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The endoplasmic reticulum (ER) is the subcellular site where

proteins following the secretory pathway acquire their proper

tertiary and, in certain cases, quaternary structures. Species that

are not yet properly folded are prevented from exit to the Golgi

apparatus and, if permanently misfolded, are transported to the

cytosol, where they are degraded in the proteasomes. This review

deals with a mechanism, applicable to proteins that are N-

glycosylated in the ER, by which the quality control of folding is

performed. Protein-linked monoglucosylated glycans, formed by

glucosidase I- and glucosidase II-dependent partial deglucosyl-

ation of the oligosaccharides transferred from dolichol di-

phosphate derivatives in N-glycosylation (Glc
$
Man

*
GlcNAc

#
),

mediate glycoprotein recognition by two ER-resident lectins,

membrane-bound calnexin (CNX) and its soluble homologue,

calreticulin (CRT). A still not yet fully confirmed interaction

between the lectins and the protein moieties of folding glyco-

proteins may occur after lectin recognition of monoglucosylated

structures. Further deglucosylation of glycans by glucosidase II,

and perhaps also by a change in CNX}CRT and}or in the

substrate glycoprotein conformation, liberates the glycoproteins

PROTEIN GLYCOSYLATION AND GLYCAN PROCESSING IN THE
ENDOPLASMIC RETICULUM (ER)

The main features of the pathway leading to protein glycosylation

and oligosaccharide processing in the lumen of the ER of

mammalian, plant and yeast cells were already known at the

beginning of the 1980s, but their full meaning was not clearly

understood [1–3]. It had been established that a dolichol-P-P-

linked oligosaccharide (Glc
$
Man

*
GlcNAc

#
; Scheme 1) is trans-

ferred to Asn residues in nascent polypeptide chains. This glycan

represents a well conserved structure in evolution, as the same

compound is transferred in wild-type plant, fungal and mam-

malian cells [1–3].

The oligosaccharyltransferase is a very complex enzyme,

formed by eight subunits located in the ER membrane. In cell-

free assays, the enzyme transfers the triglucosylated oligo-

saccharide about 20-fold faster than the compound lacking Glc

units. This property determines the occurrence of under-

glycosylated glycoproteins in cell mutants unable to elongate

Man
*
GlcNAc

#
-P-P-dolichol [4]. The requirement of three Glc

units in the oligosaccharide for an efficient transfer reaction did
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H; ER, endoplasmic reticulum, GI, glucosidase I ; GII, glucosidase II ; GT, UDP-Glc :glycoprotein glucosyltransferase ; VSV, vesicular stomatitis virus.
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from their CNX}CRT anchors. Glycans may be then re-

glucosylated by the UDP-Glc:glycoprotein glucosyltransferase

(GT), and thus be recognized again by CNX}CRT, but only

when linked to not yet properly folded protein moieties, as this

enzyme behaves as a sensor of glycoprotein conformation.

Deglucosylation}reglucosylation cycles catalysed by the oppos-

ing activities of glucosidase II and GT only stop when proper

folding is achieved. The interaction between CNX}CRT and a

monoglucosylated glycan is one of the alternative mechanisms by

which cells retain not yet properly folded glycoproteins in the

ER; in addition, it enhances folding efficiency by preventing

protein aggregation and thus allowing intervention of classical

chaperones and other folding-assisting proteins. There is evidence

suggesting that both glycoprotein glucosylation and mannose

removal, respectively mediated by GT and ER mannosidase I,

might be involved in cell recognition of permanently misfolded

glycoproteins bound for proteasome degradation.

Key words: calnexin}calreticulin, glucosyltransferase, glyco-

protein degradation, quality control.

not initially seem fully rational, as these residues are removed

immediately once the glycan is linked to protein.

Several ERenzymes are involved in oligosaccharide processing.

Glucosidase I (GI; a membrane-bound enzyme) [3] removes the

external Glc unit (residue n, Scheme 1), whereas glucosidase II

(GII ; a soluble heterodimer composed of catalytic and ER-

retaining subunits) [5,6] excises both remaining units (residues l

and m, Scheme 1). Two specific ER α-mannosidases may remove

up to two mannose units in the mammalian cell ER (residues i

and k, by α-mannosidases I and II respectively ; see Scheme 1) [7].

The single α-mannosidase present in Saccharomyces cere�isiae

ER removes residue i (Scheme 1) [8].

Further processing of the oligosaccharide may occur in the

Golgi complex. The extreme structural diversity found in oligo-

saccharides linked to Asn residues in mature, fully processed

glycoproteins of different organisms or of different cell types

belonging to multicellular organisms originates by differential

processing reactions in the Golgi apparatus. This structural

diversity presents a certain logic, as the roles of protein-linked

oligosaccharides in mature glycoproteins are related mainly to

recognition phenomena [9]. In contrast, glycan processing in the
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Scheme 1 Structure of oligosaccharides

Shown are the structures of oligosaccharides transferred in wild-type mammalian, plant, fungal and trypanosomatid cells. Boxed letters a, b, c, etc. indicate the order of addition of the monosaccharide

units in the synthesis in vivo of Glc3Man9GlcNAc2-P-P-dolichol. The entire oligosaccharide is synthesized in mammalian, plant and fungal cells. Oligosaccharides formed by trypanosomatids that

synthesize Man6GlcNAc2, Man7GlcNAc2 and Man9GlcNAc2 lack residues i–n, j–n and l–n respectively.

ER is basically similar in all cells because, as will be described

below, the role of these reactions is directly related to a property

common to all glycoproteins, namely the acquisition of their

correct tertiary structures.

