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Abstract

NADPH oxidase is a crucial enzyme in mediating antimicrobial host defense and in regulating inflammation. Patients with
chronic granulomatous disease, an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of
reactive oxidant intermediates (ROIs), suffer from life-threatening bacterial and fungal infections. The mechanisms by which
NADPH oxidase mediate host defense are unclear. In addition to ROI generation, neutrophil NADPH oxidase activation is
linked to the release of sequestered proteases that are posited to be critical effectors of host defense. To definitively
determine the contribution of NADPH oxidase versus neutrophil serine proteases, we evaluated susceptibility to fungal and
bacterial infection in mice with engineered disruptions of these pathways. NADPH oxidase-deficient mice (p47phox2/2) were
highly susceptible to pulmonary infection with Aspergillus fumigatus. In contrast, double knockout neutrophil elastase
(NE)2/2

6cathepsin G (CG)2/2 mice and lysosomal cysteine protease cathepsin C/dipeptidyl peptidase I (DPPI)-deficient
mice that are defective in neutrophil serine protease activation demonstrated no impairment in antifungal host defense. In
separate studies of systemic Burkholderia cepacia infection, uniform fatality occurred in p47phox2/2 mice, whereas NE2/2

6CG2/2 mice cleared infection. Together, these results show a critical role for NADPH oxidase in antimicrobial host defense
against A. fumigatus and B. cepacia, whereas the proteases we evaluated were dispensable. Our results indicate that NADPH
oxidase dependent pathways separate from neutrophil serine protease activation are required for host defense against
specific pathogens.
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Introduction

Chronic granulomatous disease is an inherited disorder of the

NADPH oxidase in which phagocytes are defective in generation

of superoxide anion and downstream reactive oxidant intermedi-

ates (ROIs). As a result of this defect, CGD patients suffer from

recurrent life-threatening bacterial and fungal infections [1].

Among CGD patients, the degree of impairment of NADPH

oxidase in neutrophils correlates with clinical disease severity [2].

Although the critical role of the phagocyte NADPH oxidase has

been established for decades [3], the precise mechanisms by which

NADPH oxidase mediates antimicrobial host defense are not well

understood.

One mechanism by which NADPH oxidase can kill or injure

pathogens is through the direct toxic effects of ROIs. The rapid

activation of NADPH oxidase constitutes an emergency response

to invading pathogens, and occurs in response to several stimuli

such as formylated peptides, opsonized particles, integrin-depen-

dent adhesion [4,5], and ligation of specific pathogen recognition

receptors (e.g., dectin-1 [6]). Syk and class IA phosphoinositide 3-

kinases regulate neutrophil NADPH oxidase activation by

Aspergillus fumigatus hyphae [7]. Upon activation of the oxidase,

the cytoplasmic subunits p47phox, p67phox, and p40phox and Rac

translocate to the membrane-bound heterodimer cytochrome

comprised of gp91phox and p22 phox. Molecular oxygen is converted

to superoxide anion, which can spontaneously or enzymatically be

converted to cytotoxic metabolites, including H202, hydroxyl

anion, and peroxynitrite anion. In neutrophils, myeloperoxidase

catalyzes the conversion of H202 to hypohalous acid, which is

potently microbicidal.

In addition to the direct injurious effect of ROIs against

pathogens, NADPH oxidase may mediate host defense by

activation of pre-formed neutrophil serine proteases. In resting

neutrophils, the flavocytochrome subunits gp91phox and p22phox are
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principally located within the membrane of the secondary granules

[8,9]. Primary (azurophilic) and secondary granules fuse with the

phagocytic vacuole, where their constituents can co-mingle.

Reeves et al. [10] proposed that NADPH oxidase-dependent

killing activity of neutrophils is primarily mediated by activation of

neutrophil granular proteases [10]. They found that neutrophil

NADPH oxidase activation leads to accumulation of ROIs within

phagocytic vacuoles that is coupled to K+ influx and alkalinization

of vacuoles [10]. In their model, changes in ionic concentration

within vacuoles lead to solubilization and activation of antimicro-

bial neutrophil serine proteases, which, at rest, are held in an

inactivated state within primary granules of neutrophils [10].

