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W HY is it so di�cult to develop a reliable and drug-
invariant index of general anesthesia? Some obvious 

reasons include the heterogeneity of molecular mechanisms, 
target neural circuits, and neurophysiologic e�ects of gen-
eral anesthetics,1–4 despite the common functional endpoint 
of hypnosis. One approach to the problem is to identify a 
fundamental mechanism of consciousness that is disrupted 
in association with particular physiologic, pharmacologic, 
or pathologic states. Since the early 1980s, there has been 
a search for the neural correlates of consciousness, de�ned 
by Crick and Koch5,6 as a minimal set of neuronal events 
and mechanisms su�cient for a speci�c conscious percept. 
So far, however, no single brain region or mechanism has 
been identi�ed as the neural correlate of consciousness, sug-
gesting that consciousness might emerge through complex 
interactions of spatially and temporally distributed brain 
functions.7,8 �us, understanding how the brain integrates 
spatially distributed information and, conversely, how gen-
eral anesthetics diminish or functionally isolate information 
in the brain might be a useful approach to uncovering com-
mon principles of diverse molecular anesthetic actions. �e 
goal of this review article is to introduce the basic concepts 
of network science to the anesthesiologist and explain why the 
application of this science to general anesthesia could be a 
pathway to discover a fundamental mechanism of anesthetic-
induced unconsciousness—not just as a useful tool, but as a 

necessary theoretical framework and method. We review the 
properties and organizational principles of networks; recent 
and relevant studies of information processing or transfer in 
large-scale brain networks; the pivotal role of hubs in infor-
mation integration or disintegration; and anesthetic actions 
from a network perspective. We also introduce recent studies 
that potentially reveal a network-level mechanism for diverse 
emergence patterns from general anesthesia. Finally, we pro-
vide perspectives on future directions of network science in 
anesthesiology.

It is important to note that this review focuses primarily 
on corticocortical and thalamocortical networks. Although 
there is substantial evidence that subcortical nuclei in the 
brainstem and hypothalamus play critical roles in anesthetic-
induced unconsciousness,9,10 the limited spatial resolution 
of most functional magnetic resonance imaging studies and 
the inability of electroencephalography to capture speci�c 
brainstem nuclei have excluded these regions from most 
graph-theoretical studies of general anesthesia. It has been 
argued that the hypnotic e�ects of general anesthetics likely 
arise from a combination of bottom-up mechanisms (i.e., 
modulation of sleep or arousal pathways controlling level of 
consciousness) and top-down mechanisms (i.e., cortical or 
thalamocortical pathways controlling content of conscious-
ness).11 It is, however, likely that anesthetic actions in sub-
cortical structures play a key role in the observed network 
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ABSTRACT

�e heterogeneity of molecular mechanisms, target neural circuits, and neurophysiologic e�ects of general anesthetics makes it 
di�cult to develop a reliable and drug-invariant index of general anesthesia. No single brain region or mechanism has been identi-
�ed as the neural correlate of consciousness, suggesting that consciousness might emerge through complex interactions of spatially 
and temporally distributed brain functions. �e goal of this review article is to introduce the basic concepts of networks and 
explain why the application of network science to general anesthesia could be a pathway to discover a fundamental mechanism 
of anesthetic-induced unconsciousness. �is article reviews data suggesting that reduced network e�ciency, constrained network 
repertoires, and changes in cortical dynamics create inhospitable conditions for information processing and transfer, which lead 
to unconsciousness. �is review proposes that network science is not just a useful tool but a necessary theoretical framework and 
method to uncover common principles of anesthetic-induced unconsciousness. (ANESTHESIOLOGY 2018; 129: 1029-44)
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e�ects in the cortex. We recognize the diversity of anesthetic 
actions at the molecular level, as well as the key involvement 
of subcortical nuclei that govern sleep–wake physiology.12,13 
However, this article does not focus on these diverse root 
causes that initiate mechanistic cascades but the ultimate 
network e�ects that might represent the proximate cause of 
losing consciousness.