TRANSIENT GLUCOSYLATION OF GLYCOPROTEINS IN
TRYPANOSOMATIDS

Glucosylation of glucose-free high-mannose-type oligosacchar-

ides was first detected in trypanosomatid cells (several trypano-

somatid species are the causative agents of diseases endemic

in developing countries). On isolation of dolichol-P-P derivatives

from live trypanosomatid cells incubated with ["%C]Glc, it was

found that trypanosomatid protozoa were (and so far still are)

the only wild-type cells that transfer unglucosylated oligo-

saccharides in protein N-glycosylation in �i�o (Man
*
GlcNAc

#
,

Man
(
GlcNAc

#
or Man

'
GlcNAc

#
, depending on the species ; see

Scheme 1) (for a review on protein N-glycosylation in trypano-

somatid protozoa, see [10]). In contrast with oligosaccharyl-

transferases from other eukaryotes, those from trypanosomatid

protozoa transfer Man
'
–
*
GlcNAc

#
and Glc

"
–
$
Man

*
GlcNAc

#
at

the same rate in cell-free assays [11]. Structural analysis

revealed that oligosaccharides were transiently glucosylated once

they were transferred to proteins. For instance, protein-linked

Glc
"
Man

*
GlcNAc

#
, Glc

"
Man

)
GlcNAc

#
and Glc

"
Man

(
GlcNAc

#
were characterized in Trypanosoma cruzi cells (this parasite is the

causative agent of Chagas ’ disease; it transfers Man
*
GlcNAc

#
in

protein N-glycosylation) [12]. The precursor of the Glc units was

probably UDP-Glc, because it was also found that these protozoa

are unable to synthesize dolichol-P-Glc, the donor of Glc units

in Glc
$
Man

*
GlcNAc

#
-P-P-dolichol [13]. Further work showed

that Glc
"
Man

(
GlcNAc

#
and Glc

"
Man

)
GlcNAc

#
are formed by

glucosylation of the unglucosylated species, and not by demanno-

sylation of Glc
"
Man

*
GlcNAc

#
. The monoglucosylated glycans

had a transient existence, as they disappeared upon chasing

cells with unlabelled Glc (glycan processing reactions occurring

in T. cruzi ER are depicted in Scheme 2A).

GLYCOPROTEIN GLUCOSYLATION IS NOT RESTRICTED TO
TRYPANOSOMATID CELLS

In contrast with what happens in trypanosomatids, Glc
"
Man

*
GlcNAc

#
, Glc

"
Man

)
GlcNAc

#
and Glc

"
Man

(
GlcNAc

#
could

theoretically be formed in mammalian cells by two different

pathways: (1) partial deglucosylation of Glc
$
Man

*
GlcNAc

#
to Glc

"
Man

*
GlcNAc

#
, followed by demannosylation of the

latter compound, or (2) complete deglucosylation of the trans-

ferred compound, followed first by partial demannosylation of

Man
*
GlcNAc

#
and then bydirect glucosylation of unglucosylated

glycans. The occurrence of direct glucosylation of protein-linked

Man
*
GlcNAc

#
, Man

)
GlcNAc

#
and Man

(
GlcNAc

#
in trypano-

somatids suggested the design of several experiments, performed

in live cells and in a subcellular fraction enriched in ER vesicles,

that demonstrated that the same process occurred in mammalian,

plant and fungal cells [14–16]. The ER was identified as the

subcellular site of transient glycoprotein glucosylation (ER

processing of protein-linked oligosaccharides in mammalian cells

is shown in Scheme 2B). As in trypanosomatids, monoglucosyl-

ated glycans also had a transient existence in live mammalian

cells. The structure of Glc
"
Man

*
GlcNAc

#
formed by direct

glucosylation was identical with that formed by partial deglu-

cosylation of Glc
$
Man

*
GlcNAc

#
(residues a–l in Scheme 1),

thus indicating that GII was also responsible for deglucosylation

of the former compound in �i�o [14,17].

Although rat liver microsomes incubated with UDP-Glc

glucosylated endogenous glycoproteins, no glucosylation of

exogenously added high-mannose-type glycoproteins was

observed. Further work showed that added glycoproteins had to

be previously denatured in order to be glucosylated by the

activity present in the ER, i.e. UDP-Glc:glycoprotein glucosyl-

transferase (GT) [17]. Glycopeptides such as Man
*
GlcNAc

#
-Asn

were not glucosylated, thus indicating that the effect of

denaturation was not to render the oligosaccharide accessible to

GT, but rather to expose or create protein domains whose

recognition by the enzyme was apparently required for glycan

# 2000 Biochemical Society
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Scheme 2 Oligosaccharide processing

Oligosaccharide processing reactions occurring in the ER of T. cruzi (A) and mammalian (B) cells are shown. GNA, GlcNAc ; M, Man ; G, Glc ; D, dolichol ; Pr, protein ; OT, oligosaccharyltransferase ;

MI and MII, mannosidases I and II respectively.

glucosylation [18]. A paper by Suh et al. [19] confirmed that,

indeed, misfolded glycoproteins were glucosylated by GT in �i�o :

glycoprotein G of the thermosensitive vesicular stomatitis virus

(VSV) ts045 mutant was retained in the ER of infected cells at the

non-permissive temperature (39 °C) in two interconvertible

(monoglucosylated and unglucosylated) forms. Around 55% of

all N-linked oligosaccharides in mature, properly folded glyco-

proteins were found to be monoglucosylated in T. cruzi cells (in

which monoglucosylated glycoproteins are formed exclusively by

GT; see Schemes 2A and 2B) grown in the presence of a GII

inhibitor (1-deoxynojirimycin) [20]. This indicated that glucosyl-

ation of glycoproteins was not restricted to permanently folded

species, but that it also occurred during productive folding.

Moreover, as glycoproteins generally have more than one N-

oligosaccharide, the value obtained suggested that practically all

glycoproteins were glucosylated in at least one of their oligo-

saccharides. Based on the unique properties of GT, it was

suggested that the enzyme (and monoglucosylated oligo-

saccharides) could somehow be involved in the so-called ‘quality

control ’ of glycoprotein folding in the ER (see below)

[17,18,20,21].

The availability of an assay for GT activity (incubation of Glc-

labelled UDP-Glc, a denatured high-mannose-type glycoprotein

and an enzyme source, followed by quantification of label in

10% trichloroacetic acid-insoluble material) allowed detection

of the enzyme not only in mammalian and protozoan cell-

derived microsomes, but also in vesicles isolated from fungi and

plants [17]. GT was purified to homogeneity from rat liver

and the fission yeast Schizosaccharomyces pombe [21,22] and also,

but for unexpected reasons, from Drosophila melanogaster cells

[23]. While studying extracellular-matrix formation in fly tissues,

J. Fessler ’s group purified to homogeneity a secreted protein

[23]. Immunolocalization studies revealed that the protein was

mainly localized in the ER. Its sequence, size and localization sug-

gested that the protein could be the D. melanogaster homologue

of rat liver and Schiz. pombe GT. Enzymic assays confirmed

this idea. GT is a rather large (160 kDa) soluble ER protein that

has an absolute requirement of millimolar Ca#+ concentrations

for activity and uses UDP-Glc, but not TDP-Glc, ADP-Glc or

UDP-Gal, as substrate donor [21,22].