Neutrophil elastase (NE)-deficient mice have been shown to

have an increased susceptibility to Gram-negative bacterial sepsis

[11]. One mechanism by which NE can mediate host defense is by

cleavage of pathogen virulence factors [12,13]. While cathepsin-G

(CG)-deficient mice have no obvious host defense defect to

bacterial pathogens [14], the double knockout NE2/2
6CG2/2

mice have reported deficits in both antibacterial and antifungal

host defense [10,15], leading investigators to posit that activation

of neutrophil serine proteases is the major mechanism by which

NADPH oxidase mediates host defense.

Neutrophil serine proteases, NE, CG, and proteinase 3 are

synthesized as zymogens and their activation requires N-terminal

processing activity of the lysosomal cysteine protease cathepsin C/

dipeptidyl peptidase I (DPPI) [16]. Papillon-Lefèvre syndrome, a

rare autosomal recessive disease resulting from loss-of-function

mutations in the DPPI gene locus, is characterized by palmoplan-

tar hyperkeratosis, periodontitis leading to loss of teeth, and severe

bacterial infections, including liver abscesses [16,17]. A case of

hepatic zygomycosis was reported in a patient with Papillon-

Lefèvre syndrome [18], pointing to a role for DPPI in antifungal

host defense.

Taken together, there is evidence in humans and mice that

NADPH oxidase and neutrophil serine proteases contribute

critically to host defense. To definitively determine the relative

contribution of NADPH oxidase versus neutrophil serine proteases

against specific pathogens, we evaluated susceptibility of mice with

engineered disruptions of these pathways when challenged with a

clinical isolate of Aspergillus fumigatus or Burkholderia cepacia, two

major pathogens encountered in CGD patients [19,20,21,22,23].

We found that protease-deficient mouse models did not recapit-

ulate the severe immune impairment in CGD mice, and, in fact,

demonstrated no obvious susceptibility to the tested pathogens

compared to wildtype (WT) mice. Thus, our results suggest that

NADPH oxidase directly mediates host defense against specific

pathogens through neutrophil serine protease-independent path-

ways.

Results

Neutrophil elastase2/2
6cathepsin G2/2 mice have intact

host defense in pulmonary aspergillosis, whereas NADPH
oxidase-deficient p47phox2/2 mice succumb to infection
Invasive aspergillosis is a major cause of morbidity and

mortality in CGD patients [19,20,21,22,23], and NADPH

oxidase-deficient mice are similarly highly susceptible to experi-

mental aspergillosis [24,25,26,27,28]. Prior studies showed that

NE2/2
6CG2/2 mice also had increased susceptibility compared

to WT mice in a model of systemic aspergillosis [15]. We therefore

asked whether NADPH oxidase-mediated antifungal host defense

principally occurs via neutrophil serine protease-dependent

pathways.

To address this question, we evaluated experimental aspergil-

losis in 3 groups of mice: 1) WT (C57BL/6) mice; 2) p47phox2/2

(CGD) mice; and 3) NE2/2
6CG2/2 mice. Prior studies from our

and other laboratories showed that WT C57BL/6 mice can clear

an intratracheal inoculum of A. fumigatus .107 conidia (spores) per

mouse [25,29]. In contrast, we previously found that the LD50 in

unmanipulated p47phox2/2 mice is ,104 conidia/mouse [25]. We

therefore selected a high inoculum (1.256107 conidia/mouse) and

a low inoculum (1.256104 conidia/mouse) to evaluate suscepti-

bility to aspergillosis.

Following oropharyngeal challenge with 1.256104 conidia/

mouse, all CGD mice died by 12 days, whereas WT and NE2/2

6CG2/2 mice had uniform survival (Figure 1A). When

administered the high inoculum (1.256107 conidia/mouse), all

CGD mice died within 3 days, whereas all WT and NE2/2

6CG2/2 mice survived (Figure 1B). Thus, the LD50 of the A.

fumigatus inoculum is more than 1000-fold greater in NE2/2

6CG2/2 mice versus CGD mice.