Network Science and Complexity

Stephen Hawking suggested that the 21st century would 
be the century of complexity. Studies of complex systems 
such as the stock market, social media, internet, tra�c, 
genes or proteins, biologic evolution, and the brain have 
achieved substantial progress and success in the last three 
decades.14–17 �e fundamental di�culty of studying these 
complex systems is that they are made up of many parts and 
complicated interactions, causing unpredictable collective 
behaviors. Herding behaviors in the stock market, politi-
cal and social maps in the U.S. presidential election, diverse 
higher-level functions of gene networks, and consciousness 
in the brain are examples. To study such collective behaviors, 
it is essential to understand how the parts are linked and 
how the dynamic interactions between these links generate 
emergent behaviors in the system. �is study of collective 
behavior has important implications for how a complex sys-
tem like the brain handles hierarchically distributed infor-
mation at multiple scales (from neurotransmitters, to neural 
circuits, to function) without a single coordinator. Since 
the 1990s, with the development of technologies to store 
and measure big data, there have been new opportunities 
to construct structural and functional networks represent-
ing diverse systems. Combining big data and statistical 
physics revealed that most constructed networks are driven 
by a common set of fundamental laws and organizational 
principles, despite di�erences of form, size, nature, age, and 
scope of the actual networks from which they were derived.18 
Once we set aside the speci�c material of the components 
(e.g., airport system vs. the brain) and the physical interac-
tions between them, complex networks are more similar to 
one another than di�erent. �erefore, abstracting key ele-
ments of networks enabled a common set of mathematical 
tools to explore dramatically di�erent systems. �is appar-
ent universality allowed for the development of the recent 
discipline of network science18,19 and suggests that we can 
discover a common principle of brain network organization, 
function, growth, and evolution. Although the reconstruc-
tion of networks from structural or functional brain data can 
create abstraction and independence from the biologic wir-
ing of the brain, it also creates opportunities to study a vari-
ety of di�erent data sources that might yield unique insight. 
Furthermore, although we discuss a variety of networks in 
this review, we do not mean to imply that any network is 
capable of generating conscious experience. Rather, we take 
as a given that the brain generates conscious experience, and 

network science enables us the opportunity to study the 
optimal conditions under which it does so.

Basic Network Properties

Graph theory provides the mathematical framework and prin-
cipled method to study networked systems (see  appendix 1).  
�e �rst use of a graph to understand a real-world system 
was performed by Leonhard Euler in 1736.20 Euler lived in 
the Prussian town of Konigsberg (now the Russian city of 
Kaliningrad), which was built around seven bridges across 
the river Pregel, linking the two main riverbanks and two 
islands in the middle of the river (�g. 1A). An unresolved 
problem at that time was whether it was possible to walk 
around the town via a route that crossed each bridge only 
once. Euler solved this problem by representing the four 
land masses divided by the river as nodes, and the seven 
bridges as interconnecting edges. From this prototypical 
graph, he mathematically proved that, for such a walk to be 
possible, no more than two nodes should have an odd num-
ber of edges connecting them to the rest of the graph. In fact, 
all four nodes in the Konigsberg graph had an odd number 
of edges, meaning that it was impossible to �nd any route 
around the city that crossed each bridge only once. Euler’s 
topologic analysis opened a new research �eld in mathemat-
ics, now known as graph theory, and became the foundation 
of network science. �e importance of Euler’s analysis is not 
in the details of the geography of 18th century Konigsberg; 
rather, what is important to consider is the topology of the 
graph that de�nes how the links are organized. Generally, the 
topologic analysis is invariant under any continuous trans-
formation of the system (�g. 1B) such as increasing, decreas-
ing, rotating, re�ecting, or stretching the physical scale of 
a system.18,19 �is topologic invariance may be essential to 
study a commonality of brain structure and function across 
scales, individuals, and species. Topologic principles may 
also help to dissociate what is changed and preserved after 
diverse pharmacologic and pathologic perturbations such as, 
respectively, general anesthesia and stroke.