IDENTIFICATION OF STRUCTURES RECOGNIZED BY GT IN
MISFOLDED CONFORMERS

Once proteins depart from their native conformation, they may

adopt a variety of different structures that are extremely difficult

to characterize. This fact has hindered identification of structural

# 2000 Biochemical Society
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features recognized by GT in misfolded conformers. Never-

theless, several experiments have provided hints as to the nature

of these structures and the folding stages in which glycoproteins

are glucosylated.

Although denatured non-glycosylated proteins do not affect

GT activity, denatured glycoproteins from which the oligo-

saccharide had been removed by endo-β-N-acetylglucos-

aminidase H (Endo H) treatment (i.e. leaving a single GlcNAc

linked to the Asn units) proved to be very efficient inhibitors [24].

For instance, Endo H-treated denatured RNase B inhibited

glucosylation of denatured RNAse B, whereas RNase A or Endo

H-treated native RNase B had no effect (RNases A and B have

exactly the same composition, except for the presence of a single

N-oligosaccharide in the latter). On the other hand, although

Man
*
GlcNAc

#
-Asn was not (or was very poorly) glucosylated by

GT, even in the presence of denatured β-lactoglobulin (a non-

glycosylated protein), cross-linking the two structures with

glutaraldehyde resulted in a very efficient substrate [24]. It was

concluded that, in an efficient GT acceptor substrate, the protein

recognition elements and the oligosaccharide have to be co-

valently linked and the innermost GlcNAc residue has to be

accessible to GT. This last requirement probably contributes to

the exclusive glucosylation of incompletely folded glycoproteins,

as the innermost GlcNAc units interact, in native conformers,

with neighbouring amino acids, and are often not accessible to

macromolecular probes [25,26]. The requirement of a covalent

linkage between the oligosaccharide and the protein indicates

that the folding status of a glycoprotein molecule does not

influence the glucosylation of other molecules. GT recognizes

not only the innermost GlcNAc but also the Man units, as the

respective relative glucosylation rates of Man
*
GlcNAc

#
,

Man
)
GlcNAc

#
and Man

(
GlcNAc

#
are 100, 50 and 15 (this result

was obtained considering only the isomers of the last two

compounds that contain Man residue g in Scheme 1, i.e.

the residue to which the Glc residue is attached). A decrease

in the rate of deglucosylation by purified GII was also observed

upon removal of Man units from Glc
"
Man

*
GlcNAc

#
[27].

With regard to the nature of protein structures recognized by

GT in misfolded conformations, it was initially suggested that

perhaps they could be patches of hydrophobic amino acid side

chains, as the enzyme was found to bind hydrophobic amino

acids under physiological conditions of pH and salt concen-

tration, and exposure of hydrophobic amino acid side chains is

a feature common to all misfolded conformers [18]. Nevertheless,

no evidence indicating that such patches actually are the elements

triggering glucosylation has been obtained.

Evidence gathered in both cell-free and in �i�o assays suggested

that GT might recognize structures exposed not in the initial, but

in the final, folding stages. Thus, although a neoglycoprotein

formed by chemical linkage between full-length staphylococcal

nuclease (a non-glycosylated 149-amino-acid protein) and

Man
*
GlcNAc

#
-Asn necessarily required previous denaturation

in 8 M urea to be glucosylated by GT, truncated versions of the

same molecule lacking 14 amino acids at the C-terminus were

good GT substrates in the absence of any denaturing treatment

[24]. The nuclease-specific activities of the truncated neoglyco-

proteins were about one-quarter to one-third of that of the full-

length native neoglycoprotein, thus showing that GT substrates

can display conformations closely resembling native ones. Cleav-

age of the bond between amino acids 20 and 21 in RNase B (a

124-amino-acid protein) yielded a peptide plus a protein core

that had conserved full enzymic activity. The latter structure,

which had the N-oligosaccharide, was not glucosylated by GT

unless the peptide was removed, a procedure that also abolished

RNase activity [27a]. The isolated 104-amino-acid core never-

theless retained much of the native structure, due to the presence

of four disulphide bridges. On the other hand, complete reduction

followed by S-alkylation of RNase B with iodoacetamide or

iodoacetic acid produced fully soluble unfolded RNase B con-

formers that were poorly glucosylated by GT.

These results, suggesting that GT requires partially structured

glycoproteins for glucosylation, agree with experiments per-

formed in �i�o indicating that induction of glycoprotein mis-

folding by the addition of dithiothreitol to Schiz. pombe cells

does not result in a generalized increase in GT-mediated glyco-

protein glucosylation [28]. Furthermore, the fact that formation

of monoglucosylated oligosaccharides in T. cruzi depends ex-

clusively on GT activity (Scheme 2A) allowed pinpointing, with

some accuracy, of the folding stages at which cruzipain (a

lysosomal proteinase having two or three N-oligosaccharides

and six or seven disulphide bridges) was glucosylated. As will be

described below, monoglucosylated oligosaccharides are reco-

gnized in �i�o by ER-resident lectins, calnexin (CNX) and

calreticulin (CRT). Interaction of cruzipain with CRT (trypano-

somatid protozoa lack CNX) occurred only when all or nearly all

disulphide bridges had already been formed, thus indicating a

requirement of at least a partially structured molecule for GT-

mediated glucosylation [29].

GT has been sequenced from mammalian, insect, nematode

and fungal sources ([23,30], and GenBank accession number

U28735). Whereas the C-terminal portions (30% of the molecule)

of GTs from different sources show a fairly high degree of

similarity (65–70% identity), similarity is much lower at the N-

terminal ends. This is particularly noticeable when comparing

the sequence of Schiz. pombe GT with those from other sources.

As there is a significant, although limited, identity between GT

C-terminal portions and bacterial glycosyltransferases that utilize

UDP-Glc or UDP-Gal as substrate donors, it may be speculated

that part of the enzyme is responsible for sugar nucleotide (and

probably also oligosaccharide) recognition. On the other hand,

GT N-terminal portions show much lower sequence identity, as

they probably have to sense the folding status of glycoproteins.

Recognition of a wide variety of different structures, exclusively

exposed in conformers that are not properly folded, would

require much less stringent sequence identity. All GTs sequenced

so far display ER retrieval sequences for soluble proteins at their

C-termini.

THE ER AS A CONTROL POINT

Proteins enter the secretory pathway in the ER, where they are

covalently modified (cleavage of the signal peptide, N-

glycosylation, formation of disulphide bonds) and acquire their

proper tertiary and, in some cases, also quaternary structures.