Since we established that NE and CG deficiency does not

recapitulate the CGD phenotype in experimental pulmonary

aspergillosis, our subsequent experiments focused on evaluating

Figure 1. Kaplan-Meier survival curves of WT, p47phox2/2, and
NE2/2

6CG2/2 mice after administration of A. fumigatus. Mice
were administered A) 1.256104 conidia or B) 1.256107 conidia by
oropharyngeal aspiration. n = 5 mice per genotype per treatment. Log-
rank analysis, p,0.0001 comparing WT with p47phox2/2 mice and NE2/2

6CG2/2 mice with p47phox2/2 mice.
doi:10.1371/journal.pone.0028149.g001

NADPH Oxidase and Neutrophil Proteases
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host defense responses in NE2/2
6CG2/2 mice compared to WT

mice. WT and NE2/2
6CG2/2 mice administered a high A.

fumigatus inoculum (1.256107 conidia/mouse) were sacrificed on

day 3. BALF leukocytosis and extent of lung inflammation were

similar between the two genotypes (Figure 2A and B). Lung

histology showed a consistent pattern in both genotypes,

characterized predominantly by peribronchovascular inflamma-

tion (Figure 2 C–F). The inflammatory cell type was mixed,

consisting of neutrophils, macrophages and lymphocytes. With

GMS staining, we could not identify invasive parenchymal hyphae

in any of the lung sections. However, there appeared to be hyphal

fragments and debris within inflammatory lesions. Taken together,

Figure 2. Lung histology and airway inflammation in WT and NE2/2
6CG2/2 mice after A. fumigatus administration. Mice were

administered A. fumigatus (1.256107 conidia per mouse) by oropharyngeal aspiration and sacrificed on day 3. A) BALF leukocyte recovery and B)
percent lung inflammation were similar in WT and NE2/2

6CG2/2 mice. Representative lung histology from WT (C and D) and NE2/2
6CG2/2 mice (E

and F). Predominantly peribronchovascular neutrophilic and lymphohistiocytic inflammation occurred in both genotypes (C and E; H&E, 406). GMS
staining (4006) of lung sections from WT (D) and NE2/2

6CG2/2 (F) mice showed what appeared to be degenerated hyphal fragments, but no
evidence of intact invasive hyphae. Results are representative of 15 WT and 10 NE2/2

6CG2/2 mice. By comparison, p47phox2/2 mice administered A.
fumigatus at 0.1% of this inoculum (1.256104 conidia per mouse) and sacrificed on day 3 had evidence of fungal pneumonia characterized by G)
multiple foci of neutrophilic consolidation (H&E, 406), and H) hyphal parenchymal invasion (arrow) (GMS, 4006).
doi:10.1371/journal.pone.0028149.g002

NADPH Oxidase and Neutrophil Proteases
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we could not identify a clear difference in airway or parenchymal

inflammation between the genotypes, and, by histological criteria,

both genotypes were able to prevent invasive fungal disease. In

contrast, p47phox2/2 mice administered a low inoculum (1.256104

conidia/mouse) developed neutrophilic consolidative lesions

associated with invasive fungal disease (Figure 2G and H).

We next performed a more detailed assessment of fungal

burden, comparing WT and NE2/2
6CG2/2 mice on day 3

following A. fumigatus (1.256107 conidia/mouse) challenge. There

was no significant difference in quantitative fungal cultures of

lungs nor was there a difference in serum or BALF galactomannan

levels between the genotypes (Figure 3 A–C). Thus, our data point

to a dispensable role of NE and CG in host defense against

pulmonary aspergillosis.

We considered the possibility that other neutrophil serine

proteases may compensate for the lack of NE and CG levels. DPPI

is required for the full activation of neutrophil serine proteases,

NE, CG, and proteinase 3. Neutrophils from DPPI2/2 mice have

severe deficiency of these proteases [30]. We administered A.

fumigatus (1.256107 conidia/mouse) to WT and DPPI2/2 mice

and assessed lung histology on day 3. Lung inflammation was mild

in both genotypes, predominantly confined to peribronchovascular

areas (Figure 4A and B). Similar to NE2/2
6CG2/2 mice, we did

not find evidence of hyphal parenchymal invasion in DPPI2/2

mice (Figure 4C and D). Thus, using two different neutrophil

protease-deficient models, we did not identify a role for these

proteases in host defense against pulmonary aspergillosis.

NADPH is required, but neutrophil elastase and
cathepsin G are dispensable, in defense against systemic
Burkholderia cepacia
We next considered whether NE and CG are required for host

defense against systemic B. cepacia challenge. B. cepacia was selected

specifically because it is an important bacterial pathogen in

patients with CGD [22,23] (and patients with cystic fibrosis), but

generally not in other immunocompromised patients such as those

with prolonged neutropenia or receiving immunosuppressive

therapy. Studies of human neutrophils show that killing of B.

cepacia is NADPH oxidase-dependent [31], and CGD mice have

increased susceptibility to B. cepacia challenge [28,32,33,34]. Thus,

B. cepacia infection is an excellent model to evaluate NADPH

oxidase-dependent antibacterial host defense.