If we want to understand a complex system like the brain, 
we �rst need to know how the components interact with 
each other, which can be achieved by generating a wiring 
diagram. Figure 2 illustrates how to reconstruct a structural 
and functional brain network. A network is a catalog of a 
system’s components, called nodes or vertices, and the direct 
interactions between them, called links or edges. �e links of 
a network can be directed or undirected. For instance, phone 
calls are directed links in which one person calls the other 
person. By contrast, the transmission line on the power grid 
is an undirected link through which electric current can �ow 
in both directions. However, some systems, like a metabolic 
network, have both directed and undirected links. �us, 
when we apply network analysis to the brain under anesthe-
sia, constructing the network (i.e., determining the nodes 
and edges) is the most important process in determining 
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what kind of network we want to study.21–24 �e network 
topology (or architecture) is de�ned as the speci�c orga-
nization of nodes and edges, and the topologic properties 
determine the functional aspects of the relationships. Here 
we explain the key network properties such as path length, 
e�ciency, clustering coe�cient, modularity, centrality, 
and small-worldness with three basic network models: the 
Erdős–Rényi, Watts–Strogatz, and Barabasi–Albert models. 
Figure 3 illustrates key network properties.

Small-world Networks and Random 

Networks 

�e Watts–Strogatz model introduces clustering coe�cient 
and characteristic path length.25 �e clustering coe�cient 
provides an index of the “cliquishness” or clustering of con-
nectivity in a graph. �e characteristic path length is the mini-
mum number of edges required to link any two nodes in 
the network on average, which is commonly used to index 
the integrative capacity of a network. A shorter average path 
length results in more rapid and e�cient integration across a 
network (for instance, in the small-world network of �g. 4). 
In the brain, the shortest paths are like highly e�cient high-
ways of information transmission. �ese functional high-
ways are disrupted during general anesthesia. Erdős and 
Rényi26 introduced the random network, in which the nodes 
of the graph are randomly connected with equal probability. 
Random graphs have a short characteristic path length and low 
clustering. �us, the random network has higher information 
integration capacity (short path length) but does not have the 

capacity to maintain functional specialization (lower clus-
tering coe�cient) in the network. At the other end of the 
extreme is the regular lattice with high clustering and long 
characteristic path length. �is network has the capacity for 
functional specialization but comes at the cost of lower inte-
gration. Importantly, however, by randomly rewiring just a 
few edges in the lattice, the characteristic path length of the 
graph dramatically decreases but does not greatly reduce the 
high average clustering that characterizes the lattice. In other 
words, there is a range of rewiring probabilities that generates 
graphs with a hybrid combination of topologic properties: 
short path length like a random graph and high-clustering like 
a lattice. Organizations in between the extremes of random 
and latticed represent a class of networks with a so-called 
small-world topology. For instance, Facebook, the fastest 
growing social network, consists of more than 1.5 billion 
connected people. However, despite the enormity of the net-
work, each person in the world is connected to every other 
person by about 3.5 people.27 In terms of e�ciency, this out-
performs the well-known “six degrees of separation” that was 
made famous by the work of psychologist Stanley Milgram 
at Harvard University in the late 1960s; Milgram demon-
strated the idea that we are all connected to one another by 
just a few simple steps. Since then, global population has 
surged, but the idea still holds true as social media like Face-
book allow us to be more connected than ever before. �e 
average path length of Facebook is getting shorter every year, 
enhancing its small-worldness. �e healthy brain also dem-
onstrates a small-world network property, which maintains 
the balance between global integration (short path length) 

Fig. 1. The Konigsberg bridge puzzle and topologic invariance. (A) This historical problem (circa 1736) in mathematics was to devise a 

walk through the Prussian city of Konigsberg that would cross each of the seven bridges once and only once. Famed mathematician 