Proteins that fail to fold properly are initially retained in the ER

and eventually transported to the cytosol, where they are

proteolytically degraded in the proteasomes [31,32]. Cells have,

therefore, mechanisms for discriminating between different con-

formers. These mechanisms have been globally referred to as the

‘quality control ’ of protein folding [33]. As will be described

further below, there are exceptions in which misfolded glyco-

proteins are transported to their correct subcellular location.

Proper folding of proteins is facilitated in the ER by a battery

of classical molecular chaperones [BiP (immunoglobulin heavy-

chain binding protein)}glucose-regulated protein (GRP)68,

GRP94, GRP170, etc.], by unconventional chaperones (CNX

and CRT) and by proteins with activity to catalyse protein

disulphide-bond formation [protein disulphide isomerase (PDI

or ERp59), ERp72, ERp57, etc.] [34–39]. These proteins display

thiol :protein disulphide oxidoreductase and isomerase activities.

# 2000 Biochemical Society
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The lumen of the ER is an oxidizing environment that facilitates

the formation of disulphide bonds. On the other hand, the ER

lumen is the main cellular Ca#+ reservoir. The function of several

chaperones and folding-assisting proteins is dependent on the

correct Ca#+ concentration [40].

CNX is a 572-amino-acid type I transmembrane protein

(initially known also as p88 and IP90), whereas CRT (a 400-

amino-acid protein) is its soluble homologue [41–43]. Both

proteins have high-affinity}low-capacity and low-affinity}high-

capacity Ca#+ binding sites. As will be described below, the

middle (or P) domains of both proteins, which show high

homology, have lectin properties.

GLYCANS ARE REQUIRED FOR PRODUCTIVE FOLDING OF MANY
GLYCOPROTEINS

N-glycosylation may be prevented in �i�o by inhibiting formation

of the dolichol-P-P precursor (either by the addition of com-

pounds inhibiting biosynthesis, such as tunicamycin, or by

mutations affecting the enzymes involved) or by eliminating N-

glycosylation consensus sequences by site-directed mutagenesis

in glycoproteins under study. In addition, new N-glycosylation

sites may also be created by site-directed mutagenesis. Numerous

reports have shown that the presence of N-oligosaccharides is

required for the correct folding of many glycoproteins [44–46].

Misfolded species lacking oligosaccharides are generally found in

the ER, forming large aggregates that are non-covalently bound

to BiP and other ER chaperones, and often are covalently

linked to each other through aberrant interchain disulphide

bonds [47,48]. In some glycoproteins all N-oligosaccharides are

required for proper folding of all molecules, whereas in other

cases a sizeable fraction of the molecule may fold correctly upon

elimination of all N-glycans [49,50]. In some glycoproteins, some

N-oligosaccharides are more important than others for proper

folding: elimination of a particular glycosylation site may not

affect folding, whereas elimination of a different one may result

in complete misfolding of the same glycoprotein [51,52]. Rather

surprisingly, creation of newN-glycosylation siteswithout elimin-

ation of the pre-existing ones resulted in a hyperglycosylated

influenza virus haemagglutinin that showed temperature depen-

dence in transport (i.e. probably in ER folding) [53]. In some

cases, elimination of N-oligosaccharides may result in lower

temperature-dependence for folding [54].

In other cases, however, the presence, but not the location, of

N-oligosaccharides is important for proper folding. Thus elim-

ination of both glycosylation sites from VSV G protein resulted

in misfolding of the protein. Proper folding was restored on

creation of new N-glycosylation sites at different locations [55,56].

Finally, there are many cases in which N-oligosaccharides are

completely dispensable for proper folding and secretion [57–59].

That the effect of N-oligosaccharides on correct folding cannot

be predicted may be highlighted by the observation that the

G protein of only one of two VSV strains required N-

oligosaccharides for proper folding. A single point mutation

(Y172D) converted a form for which folding was N-oligo-

saccharide-dependent to an N-oligosaccharide-independent form

[60]. Similarly, a chimaeric membrane protein formed by rat

growth hormone (a non-glycosylated soluble protein) and a

C-terminal extension containing VSV G protein transmembrane

and cytosolic domains was not transported to the cell surface

unless one N-glycosylation consensus sequence was created at a

random position in the hormone portion of the molecule [61].

As will be seen below, not only do N-oligosaccharides

provide bulky, highly hydrophilic groups that help to maintain

glycoproteins in solution during the folding process or modulate

protein conformation by forcing amino acids close to the linking

Asn unit to be in the proximity of the water–glycoprotein

interphase, but the interaction of certain specific structures

(monoglucosylated oligosaccharides) with ER lectins potentiates

the folding-facilitating effect of the high-mannose core and

provides a mechanism for retaining molecules that are not yet

correctly folded in the ER.

CNX AND CRT ARE LECTINS THAT SPECIFICALLY BIND
MONOGLUCOSYLATED GLYCOPROTEINS

CNX was initially described as a protein that transiently recog-

nized class I MHC molecules, membrane-bound immuno-

globulins and T-cell antigen receptor molecules [62,63]. Ou et al.

[64] published a seminal article in which they showed that CNX

was associated transiently with a series of glycoproteins

synthesized by human hepatoma cells. What was remarkable was

that tunicamycin (an inhibitor of protein N-glycosylation) pre-

vented association. Moreover, the main non-glycosylated protein

secreted by the above-mentioned cells (albumin) did not interact

with CNX. The effect of tunicamycin was a serendipitous

observation, because further reports showed that other glyco-

proteins interacted with CNX when synthesized either in the

absence or in the presence of tunicamycin. As mentioned above,

prevention of N-glycosylation leads, in many cases, to protein

aggregation within the ER and, as will be discussed further

below, such aggregates do indeed interact with CNX (as with

other ER-resident proteins), but in a non-specific and non-

productive way. Interaction of CNX with glycoproteins secreted

by the human hepatoma cells was transient, and retention half-

times for different glycoproteins were correlated with their

respective half-times of secretion. Moreover, incorporation of a

Pro analogue into the hepatoma cell glycoproteins prevented

their proper folding and prolonged their interaction with CNX.

These results suggested, therefore, that the exclusive interaction

of glycoproteins with CNX could be somehow involved in the

quality control of glycoprotein folding.

Further work by Hammond et al. [65] showed that not only

tunicamycin, but also inhibitors of GI and GII (but not of ER α-

mannosidase I), prevented the interaction of glycoproteins with

CNX. The G protein of the ts045 VSV mutant that, as mentioned

above, was present at 39 °C in deglucosylated}monoglucosylated

forms, interacted with CNX at that temperature. As the form

that was precipitated with anti-CNX serum migrated in SDS}
PAGE after jack-bean α-mannosidase treatment as having a

larger size than that of the fully deglucosylated molecule, it was

concluded that CNX specifically recognized monoglucosylated

glycoproteins [the presence of glucose residue l (see Scheme 1)

prevents full removal of α-linked Man units by α-mannosidase].

