numbers. Therefore, multiple drug

combination therapy may be used selectively on therapeutic

strategies targeting MDSCs for the patient’s own condition.

In the last two years, researchers found that triggering

receptor expressed on myeloid cells (TREMs) has emerged as

a potent regulator of innate immune responses, and observed

that TREM1 was expressed in M-MDSCs and PMN-MDSCs, but

TREM2 was expressed only in the M-MDSCs. They performed

contrasting experiments by overexpressing and underexpressing

TREM1 and observed worse prognosis in cancer patients with

increased levels of TREM1 (171). Martina’s experiments suggest

that TREM2 deficiency may promote increased T cell activation

and may enhance responsiveness to anti-PD-1 checkpoint

blockade, and treatment with anti-TREM2 mAb curbed tumor

growth and fostered regression when combined with anti-PD-1

(172). Therefore, TREMs may be a useful biomarker of tumor

progression, and developing TREMs inhibitors might be able to

effectively combat tumor development.

Nowadays, combining MDSCs targeted therapy and

immunotherapy has emerged as a new therapeutic strategy in

improving the therapeutic efficacy of targeted MDSCs. The

investigators found that mice still had large primary tumors

and metastases that were not eliminated after treatment with a
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single anti-PD-1, whereas when anti-PD-1 was combined with

5-azacytidine and entinostat, both primary tumors in mice were

eliminated and no metastases appeared (173). This indicates that

immunotherapy combined with MDSCs targeted therapy is

more effective in improving tumor progression and improving

patient survival.
Conclusion

PMN formation reflects the dynamic relationship between

tumor cells and the microenvironment of metastatic sites.

Exploring PMN formation as well as the understanding of

PMN biology has largely relied on mouse models of lung

metastases. Thus, more clinical studies are needed, and more

direct assays should be developed on the basis of existing

techniques for PMN detection in order to observe the dynamic

course of tumor metastasis.

In PMN formation, MDSCs play an important

immunosuppressive role because of their specific heterogeneity.

PMN-MDSCs suppress T cell function mainly through the

production of ROS, and because ROS are very labile, PMN-

MDSCs need to be in close contact with T cells to exert

suppressive effects. In contrast, M-MDSCs suppress T cell

activation by producing large amounts of iNOS, Arg-1, and

some immunosuppressive factors. The half-life of iNOS, Arg-1,

is much longer compared to ROS, so M-MDSCs need not come

into close contact with T cells only to exert their suppressive effect.

This illustrates the higher inhibitory activity of M-MDSCs than

PMN-MDSCs (84, 174–177). Compared with the first two subsets

of MDSCs, aspects such as the origin and function of e-MDSCs

are generally less well recognized. It has been suggested that e-

MDSCs do not have an inhibitory effect on the proliferation of T

cells (178), and conversely, it has been shown that e-MDSCs have

a very low inhibitory effect (179). Therefore, whether e-MDSCs

can be considered as M-MDSCs, PMN-MDSCs such functional

MDSCs is still controversial and needs further exploration. In

contrast, F-MDSCs exert immunosuppressive effects by inducing

the conversion of effector T cells into Tregs through the

production of IDO, as described previously.

In addition to their own immunosuppressive functions,

MDSCs have been shown to play important roles in vascular

leakage, ECM remodeling, angiogenesis, and so on. Based on the

role of MDSCs at various stages in PMN formation, researchers

have developed therapeutic approaches to target MDSCs to

detect the tumor metastasis situation at early stages of cancer.

Although numerous studies have demonstrated the pro

metastatic role of MDSCs, additional studies have shown that

MDSCs can suppress tumor metastasis in some contexts. High

amounts of anti-angiogenic TSP-1 are produced by MDSCs in

tumors that lack metastatic potential, and knockdown of TSP-1

restores the pro tumor effects of MDSCs (180). Attention needs

therefore to be paid to the effects of TSP-1 in therapies that block
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tumor metastasis by targeting MDSCs. Nowadays, for targeted

therapy of MDSCs, it is important to focus not only on MDSCs

regulatory network but also on the mutual communication

between MDSCs and other cells or components, which has the

potential to provide new options for cancer therapy.
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G, Ahmed R, et al. Adenosine mediates functional and metabolic suppression of
peripheral and tumor-infiltrating CD8+ T cells. J Immunotherapy Cancer (2019) 7
(1):257. doi: 10.1186/s40425-019-0719-5

102. Zheng W, Zhu Y, Chen X, Zhao J. CD73 expression in myeloid-derived
suppressor cells is correlated with clinical stages in head and neck squamous cell
carcinomas. Ann Trans Med (2021) 9(14):1148. doi: 10.21037/atm-21-2589

103. Li J, Wang L, Chen X, Li L, Li Y, Ping Y, et al. CD39/CD73 upregulation on
myeloid-derived suppressor cells via TGF-b-mTOR-HIF-1 signaling in patients
with non-small cell lung cancer. Oncoimmunology (2017) 6(6):e1320011.
doi: 10.1080/2162402X.2017.1320011

104. Rosemblatt MV, Parra-Tello B, Briceño P, Rivas-Yáñez E, Tucer S,
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