Leonhard Euler reformulated the problem in abstract terms (laying the foundation of graph theory) by eliminating all detailed features 

and replacing each land mass with an abstract “node” and each bridge with an abstract connection or “edge.” The resulting math-

ematical structure is called a graph. Euler realized that the topology—or architecture—of the graph was of importance rather than the 

details of the geography. (B) A donut and a coffee cup have topologic invariance, while a muf�n and coffee cup do not, because both 

the donut and coffee cup have one hole. Continuous topologic transformation can prove their equivalence. Topologic properties—for 

instance, ef�ciency, clustering coef�cient, and small-worldness—are invariant with continuous transformations such as increasing, 

decreasing, rotating, re�ecting, and stretching. Topologic invariance may help identify a fundamental network mechanism of anes-

thetic-induced unconsciousness across heterogeneous brain networks of different individuals and species. Modi�ed from the original 

�gures in https://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg, under the Creative Commons Attribution-ShareAlike License.
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and local segregation (large clustering coe�cient).28–30 A dis-

rupted balance has been associated with various neurologic 

disorders and psychiatric symptoms such as Alzheimer’s dis-

ease, dementia, and schizophrenia.31 Evidence suggests that 

the major action of anesthetics at the network level is also to 

disrupt the balance between functional integration and seg-

regation, biasing the network toward excessive integration or 

segregation, and resulting in unconsciousness.1,32–34

Scale-free Network and Power Laws 

Barabasi and Albert35 introduced another generative model 

that built a complex graph by adding nodes incremen-

tally (the scale-free network in �g. 4). New nodes connect 

preferentially to existing nodes that already have a large 
number of connections and thus represent putative network 
hubs. By this generative process of preferential attachment, 
the “rich get richer,” i.e., the nodes that have a high degree 
tend to have an even higher degree as the graph grows by the 
iterative addition of new nodes. As a result, the distribution 
of degree across network nodes has a characteristic fat-tailed 
distribution (like the U.S. airport system in �g. 5), conform-
ing to what is called scale-free or power-law distribution, 
which is distinct from a bell-shaped distribution of a ran-
dom network (like the U.S. highway system in �g. 5). Sim-
ply stated, it is likely that a scale-free network will contain 
at least a few highly connected hub nodes (like major hub 
airports in New York and Chicago). As the network grows, 

Fig. 2. Reconstruction of a brain network. Step 1: De�ne the network nodes. These could be de�ned as electroencephalography 

sources or multielectrode arrays as well as anatomically de�ned regions of histologic, magnetic resonance imaging, or diffusion 

tensor imaging data. Step 2: De�ne the network edges. Estimate a continuous measure of association between nodes. This could 

be the spectral coherence or Granger causality measures between two magnetoencephalography sensors, the connection prob-

ability between two regions of an individual diffusion tensor imaging data set, or the interregional correlations in cortical thickness 

or volume magnetic resonance imaging measurements estimated in groups of subjects. Step 3: De�ne the network structure. 

Generate an association matrix by compiling all pairwise associations between nodes and apply a threshold to each element of 

this matrix to produce a binary or undirected or directed network. Step 4: Calculate the network properties (path length, clustering 

coef�cient, modularity, etc.) of interest in this graphical model of a brain network. EEG = electroencephalogram; fMRI = functional 

magnetic resonance imaging; MEG = magnetoencephalography. Modi�ed with permission from Bullmore and Sporns.23
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the size of the hubs increases exponentially in the scale-free 
network with in�nite variance of power-law distribution. By 
contrast, a bell-shaped distribution converges to an average 
node degree that serves as the “scale” of the system. �ese 
two systems (with scale-free and bell-shaped distributions) 
have totally distinct organizations from one other.

�is scale-free property is ubiquitous in real life. In a 
scale-free network, the hubs play a central role in global 
information transfer, like a major international airport in 
an airline network. In addition, most scale-free networks 
are fairly resilient to a random attack on the nodes but are 
much more vulnerable to a targeted attack that prioritizes 
the highest-degree hub nodes.36 For instance, if the global 
airline network was attacked with nodes randomly targeted, 
the airports with just a few links would be attacked with high 
probability but without a signi�cant e�ect on the overall 
e�ciency of tra�c. If, however, the attacks were speci�cally 
focused on a few major hub airports, like JFK or London 
Heathrow, it would be equivalent to disrupting most of 

the �ights between the U.S. and European modules. �e 
result would be a dramatic increase in the number of �ights 
required to transfer from one city to another city on di�erent 
continents. �e disrupted long-range connections between 
hub airports in two continents potentially fragments the 
network into two or more isolated modules. �is mecha-
nism of fragmentation in air tra�c is also applicable to the 
enhanced fragmentation of functional brain networks when 
hub regions are preferentially disrupted by general anesthet-
ics.32,37 Understanding this network mechanism would be 
helpful to identify e�ective target sites of general anesthetics 
to maximize the drug e�ect on information transmission.