Further work confirmed this conclusion [66]. CRT, in addition to

CNX, was also observed to interact with monoglucosylated

glycoproteins [67–69]. From the long list of glycoproteins

reported to date to associate with CNX}CRT, it may be

concluded that all glycoproteins, irrespective of their final

destination or their soluble or membrane-bound status, interact

transiently with the ER lectins in mammalian cells. In agreement

with the oligosaccharide processing pathway occurring in mam-

malian cells (Scheme 2B), in all cases tested the addition of

GI}GII inhibitors (castanospermine, 1-deoxynojirimycin or its

N-methyl or N-butyl derivatives) prevented lectin–glycoprotein

association in �i�o [67–80]. Accordingly, no CNX}CRT–glyco-

protein interaction was observed in GI- or GII-deficient cell

lines [73,81]. In addition, GI}GII inhibitors prevented the

dissociation of already formed CNX}CRT–glycoprotein com-

plexes [65,82,83].
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In contrast with what happens in mammalian systems, addition

of 1-deoxynojirimycin to T. cruzi cells actually prolonged the

CRT–cruzipain interaction [29,84]. This result agrees with known

differences in N-oligosaccharide processing reactions occurring

in mammalian and trypanosomatid cell ER (Schemes 2A

and 2B).

CNX AND CRT MAY RECOGNIZE DIFFERENT GLYCOPROTEINS IN
VIVO

Purified (or recombinant) immobilized CNX and CRT interact

specifically with free monoglucosylated oligosaccharides when

challenged with a mixture of tri-, di-, mono- and un-glucosylated

glycans [29,85,86]. The strongest interaction was observed with

Glc
"
Man

*
GlcNAc

#
, and removal of mannose units from this

species with an α-mannosidase gradually reduced the binding

capacity [86,87]. Nevertheless, Glc
"
Man

&
GlcNAc

#
(residues a–g

and l in Scheme 1) still had 65% of the binding capacity of the

complete oligosaccharide. On the other hand, further removal of

residue e from Glc
"
Man

&
GlcNAc

#
completely abolished glycan

recognition by the lectins. No difference in glycan binding was

observed between CNX and CRT [87]. The binding properties of

CNX and CRT provide a rationale for the observation that the

presence of monoglucosylated glycan is a sufficient condition for

lectin interaction with isolated, properly folded glycoproteins

[29,88,89]. Nevertheless, the presence of two glycans in the same

glycoprotein appeared to be required for an efficient interaction,

as judged by the co-immunoprecipitation technique commonly

employed [88,90,91]. Milder, more sensitive techniques would be

required to compare the relative lectin-association efficiencies of

glycoproteins having different number of monoglucosylated

glycans.

In spite of similar binding of CNX and CRT to mono-

glucosylated oligosaccharide observed in cell-free assays, the two

lectins do not behave identically in �i�o. Thus the patterns of

glycoproteins precipitated with anti-CNX or anti-CRT antisera

from lysed mammalian cells only partially overlapped [67]. For

instance, CNX interacts with α, β and CD3-γ,δ and ε T cell

receptor subunits, but CRT only recognizes the first two poly-

peptides [92]. This difference might be related to the respective

soluble and membrane-bound status of CRT and CNX, and to

the relative positions of glycans in membrane glycoproteins. It

may be speculated that oligosaccharides located in the proximity

of the membrane would interact more easily with CNX, whereas

those lumenally oriented would preferentially associate with

CRT. In fact, similar patterns of glycoproteins were found to

interact with CRT and a truncated, soluble CNX fragment, or

with the full-length version of CNX and CRT artificially

anchored to the ER membrane by fusion with CNX or with

an adenovirus glycoprotein transmembrane domain [70,92a].

Moreover, oligosaccharides located in the top}hinge domain

of influenza virus haemagglutinin, i.e. in the more lumenally

oriented portion of the molecule, associated preferentially with

CRT, whereas CNX was less discriminating, but mainly bound

glycans close to the ER membrane [93].

An interesting case is that of the assembly of the human class

I MHC. The heavy chain (a membrane glycoprotein) interacts

first with CNX, but this interaction ceases upon association of

the former protein with β
#
-microglobulin (a non-glycosylated

protein). CRT then associates with the heavy chain, and this

interaction persists during the rest of the assembly process, which

involves transient interactions with other proteins, such as the

transporters associated with antigen processing (TAP), and

permanent association with a short, 8–10-amino-acid peptide

[71,72,94–97]. The association with first CNX and then CRT

would imply that the heavy-chain single oligosaccharide is first

located close to the ER membrane, but that a change in the

heavy-chain conformation resulting from β
#
-microglobulin bind-

ing makes it more accessible to soluble ER proteins such as CRT.

MODELS PROPOSED FOR THE QUALITY CONTROL OF
GLYCOPROTEIN FOLDING

The following basic model for the quality control of glycoprotein

folding was initially proposed by A. Helenius and co-workers

[65]. Protein-linked monoglucosylated glycans formed by partial

deglucosylation of the transferred oligosaccharide (Glc
$
Man

*
GlcNAc

#
) interact with CNX or CRT. The interaction would be

disrupted by further GII-mediated deglucosylation, but GT

would recreate monoglucosylated glycans in species that are

not yet properly folded. A shuttle between glucosylated and un-

glucosylated forms (i.e. a shuttle between CNX}CRT-bound and

-unbound forms) would continue until the molecules adopt

correctly folded structures (Figure 1A). It follows from this

model that interactions between lectins and glycoproteins would

exclusively retain conformers that are not correctly folded.

It is obvious that this is not the sole quality control mechanism

of protein folding occurring in the ER. Other mechanisms,

applicable to both glycoproteins and non-glycosylated proteins,

must be operative in order to prevent secretion of all misfolded

conformers. One of these mechanisms is based on the folding

polypeptide forming reversible disulphide bonds with matrix

proteins of the ER [98]. Additional mechanisms for retention in

the ER of misfolded conformers were revealed by preventing the

formation of monoglucosylated glycans: although the addition

of GI}GII inhibitors resulted in an increase in the secretion of

misfolded glycoproteins in CHO cells, the majority of misfolded

conformers were still retained in the ER by associating with BiP,

and probably also with other classical chaperones [99].