WT, p47phox2/2 and NE2/2
6CG2/2 mice were administered

intraperitoneal 46107 colony forming units (CFUs) of B. cepacia,

and time to mortality was followed. Mortality occurred within 4 to

6 days following challenge in p47phox2/2 mice, whereas all WT

and NE2/2
6CG2/2 mice survived (Figure 5A). In separate

experiments, mice were administered B. cepacia (46107 CFU),

sacrificed at 24 h, and quantitative cultures were performed on

blood, peritoneum, kidneys and spleens. Blood cultures from the

three genotypes showed no growth. Bacterial recovery from

peritoneal cavities and spleens was significantly greater in

p47phox2/2 mice compared to WT and NE2/2
6CG2/2 mice

(Figure 5B). Thus, similar to A. fumigatus, NADPH oxidase was

critical in host defense against B. cepacia, while NE and CG were

dispensable.

Discussion

Our results show that NADPH oxidase is essential in defending

against A. fumigatus and B. cepacia, but does so independently of

neutrophil serine proteases. In two models of engineered protease-

deficient mice, host defense was intact against A. fumigatus and B.

cepacia, two major pathogens in CGD patients. These results do not

exclude the possibility that neutrophil serine proteases may have a

more central role in host defense against other pathogens that

cannot be compensated by NADPH oxidase-dependent pathways.

Figure 3. Fungal burden in WT and NE2/2
6CG2/2 mice after A.

fumigatus administration. Mice were administered A. fumigatus
(1.256107 conidia per mouse) by oropharyngeal aspiration and
sacrificed on day 3. A) Quantitative fungal cultures in lung homoge-
nates, B) serum galactomannan, C) BALF galactomannan. n = 10 mice
per genotype subjected to infection (A. fum), and n=1 mouse per
genotype subjected to sham-infection. No significant differences
occurred in quantitative lung fungal cultures, serum galactomannan,
and BALF galactomannan between Aspergillus-infected WT mice and
NE2/26CG2/2 mice.
doi:10.1371/journal.pone.0028149.g003

NADPH Oxidase and Neutrophil Proteases
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Our results support a model in which NADPH oxidase and

neutrophil serine proteases have distinct antibacterial and

antifungal effector functions rather than protease activation being

the central mechanism by which NADPH oxidase mediates host

defense.

Consistent with this notion, patients with CGD and Papillon-

Lefèvre syndrome (who lack functional DPPI) suffer from

recurrent infections, but the spectrum of pathogens differs between

the two diseases. An important consideration is that defects in

neutrophil-mediated killing in ex vivo studies may not be

recapitulated in vivo regarding susceptibility to infection. In

addition, neutrophil serine protease deficiency may be compen-

sated for by other neutrophil effector pathways. Bianchi et al. [35]

identified calprotectin as a NET constituent mediating anti-

Aspergillus host defense. Indeed, neutrophils are armed with several

antimicrobial agents, including lactoferrin [36], lysozyme, and

defensins. Potentially, NADPH oxidase-induced serine protease

activation may be important for defense against certain pathogens

but play a redundant role in defense against others.

There may also be pathogen-related differences that influence

susceptibility to neutrophil proteases. Belaaouaj et al. [11] showed

an important function of neutrophil elastase in defending against

certain Gram-negative (Klebsiella pneumoniae and Escherichia coli) but

not Gram-positive (Staphylococcus aureus) bacteria in mice. However,

neutrophils from patients with Papillon-Lefèvre syndrome (who

lack functional DPPI) do not have a uniform defect in killing

Staphylococcus aureus and Escherichia coli, suggesting that neutrophil

serine proteases may not be the major pathway used by human

neutrophils to kill specific bacteria [16]. In addition, our

experiments focused on acute infection models with early time

points for analysis. Potentially, we may have identified differences

in host defense between wildtype and protease-deficient mice had

we included higher inocula of pathogens and/or different time

points for analysis.