Describing General Anesthesia in Network 

Terms

Before proceeding with a discussion of network-level mecha-
nisms of general anesthesia, we would like to reiterate that the 
focus on cortical and thalamocortical networks in this article 

Fig. 3. Basic network properties. The measures are illustrated with a simple undirected graph with 12 nodes and 23 edges. (A) 

Degree: the number of edges attached to a given node. The node a has a degree of 6, and the peripheral node b has the degree 

of 1. (B) Clustering coefficient: the extent to which nodes tend to cluster together, measuring the segregation of a network. In this 

example, the central node c has 6 neighbors and 15 possible connections among the 6 neighbors. These neighbors maintain 8 

out of 15 possible edges. Thus, the clustering coef�cient is 0.53 (8 of 15). (C) Centrality: the indicators of centrality identify the 

most in�uential nodes within a network. In a social network, it is used to identify the most in�uential person. In this example, 

node d contributes more to the centrality because all nodes on the right side pass through the node d to reach the other nodes 

in the left side. (D) Path length: The average of the shortest distances for all node pairs in a network. The shortest path length 

between the nodes f and g is three steps that pass through two intermediate nodes. (E) Modularity: one measure of the structure 

of networks that is designed to re�ect the strength of a division of a network into modules (also called groups, clusters, or com-

munities). In the example, the network forms two modules interconnected by the single hub node h. Reproduced with permis-

sion from Sporns O: The non-random brain: Ef�ciency, economy, and complex dynamics. Front Comput Neurosci 2011; 5:2.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

u
b
s
.a

s
a
h
q
.o

rg
/a

n
e
s
th

e
s
io

lo
g
y
/a

rtic
le

-p
d
f/1

2
9
/5

/1
0
2
9
/3

8
5
7
0
8
/2

0
1
8
1
1
0
0
_
0
-0

0
0
3
3
.p

d
f b

y
 g

u
e
s
t o

n
 1

6
 A

u
g

u
s
t 2

0
2
2



Copyright © 2018, the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Anesthesiology 2018; 129:1029-44 1034 U. Lee and G. A. Mashour

Networks and Anesthesia

is not meant to imply that these networks are the exclusive 
or primary site of action of general anesthetics. Furthermore, 
we do not subscribe to a classical “unitary hypothesis” of 
anesthetic mechanism in which there is a single substrate for 
anesthetic action. We acknowledge the diversity of molecular 
actions and furthermore acknowledge the di�ering phenom-
enologic aspects of di�erent anesthetic experiences depending 
on dose or drug. For example, anesthetics such as ketamine 
induce a variety of subjective experiences despite the fact that 
connected consciousness appears lost during ketamine anes-
thesia, as evidenced by loss of responsiveness.38–40

Theories of Anesthetic-induced 

Unconsciousness of Relevance to Network 

Science 

�ere is a multitude of theories related to conscious expe-
rience that have implications for anesthetic mechanism, 
including global neuronal workspace theory, higher-order 
thought theory, predictive coding, attention schema theory, 
and others.41–43 Two theories have more explicitly attempted 
to explain how general anesthetics induce unconsciousness in 
terms of network science. �e cognitive unbinding theory2 
proposes that anesthetic e�ects on regions important for the 
synthesis of information (the so-called process of “binding 
by convergence”) or e�ects that disrupt the communication 