Another consequence of CNX}CRT–glycoprotein associa-

tions is a decrease in the folding rate, but an increase in

folding efficiency and in the correct formation of both oligomeric

structures and disulphide bonds. Prevention of the above-

mentioned association by addition of GI}GII inhibitors to a

rabbit reticulocyte}dog pancreas microsome system expressing

influenza virus haemagglutinin doubled the rate of disulphide-

bond formation and protein oligomerization, but the overall

efficiency of maturation decreased due to aggregation and

degradation [100]. Similar results were obtained in CHO cells

expressing the human insulin receptor to which GI}GII inhibitors

were added [78]. Co-expression of CNX and class I MHC heavy-

chain molecules in D. melanogaster cells enhanced the folding

efficiency of the latter molecules, as judged by increased reactivity

with conformation-dependent monoclonal antibodies [71].

The main obstacle to productive folding is aggregation; by

binding oligosaccharides, CNX and CRT maintain glycoproteins

in solution, thus allowing a functional interaction between the

protein moieties of glycoproteins and classical ER chaperones,

such as BiP}GRP68 [79,101], or with other folding-assisting

proteins. Cross-linking experiments performed in intact cells

showed that ERp57, an ER thiol :protein oxide reductase and

isomerase, interacts exclusively with monoglucosylated forms of

both membrane and soluble glycoproteins. An CNX}CRT–

ERp57 association mediated this interaction [102–104]. The

effect of addition of ERp57 on the proper folding of isolated

bovine pancreas monoglucosylated RNase B was enhanced if

CNXor CRTwas added to the cell-free system. ERp57 associated
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Figure 1 Models proposed for the quality control of glycoprotein folding

(A) ‘ Lectin only ’ model. Protein-linked Glc3Man9GlcNAc2 is partially deglucosylated to the monoglucosylated derivative by GI and GII, and this structure is recognized by CNX/CRT. Man9GlcNAc2
is glucosylated by GT if complete deglucosylation occurs before lectin binding. The glycoprotein is liberated from the CNX/CRT anchor by GII and reglucosylated by GT only if not properly folded.

This process allows rebinding of the glycoprotein to the lectins. Upon adoption of the native tertiary structure, the glycoprotein is released from CNX/CRT by GII and not reglucosylated by GT.

(B) ‘ Lectin first, followed by protein–protein interaction ’ model. Binding of protein-linked Glc1Man9GlcNAc2 to the lectins is a necessary step for a subsequent protein–protein interaction between

the glycoprotein and CNX/CRT. Release of the glycoprotein from the CNX/CRT anchor is a consequence of GII activity and a change in conformation in the glycoprotein, in CNX/CRT or in both.

In both models CNX/CRT recruits ERp57 for proper disulphide-bond formation in folding glycoproteins

with CNX and CRT, but not with the glycoprotein [105]. CNX

and CRT behave, therefore, as a sort of ‘strong hands ’ that, by

grabbing the hair of swimmers in treacherous seas, prevent their

drowning while rescue teams arrive.

An issue not yet settled is whether CNX and CRT behave

exclusively as lectins, as proposed in the model of quality control

of glycoprotein folding described above, or if the interaction of

monoglucosylated glycans with CNX}CRT is the first and

necessary step for a further interaction of the protein moieties of

glycoproteins and the ER lectins. According to this second

model, both CNX and CRT would behave first as lectins and

then as classical chaperones (Figure 1B). Although in both

models GT represents the element that senses glycoprotein

conformation, in the second model the disruption of the CNX}

# 2000 Biochemical Society
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CRT–glycoprotein complex would result not only from GII

activity, but also from a change in the protein conformation of

one or both elements of the complex. Evidence supporting both

models has been derived from experiments that have used a

similar experimental approach: CNX}CRT–glycoprotein com-

plexes were treated with glycosidases (GII, Endo H, N-

Glycanase) which removed the whole or part of the oligo-

saccharides from glycoproteins. Disruption or persistence of the

CNX}CRT–glycoprotein association after the enzymic treat-

ment, as judged by the absence or presence of glycoproteins in

immunocomplex precipitates obtained upon addition of anti-

CNX}CRT antisera, was taken as evidence for the ‘ lectin only ’

or the ‘ lectin first and then chaperone ’ models respectively. The

main drawback of using this experimental approach for sup-

porting the second model (Figure 1B) is that the presence of

glycoproteins in the immunocomplex precipitates after partial or

total removal of saccharide could be due, in cases in which CNX–

membrane-glycoprotein associations were studied, to the per-

sistence of the lectin and the glycoproteins in the same detergent

micelles after glycosidase treatment [72,85,106,107]. In the case

of a glycosidase-modified soluble glycoprotein, its presence in the

immunoprecipitates may be ascribed to the poor solubility often

observed for not yet properly folded glycoproteins [85]. No such

drawbacks are encountered in experiments supporting the ‘ lectin

only ’ model (Figure 1A) [29,88,89]. It has become evident that a

different experimental approach must be used to support the

‘ lectin first and then chaperone ’ model. The possibility cannot

be excluded, however, that the mechanism applicable may depend

on the glycoprotein under study.

It has been reported that CRT and a truncated form of CNX

behaved as classical chaperones in cell-free folding assays, with

respect not only to glycoproteins devoid of monoglucosylated

epitopes, but also to non-glycosylated proteins [108,109]. A

similar role for CNX and CRT in �i�o is doubtful, as it would

contradict the well documented requirement for monogluco-

sylated oligosaccharides for interaction with CNX}CRT (see

above). On the other hand, experiments performed in intact cells

indicated that CNX co-immunoprecipitated with proteins in

which N-glycosylation had been prevented by mutation of

consensus sequences or by addition of tunicamycin [106,110]. A

detailed study using VSV G glycoprotein having two, one or no

N-glycosylation sites, expressed in a rabbit reticulocyte}dog

pancreas microsome system, strongly suggested that co-immuno-

precipitations of CNX and non-glycosylated glycoproteins

could represent non-specific associations between the lectins and

the aggregates formed by many glycoproteins upon prevention

of N-glycosylation [91]. Non-specific co-precipitation of mis-

folded glycoprotein aggregates with classical ER chaperones

has been observed previously [111,112].