Tkalcevic et al. [15] previously showed that NE2/2
6CG2/2

mice were more susceptible to intravenous A. fumigatus adminis-

tration compared to WT mice based on survival and fungal

burden in kidneys. This apparent discrepancy with our findings is

likely in part related to the route of Aspergillus administration. We

used oropharyngeal aspiration because inhalation is by far the

most common portal of entry of Aspergillus species. There are likely

critical features of pulmonary host defense that are not reflected in

the intravenous model. For example, inhaled conidia are

phagocytosed by alveolar macrophages, where NADPH oxidase

can play a role in restricting germination of A. fumigatus conidia

[37]. Neutrophil elastase and cathepsin G can promote coagula-

tion and intravascular thrombus growth in vivo that restricts tissue

bacterial invasion [38]; conceivably, this pro-thrombogenic effect

of neutrophil proteases may limit tissue invasion of intravenously

administered fungus, but be less relevant following intrapulmonary

challenge. Another difference is the strains of mice used for the

studies: we used NE2/2
6CG2/2 mice backcrossed to C57BL/6

whereas the mice used by Tkalcevic et al. [15] were backcrossed to

the 129Sv strain. There can be important mouse strain-specific

differences in susceptibility to aspergillosis [39] that can influence

the relative importance of specific host defense pathways.

Neutrophil serine proteases have also been shown to contribute

to pathogen killing through formation of neutrophil extracellular

traps (NETs). Upon activation, neutrophils release granule

proteins and chromatin that co-mingle in the extracellular

environment to form NETs. These NETs bind to and kill bacteria

and degrade bacterial virulence factors [40], and target fungi

[41,42]. Release of NETs requires death of neutrophils and

breakdown of cell membranes, and has been linked to NADPH

oxidase activation and autophagy [43,44]. NADPH oxidase-

mediated NET formation involves complex intracellular signaling,

including activation of the Raf-MEK-ERK and upregulation of

antiapoptotic proteins [45], and production of interferon-gamma

Figure 4. Lung histology in WT and DPPI2/2 mice on day 3 after oropharyngeal A. fumigatus (1.256107 conidia per mouse)
administration. In both WT (A) and DPPI2/2 (B) mice, mild predominantly peribronchovascular inflammation occurred (H&E, 1006). No evidence of
invasive hyphae was present with GMS staining (4006) in either WT (C) or DPPI2/2 (D) mice. n = 5 mice per genotype.
doi:10.1371/journal.pone.0028149.g004

NADPH Oxidase and Neutrophil Proteases
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[46]. NET formation was dependent on neutrophil elastase and

myeloperoxidase in a mouse model of bacterial pneumonia [47].

Although neutrophils from CGD patients are deficient in NET

formation [44], the dependence on NADPH oxidase for NET

generation appears to be stimulus-dependent rather than a

uniform requirement [48,49]. Further studies are required to

delineate the precise role of NADPH oxidase in NET generation

and the role of NETs in NADPH oxidase-dependent pathogen

killing.

Histological lung inflammation was similar between WT and

neutrophil protease-deficient mice following A. fumigatus challenge,

a finding that suggests that neutrophil serine proteases do not play

a major role in regulating the inflammatory response in this

infection model. Prior studies have shown that activation of

neutrophil proteases generally leads to augmented inflammation

and tissue injury [30,50,51,52,53]. Although NADPH oxidase

activation leads to generation of cytotoxic ROIs, paradoxically,

NADPH oxidase limits inflammation and injury in several models

[54,55,56,57,58,59]. This protective role of NADPH oxidase is

likely mediated by modulation of redox-sensitive targets that

regulate inflammation and cytoprotective pathways, such as Nrf2

[55]. These results further demonstrate the distinct roles of

NADPH oxidase and proteases in modulating inflammation and

injury.

NADPH oxidase is a critical regulator of antibacterial and

antifungal host defense and of inflammation. Studies of protease-

deficient mice and patients with Papillon-Lefèvre syndrome point

to neutrophil proteases also having an important host defense

function. These results and those of our study support a model in

which NADPH oxidase-regulated antimicrobial pathways have

distinct pathogen-specific functions in which certain pathogens are

sensitive to the direct antimicrobial effect of ROIs whereas others

may be controlled by neutrophil serine proteases and other NET

constituents.

Methods

Ethics statement
All procedures performed on animals in this study were

approved by the Animal Care and Use Committee at Roswell

Park Cancer Institute, and complied with all state, federal, and

NIH regulations.