between brain regions (the process of “binding by syn-
chrony” or, more precisely, temporal coordination) would be 
su�cient conditions for unconsciousness.44 �e theory pre-
dicts that the isolation, rather than the extinction, of neural 
activities is causally relevant to loss of consciousness. In net-
work terms, functional disruption of hub structures or hub 
organization, increased modularity, increased path length, 
and decreased e�ciency would create inhospitable condi-
tions for the information transfer that is normally required 
to bind distinct perceptual features into one experience. 
�is theory has been supported by empirical observations 
of preferential disruption of hubs during anesthetic-induced 
unconsciousness, altered network topology, and function 
disconnections that likely relate to temporal discoordina-
tion. Importantly, this was predicted to occur despite pre-
served mean neural �ring rates, which has been empirically 
observed in the primate brain after induction doses of pro-
pofol32 and ketamine.38,44 A related but more comprehensive 
network framework for consciousness is integrated informa-
tion theory.7,45–48 �e central tenet of integrated informa-
tion theory is that consciousness arises from two central 
properties, information and integration. A system, such as a 
brain network, generates information if it is capable of being 
in many di�erentiated states. A system is said to be highly 
integrated if it cannot be reduced to independent parts. Any 

Fig. 4. Network properties of normal and abnormal brain networks. (A) Properties of basic network topologies. Random 

networks have a higher integration capacity (on average, a short path length from one node to another) and lower functional 

specialty (lower clustering coef�cient). Conversely, regular networks have a lower integration capacity (long path length) and 

higher functional specialty (large clustering coef�cient). In the middle of these two extreme networks is the so-called “small-

world” network with both a large integration capacity (short path length) and a large functional specialization (large cluster-

ing coef�cient), achieved after rewiring only a few of the edges in the lattice. A scale-free network is somewhere between a 

regular and random network, depending on the hub structure. (B) The organization of normal brain networks, interpreted as an 

intermediate structure between three extremes: a locally connected, highly ordered (or “regular”) network; a random network; 

and a scale-free network. The order component is re�ected in the high clustering of regular brain networks. Randomness, or 

low order, is re�ected in short path lengths. The scale-free component (high degree diversity and high hierarchy) is indicated 

by the presence of highly connected hubs. A normal brain network is a composite that contains these three elements. This 

results in a hierarchical, modular network (normal brain). The scale-free functional network structure of the human brain is 

preserved even during general anesthesia, whereas it is disrupted during the vegetative state and various neurologic diseases 

such as dementia and Alzheimer’s disease. Reproduced with permission from Stam.31
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system that possesses both of these properties is deemed to 

be conscious.45–50 Integrated information theory predicts 

that, during sleep and anesthesia, the repertoire of possible 

brain states is diminished (reduced information) and cortical 

communication is impaired (reduced integration). �e com-

bined loss of information and integration in the brain may 

result in unconsciousness.1 �e common argument shared 

by these two theories of anesthetic-induced unconsciousness 

is the functional fragmentation of networks. Recently, Kim 

et al.51 estimated a surrogate measure of integrated informa-

tion (termed ϕ ) in relation to network modularity during 

conscious and anesthetized states using high-density electro-

encephalography in humans. �ey demonstrated a negative 

correlation between the number of modules and the mea-

sure of ϕ (i.e., higher modularity, lower ϕ ) across various 

states (baseline, sedated, deep anesthetized, and recovery). 

�is result supports the association of network integration 

with a surrogate of integrated information in the brain, as 

well as its reduction during general anesthesia. It is therefore 

important to understand how the brain integrates and disin-

tegrates globally distributed information in the resting state 

and how anesthetics disrupt information transmission at the 

large-scale brain network level.