CNX}CRT-mediated facilitation of folding is not absolutely

dependent on glucosylation}deglucosylation cycles catalysed by

the opposing activities of GT and GII. Mutation of the Schiz.

pombe gene coding for the dolichol-P-Glc-dependent glucosyl-

transferase that adds the first Glc unit to Man
*
GlcNAc

#
-P-P-

dolichol resulted in a mutant that synthesized underglycosylated

proteins (as it transferred Man
*
GlcNAc

#
in protein N-

glycosylation) and which required GT-mediated glucosylation,

but not GII-dependent deglucosylation, for survival under con-

ditions of severe ER stress, such as high temperature [113]. In a

different experimental approach, CHO cells were infected with

the ts045 VSV mutant at the non-permissive temperature, thus

yielding CNX–G protein complexes [82]. On lowering the

temperature in the absence or presence of GII inhibitors (thus

allowing or not the occurrence of glucosylation}deglucosylation

cycles), G protein folded properly with the same efficiency under

both conditions, although the folding rate was somewhat higher

in the absence of the inhibitor.

IMPORTANCE OF FOLDING FACILITATION MEDIATED BY
CNX/CRT–GLYCOPROTEIN INTERACTIONS FOR CELL VIABILITY

The interaction of CNX}CRT with folding glycoproteins is not

essential for cell viability under normal growth conditions.

Mutation of GI}GII-encoding genes yielded mammalian or

Schiz. pombe cells in which monoglucosylated oligosaccharide

could not be formed by either of the possible pathways, which

nevertheless not only were able to grow, but also did not show

any discernable phenotype [6,114,115]. Moreover, a drastic

decrease in the formation of monoglucosylated oligosaccharides

caused by disruption of the Schiz. pombe GT-encoding gene did

not affect cell growth [30]. As folding is an error-prone but

essential process, cells have alternative ways for helping proteins

to acquire the correct tertiary structures. When one folding

facilitation system is absent, an alternative one carries out the

task. For instance, about half of influenza virus haemagglutinin

folded correctly when translated in a rabbit reticulocyte}dog

pancreas microsome system in the presence of GI}GII inhibitors

[100]. Prevention of CNX}CRT–glycoprotein interaction leads

to accumulation of misfolded glycoprotein in the ER, but this

triggers the up-regulation of classical chaperones and folding-

facilitating proteins (unfolded protein response) [6,73,116].

It has not yet been clearly established whether mono-

glucosylated oligosaccharides do indeed participate in facilitation

of glycoprotein folding in Saccharomyces cere�isiae, as (a) this

yeast is the only organism known so far that is devoid of GT

[22,117] ; (b) in contrast with what happens in mammalian and

Schiz. pombe cells, disruption of the GII-encoding gene does not

lead to the accumulation of misfolded glycoproteins in the ER

[117,118] ; and (c) Sacch. cere�isiae CNX presents significant

structural variations when compared with its mammalian

and Schiz. pombe counterparts [119] (neither Sacch. cere�isiae nor

Schiz. pombe present CRT-encoding genes). It has been reported

that Sacch. cere�isiae mutants in which Glc
"
Man

*
GlcNAc

#
is

transferred in protein N-glycosylation and lack GII accumulated

lower amounts of misfolded glycoproteins in the ER when

submitted to an exogenous stress (addition of dithiothreitol)

than mutants that transfer Man
*
GlcNAc

#
or Glc

#
Man

*
GlcNAc

#
and also lack GII, as judged by levels of BiP mRNA synthesized

[117]. This would suggest that monoglucosylated proteins are

somehow involved in the facilitation of glycoprotein folding.

On the other hand, as mentioned above, CNX–glycoprotein

interactions were found to be essential for Schiz. pombe viability

under conditions of severe ER stress, such as underglycosylation

of glycoproteins caused by a mutation that determined

Man
*
GlcNAc

#
transfer in N-glycosylation, and high temperature

[113]. The affected glycoprotein(s) was apparently involved in

cell wall formation, as viability at high temperature could be

regained not only upon transfection of double mutants lacking

GT and transferring Man
*
GlcNAc

#
with a GT-encoding ex-

pression vector, but also by growing cells in a hyperosmotic

medium (1 M sorbitol). Homozygous-null mice for calmegin, a

testis-specific CNX homologue, were nearly sterile, although

they showed normal spermatogenesis and mating [120]. Their

sperm did not adhere, however, to the extracellular matrix (zona

pellucida), probably due to the total or partial absence of a

docking glycoprotein at the plasma membrane. In addition,

production of infectious HIV-1 and hepatitis virus B was

prevented by addition ofGI}GII inhibitors to the growthmedium

[121–123]. These results show, therefore, that in certain cases

CNX}CRT-mediated facilitation of glycoprotein folding is in-

deed required for several cellular processes.
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ARE OLIGOSACCHARIDE PROCESSING REACTIONS INVOLVED
IN RECOGNITION OF PERMANENTLY MISFOLDED
GLYCOPROTEINS?

As mentioned above, it has become evident in recent years that

in both Sacch. cere�isiae and mammalian cells the 26 S cytosolic

proteasome is the main site of degradation of soluble and

transmembrane misfolded glycoproteins retained in the ER

[31,32]. Retrograde transport from the lumen of the ER to the

cytosol and degradation involves the translocon heterotrimeric

Sec61p complex and the ubiquitin}proteasome system. Several

proteasome inhibitors prevented ER-retained glycoprotein

degradation and induced synthesis of mRNAs coding for ER

chaperones, such as BiP, GRP94 and ERp72, a consequence of

the accumulation of misfolded protein in the ER. This response

was not triggered by inhibitors of non-proteasome proteases

[124]. Glycoproteins are apparently deglycosylated in both

yeast and mammalian cells by a neutral cytosolic N-glycanase

activity prior to proteasome degradation [125–127]. This activity

generates an N,N«-diacetylchitobiose structure at the reducing

end of the oligosaccharides and a conversion of the Asn residue

into Asp in the protein moiety. Free high-mannose-type oligo-

saccharides are then successively degraded in the mammalian cell

cytosol by an Endo H-like activity and an α-mannosidase that

yield Man
&
GlcNAc. This oligosaccharide is then degraded in the

lysosomes [128].

Not all glycoproteins that fail to fold properly in the ER are

degraded in the proteasomes. The N-terminal domain of the λ

repressor fused to the secreted glycoprotein invertase was

expressed in Sacch. cere�isiae. Whereas the wild-type fusion

protein was secreted, hybrids containing repressor mutants that

were thermodynamically unstable were targeted to and further

degraded in the vacuole (the yeast equivalent of the lysosome).

Evidence was presented indicating that targeting to the vacuole

was mediated by a Golgi-located receptor (Vps10p) [129,130].