Mice
Mice with a targeted disruption of the p47phox gene have a defective

NADPH oxidase, rendering phagocytes incapable of generating

measurable superoxide [60]. NADPH oxidase-deficient mice have

increased susceptibility to pathogens that afflict CGD patients,

including Aspergillus species [24,25,27] and B. cepacia [28,32,33,34].

p47phox2/2 mice were derived from C57BL/6 and 129 intercrosses,

and backcrossed 14 generations (N14) in the C57BL/6 background.

NE2/2 mice [11] and CG2/2 mice [14] were intercrossed to

generate double knockout NE2/26CG2/2mice (N10 in C57BL/6)

[51]. Dipeptidyl peptidase I (DPPI) is a lysosomal cysteine protease

required for the activation of granule-associated serine proteases,

including NE, CG, and proteinase 3. DPPI2/2 mice (N11 in

C57BL/6) were generated as previously described [30]. Microsatel-

lite typing performed at the Washington University Rheumatic

Disease Core Center’s Speed Congenics Laboratory showed the

NE2/26CG2/2 mice and DPPI2/2 mice to be 97.7% and 99.2%

C57BL/6, respectively. Age (8–15 weeks) and sexmatched C57BL/6

WT mice were used as controls. Mice were bred and maintained

under specific pathogen free conditions at the animal care facility at

Roswell Park Cancer Institute, Buffalo, NY.

Administration of A. fumigatus
A clinical isolate of A. fumigatus was used in all experiments [25].

Conidial suspensions were prepared as previously described [25],

diluted to desired concentrations, and administered by oropha-

ryngeal aspiration. We found that oropharyngeal aspiration leads

to similar degrees of fungal pneumonia and mortality in p47phox2/2

mice compared to intratracheal administration, but avoids surgery.

Mice were anesthetized by isofluorane inhalation using an approved

chamber. Following anesthesia, mice were suspended by their upper

incisors from a suture thread on a 90u incline board. The tongue was

gently extended, and a liquid volume (maximum 50 ml) was delivered

into the distal part of the oropharynx. With the tongue extended, the

animal was unable to swallow, and the liquid volume was aspirated

into the lower respiratory tract. Just prior to liquid delivery, the chest

was gently compressed and then released just after deposition of

liquid into the oropharynx to enhance aspiration of the liquid into the

lung. Mice recovered within 5 minutes of the procedure, and were

observed until they resumed normal activity.

Bronchoalveolar fluid collection and cytology
After sacrifice, BALF collection was performed as previously

described [55]. The trachea was cannulated with a 22-gauge i.v.

catheter. Using a tuberculin syringe, 1000 mL PBS was injected

Figure 5. WT mice and NE2/2
6CG2/2 mice were resistant to

Burkholderia cepacia infection, whereas p47phox2/2 mice were
highly susceptible. A) Kaplan-Meier survival curves in WT, p47phox2/2

and NE2/2
6CG2/2 mice administered intraperitoneal B. cepacia (46107

CFUs/mouse). Log-rank analysis, p,0.0002 comparing WT with
p47phox2/2 mice and p,0.0002 comparing NE2/2

6CG2/2 mice with
p47phox2/2 mice. n = 10 mice per genotype. B) In separate experiments,
mice (n = 5 per genotype) were administered the same inoculum of B.
cepacia, and quantitative cultures were performed at 24 h. WT and NE2/2

6CG2/2mice cleared infection, whereas bacterial infection persisted in the
peritoneum and spleens of p47phox2/2 mice. Circles, no growth.
*, p,0.03; **, p,0.01.
doi:10.1371/journal.pone.0028149.g005
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and withdrawn from the lung and again fresh 1000 mL PBS was

injected and withdrawn from the lung and both were pooled. Cells

were pelleted by centrifugation at 1,500 g for 3 min. Supernatants

were aliquoted and stored at 280uC. In the cell pellet, the red

blood cells (RBCs) were removed by ACK lysis, and the cells were

suspended in 1 ml of PBS. The total number of leukocytes/ml was

counted using a hemocytometer. Cells were then cytocentrifuged

onto clean glass slides and stained with the Hema 3 stain set

(Fisher Scientific, Pittsburgh, PA, USA), and cell differential counts

were assessed blinded to genotype.

Histopathology
After sacrifice and bronchoalveolar lavage, mouse lungs were

infused with 10% neutral buffered formalin via the trachea.