Anesthetic Effects on Brain Connectivity

Both surrogates of information transfer and the conditions 
for information transfer in large-scale brain networks have 
been assessed through measures of functional and e�ective 
connectivity between regional brain activities. Functional 
connectivity refers to the statistical similarity of two brain 
activities, which is measureable with correlation or coher-
ence of two signals.52–56 E�ective connectivity infers a 
causal relationship between the activities of brain regions. 
�is direct cause–e�ect measurement is often used in exper-
imental paradigms using evoked neural responses. Another 
method to quantify connectivity of relevance to causal inter-
action is to estimate statistical inference between time series. 
Transfer entropy and Granger causality can measure how 
much the present of one signal A helps to predict the future 
of another signal B.57–59 If the addition of information from 
A creates a better prediction than only using information 
from the past of signal B itself, A is considered to be causal 
to B. �e opposite case also holds for evaluating the causal 
in�uence of B on A. �ese methods can be used to assess 
the cause–e�ect relationship of spontaneous brain activities 
without a perturbation. It is critical to note that there are 
substantial theoretical and empirical limitations with any 
of these measures in terms of the accurate estimation of 

Fig. 5. Scale-free network and power law distribution. (A, B) The U.S. highway system has a bell-shaped distribution of the 

number of links (highway connections among cities). By contrast, the U.S. airline system has a fat tail distribution (air routes 

among airports). (B and C) For the bell-shaped distribution (Poisson), most nodes have comparable degrees and nodes with 

a large number of links absent. The average value of distribution represents the “scale” of the system. The fat tail distribution 

(power law) consists of numerous low degree nodes that coexist with a few highly connected hubs. The size of each node is 

proportional to its degree. The system does not have a mean value, and the variance becomes in�nite as the system size grows, 

which is referred to as a “scale-free” property. In the log–log plot, the slope of power law distribution categorizes the systems 

and determines the behavior of scale-free networks. Modi�ed from the original images in http://barabasi.com. Licenced under 

Creative Commons: CC BY-NC-SA 2.0.
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information, information transfer, or the capacity for infor-
mation transfer.55,60,61

It is now widely acknowledged that general anesthet-
ics disrupt functional and e�ective connectivity between 
brain regions in the resting state; a full discussion of con-
nectivity studies is beyond the scope of this review.3,4,62–64 
�ere appear to be characteristic disruptions of functional 
and e�ective connectivity in the cortex that have been 
observed across multiple anesthetics, multiple neuroimaging 
modalities, and multiple species (including human surgi-
cal patients). General anesthetics tend to (1) preferentially 
disrupt higher order information processing, with relative 
preservation of primary sensory networks and information 
processing65,66; (2) selectively inhibit e�ective connectivity 
from frontal to parietal regions67–70 and functional con-
nectivity between frontal and parietal regions71,72; (3) selec-
tively inhibit long-latency term evoked potentials while 
preserving short-latency evoked responses73; (4) decrease 
spatiotemporal complexity74–78; and (5) constrain the rep-
ertoire of connectivity con�gurations.79,80 �ere is sup-
portive evidence of these network features derived from 
experiments performed with diverse species (mice, rat, fer-
ret, monkey, and human)65,71,81–86 anesthetics (propofol, 
iso�urane, sevo�urane, barbiturates, midazolam, xenon, ket-
amine, and halothane)32,37,65,68,69,74,78,81–83,87–92 and modality 
(functional magnetic resonance imaging, electroencepha-
lography, local �eld potentials, and single unit record-
ings).31,37,65,68,69,71,82–88,93 All of these empirical observations 
may re�ect a reduction of information integration capacity 
in terms of reducing both di�erentiated information and 
overall network integration, which is proposed to result in 
unconsciousness.

Anesthetic Effects on Efficiency of Brain 

Networks

Investigating the basic properties of functional brain net-
works reveals two common global network features across 
multiple anesthetics (dexmedetomidine, nitrous oxide, pro-
pofol, iso�urane, and sevo�urane). �e �rst is the reduction 
of global e�ciency, which re�ects the capacity of global infor-
mation transmission in the brain network. �e reduction of 
global e�ciency results from the fragmentation of functional 
brain networks (with increasing clustering coe�cient and 
modularity).33,87,90,94–97 �e second is the recon�guration of 
functional brain networks, mainly through the disruption 
of the posterior hub structure.54,90,97–99 �e fragmented and 
recon�gured hub structure is the functional substrate of the 
reduced information processing capacity that is consistently 
observed in the brain during general anesthesia, irrespective 
of the particular anesthetic. Anesthetics perturb the normal 
organization of functional brain networks, preferentially dis-
rupting the hub activities and fragmenting the hierarchical 
network. �erefore, understanding the role of hub structure 
in information integration, as well as how anesthetics disrupt 

the hub structure, is essential to understanding the network-

level mechanisms of anesthetic-induced unconsciousness.