The significance of the dual pathway for disposing of improperly

folded proteins in Sacch. cere�isiae (proteasome or vacuolar

degradation) is obscure for the moment, but it may be speculated

that the latter pathway could be designed for proteins not

showing gross folding defects that are able to be transported

from the ER to the Golgi. Finally, in some cases incorrectly

folded glycoproteins may not be degraded at all, but sorted to

their proper location: an inactive tyrosinase was found in the

melanosomes of B16 melanoma cells incubated with the GI}GII

inhibitor N-butyldeoxynojirimycin. Lack of activity was caused

not by retention of the Glc units per se but by the absence of

CNX-mediated folding facilitation, yielding a conformer unable

to bind two essential Cu#+ atoms [131,132].

It is unclear which recognition elements in misfolded glyco-

proteins trigger proteasome-mediated degradation. It was

speculated that the presence of Man
)
GlcNAc

#
isomer B might be

a signal for degradation. This isomer is that lacking residue i (see

Scheme 1) ; it is the only one produced in Sacch. cere�isiae and

the main one produced in the mammalian cell ER, in this case by

α-mannosidase I. It is worth mentioning that demannosylation is

a much slower process than deglucosylation, so ER-retained

glycoproteins would be expected to bear substantially more

demannosylated oligosaccharides than correctly folded glyco-

proteins. A folding-incompetent carboxypeptidase Y was

expressed in Sacch. cere�isiae wild-type cells or in cells bearing

mutations that resulted in the presence of Glc
#
Man

)
GlcNAc

#
,

Glc
"
Man

)
GlcNAc

#
, Man

*
GlcNAc

#
or Man

)
GlcNAc

#
in the

peptidase [133]. Species having the last structure (produced

in the wild-type strain and in a mutant that transferred

Man
*
GlcNAc

#
to protein) were degraded at a higher rate than the

others. Thepresence of a degradation-associated lectin that recog-

nized the Man
)
GlcNAc

#
structure was suggested. The fact that

Schiz. pombe apparently lacks an ER α-mannosidase restricts

the putative role of Man
)
GlcNAc

#
as a degradation signal in

yeasts [134]. In addition, as mentioned above, the mammalian cell

ER may potentially yield Man
(
GlcNAc

#
in ER-retained glyco-

proteins, as at least two α-mannosidaseswith different specificities

(I and II) have been described in that subcellular location.

In addition, there are trypanosomatid species in which

Man
(
GlcNAc

#
or Man

'
GlcNAc

#
are transferred to protein and

in which, therefore, no Man
)
GlcNAc

#
may be formed [10]. The

presence of lectins specific for the main mannosidase degradation

product characteristic of each cell type would be required if Man

removal were involved in the disposal of permanently misfolded

glycoproteins.

On the other hand, it was reported that inhibitors of

mannosidase I (kifunension, 1-deoxymannojirimycin) delayed

proteasome degradation of a misfolded α
"
-antitrypsin variant in

hepatoma cells, of the intrinsically unstable TCR CD3δ subunit

in thymocytes, of a soluble variant of ribophorin I expressed in

HeLa cells, of two mutant α
#
-plasmin inhibitors and of the yeast

prepro-α-factor expressed in GH3 rat pituitary cells [135–139].

However, no effect of 1-deoxymannojirimycin was observed on

the proteasome-mediated degradation of the TCR-α subunit

(also intrinsically unstable) or of MHC class I heavy chain

molecules synthesized in an assembly-defective cell line [135,140].

The apparently contradictory effects of the addition of ER α-

mannosidase I inhibitors on the degradation of misfolded glyco-

proteins may reflect the fact that although, as described above,

removal of Man residues from N-oligosaccharides yields poorer

substrates for both GII and GT, the influence of the Man content

on the two activities is not identical. The possibility exists,

therefore, that, depending on the relative amounts of these

opposing enzyme activities and their differential specificities with

respect to saccharides of varying Man content, inhibition of Man

removal might favour or not the production of monoglucosylated

glycans. Only in cases in which production of these species was

enhanced (even only slightly) by ER α-mannosidase I inhibitors

would binding to CNX}CRT delay translocation of misfolded

glycoproteins to the cytosol.

The CNX–glycoprotein complex in misfolded glycoproteins

was also suggested to be an element that is recognized by the

degradation machinery. Thus it was reported that a misfolded

α
"
-antitrypsin mutant interacted with CNX and specifically

induced the polyubiquitination of the cytoplasmic tail of the

lectin [141]. In addition, ubiquitinated, concanavalin A-reactive

and CNX-bound apolipoprotein B (an intrinsically unstable

glycoprotein) was detected in hepatoma cells [142]. Moreover,

microsomes derived from a Sacch. cere�isiae mutant defective in

cne1p (the yeast CNX homologue) had a decreased ability to

degrade prepro-α-factor in �itro [143]. This result apparently

contradicts the fact that degradation of this same protein

expressed in mammalian cells was accelerated upon addition of

GI}GII inhibitors, i.e. by preventing the interaction between

prepro-α-factor and CNX [137]. Similarly, hindrance of the

interaction of class I MHC heavy chain with CNX accelerated its

degradation [140]. Accordingly, a recent report showed that the

rate of proteasomal degradation of a soluble variant of ribo-

phorin I increased upon preventing its interaction with CNX by

addition of the GI}GII inhibitor castanospermine [139]. Thus

the notion that the CNX}CRT–glycoprotein complex could be

one of the elements recognized by the degradation machinery

contradicts substantial available evidence indicating that the

interaction between the lectin and the folding glycoprotein

prevents premature degradation of the latter species.
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CONCLUDING REMARKS

The CNX}CRT-mediated retention and folding facilitation of

misfolded glycoproteins constitutes a novel cellular mechanism

in which recognition of protein conformation is performed by an

enzyme (GT) that covalently tags not yet properly folded

conformers. Recognition of this tag by the retention elements

allows facilitation of folding by classical chaperones and, in the

alternative model proposed, also by the said elements. Although

basic knowledge on this novel mechanism is already available,

there are certain aspects that merit further studies, for example

the structural features of misfolded conformers that determine

exclusive GT glucosylation, the importance ofGT in multicellular

organisms, the possible interaction of CNX}CRT with the

protein moieties of folding glycoproteins, and the roles of Man

removal and}or lectin–saccharide complexes in the disposal of

permanently misfolded species. The qualification of ‘novel ’ to

the mechanism refers to its relatively recent description and not

to its appearance in evolution, as it also occurs in organisms that,

like trypanosomatid protozoa, diverged from the mammalian

evolutionary line a long before plants and fungi.
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