Paraffin-embedded blocks were prepared and sections were

stained with Hematoxylin and Eosin (H&E) to assess inflammation

and Grocott-Gomori methenamine-silver stain (GMS) to visualize

fungi. Tissues were microscopically examined for pulmonary

injury, vascular invasion, and structural changes in Aspergillus

hyphae. All slides were analyzed by one of us (BHS) using 406

magnification without formal morphometric analysis, and blinded

to genotype. The percentage of lung involved by inflammation was

scored in each mouse as follows: 0%, 5%, 10%, and then by 10%

increments (e.g., 20%, 30%, 40%, etc.). The predominant

inflammatory cell type was scored.

Assessment of fungal burden
Fungal burden was assessed in four ways. (i) The presence of

invasive hyphae in lungs was determined by histology. (ii)

Quantitative cultures of lung homogenates were performed using

a previously validated method [61]. Lungs were weighed, placed

in a sterile polyethylene bag (Tekmar Corp., Cincinnati, Ohio),

and homogenized with sterile saline for 30 s (Stomacher 80;

Tekmar Corp., Cincinnati, Ohio). Lung homogenate dilutions

(1021 and 1022) were prepared in sterile saline. Aliquots (100 ml)

from homogenates and homogenate dilutions were plated on

Sabouraud glucose agar plates, incubated at 37uC for the first

24 h, and then left at room temperature for another 24 h. The

number of colony forming units (CFUs) of A. fumigatus was

counted, and the CFUs per gram was calculated. A finding of one

colony of A. fumigatus was considered positive. (iii) Galactomannan

is a fungal cell wall product. The serum concentration of

galactomannan is directly related to the concentration of A.

fumigatus in lung tissue of experimental invasive pulmonary

aspergillosis [62,63]. Detection of galactomannan is used clinically

as a diagnostic adjunct for invasive aspergillosis [64]. Batched

frozen serum samples from infected and sham-infected mice were

thawed, and galactomannan levels were quantitated using Platelia

Aspergillus enzyme immunoassay (Bio-Rad Laboratories, Red-

mond, WA) per the manufacturer’s instructions. (iv) BALF

galactomannan levels were determined using the same assay.

Galactomannan concentrations in BALF also correlate directly

with concentrations of A. fumigatus in lung tissue [65].

Administration of Burkholderia cepacia
We used a B. cepacia strain isolated from a CGD patient [33].

Bacteria were stored in Lennox broth (Invitrogen) at 280uC until

use. Aliquots of frozen bacteria were thawed, inoculated into

Lennox broth, and grown with shaking at 37uC overnight. The

bacteria were washed twice in DPBS, and bacterial density was

determined by absorption at 650 nm at dilutions corresponding to

the linear portion of the absorbance-bacterial density curve. To

confirm the bacterial density, aliquots were serially diluted and

sub-cultured in duplicate on Lennox agar plates, and colony

forming units were counted. Mice were injected intraperitoneally

with 0.2 ml of bacteria at the desired concentration. One set of

mice was followed for survival, while bacterial clearance was

assessed 24 hours after challenge in a second set of mice. In this

second set of mice, blood was collected retro-orbitally into Z (no

additive tube) microtainers (BD Biosciences). Peritoneal lavage was

performed with 10 ml of DPBS, and spleens and kidneys were

harvested and homogenized in 2 ml of DPBS. Samples were

diluted in serial 10-fold dilutions and inoculated in duplicate onto

Lennox agar plates. After inoculation, plates were incubated for 24

to 48 h at 37uC and colonies were enumerated.

Time to euthanasia
Following infection, mice were monitored twice daily for death

and morbidity until at least day 25. Mice with pre-specified criteria

for distress that included inability to feed or drink, labored

breathing, or general moribund appearance were euthanized by

CO2 asphyxiation.

Statistical Analysis
Kaplan-Meier curves were generated for each population for

time to euthanasia experiments (Graph Pad Prism 4.0) and

analyzed using the log-rank method. In experiments involving

quantitation of bacterial and fungal burden, inter-group compar-

isons were made using the non-parametric Mann-Whitney

method. In cases in which bacterial cultures were sterile in all

mice in a given group, Wilcoxon Signed Rank test was used for

inter-group comparisons. A two-sided p value of ,0.05 was

considered to be statistically significant.
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