Hubs as a Major Determinant of Global 

Information Processing 

A systematic understanding of how anesthetics disrupt con-

sciousness �rst requires an understanding of the relationship 

between brain network structure and information transmis-

sion. �is is because brain network structure constrains the 

patterns of information �ow much in the same way that 

the organization of an airport network across the continent 

constrains the patterns of airplane tra�c. Like hub airports, 

hub nodes in the brain play a dominant role in enabling 

information transfer across the neural network.60,100 van 

den Huevel et al.101 introduced the concept of a “rich club” 

structure, a highly connected and highly central collection of 

connected hubs that occupy only 10% of the brain network 

but facilitate 70% of the communication pathways. �e rich 

club (which includes, in descending order of hub status, the 

precuneus, superior frontal cortex, superior parietal cortex, 

hippocampus, thalamus, and putamen) acts as an attractor 

for signal tra�c in the brain, receiving information that is 

integrated and then transmitted throughout the brain. �e 

midline cortical rich-club nodes (precuneus, superior frontal 

cortex, and superior parietal cortex) play an important role 

in between-module connectivity (called connector hubs), 

whereas subcortical rich-club regions (bilateral thalamus and 

putamen) play an important role in module structure (called 

provincial hubs). �e frontoparietal control network plays a 

pivotal gatekeeping role in goal-directed cognition, mediat-

ing the dynamic balance between default and dorsal attention 

networks.102 Rich-club connections make up the majority of 

long-distance pathways that enable neurons to achieve e�-

cient communication. However, such organization comes at 

a cost: the rich-club connections make the brain network 

vulnerable to a targeted attack, such as a general anesthetic, 

that can disrupt global brain communication. �is can be 

thought of as the neural equivalent of a snow storm in several 

major hub airports, which would cripple airplane travel. �e 

hubs are also vulnerable to pathologic change.103 �e hyper- 

or hypoactivity of network hubs is one of the most consis-

tent �ndings across all network studies of brain diseases, 

irrespective of the speci�c underlying pathology. Damage to 

hubs and a redistribution of hub nodes have been reported 

in neurologic conditions such as Alzheimer’s disease, Parkin-

son’s disease, multiple sclerosis, traumatic brain injury, and 

epilepsy.31 Accounting for altered hub structure in various 

neurologic diseases is critical to estimate altered patterns of 

information integration and disintegration. Furthermore, 

understanding the role of the hub structure in global infor-

mation integration and disintegration may enable us to 

interpret the ostensibly di�erent neurologic and pharmaco-

logic perturbations in a uni�ed framework.
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Hubs as Conductors of Information Traffic

Recent empirical observations suggest that network struc-
ture modulates the computation, dynamics, and causal 
interactions of regional brain areas.104–111 In particular, 
hub structure plays a major role in modulating function. 
Empirical data analysis and computational models suggest 
that the relative location of neuronal populations in large-
scale brain networks shapes directed interactions between 
brain regions.112–117 Stam and van Straaten116 showed in a 
brain network model that the phase lead/lag relationship 
between physically connected brain regions is correlated 
with the degree (i.e., number of connections) of the nodes. 
�e phase lead/lag relationship of connected nodes was 
used instead of a measure of cause–e�ect relationship, an 
assumption that precludes a �rm interpretation of how this 
a�ects information transfer. Angelini et al.118 demonstrated 
that the in�ow/out�ow ratio of Granger causality in human 
brain networks also depends on the degree of each node. 
Moon et al.60,100 identi�ed a general relationship between 
the number of connections and the direction of information 
�ow in large-scale brain networks. Based on mathematical 
principles, Moon and colleagues estimated directional con-
nectivity between dense and sparse brain regions with only 
a neuroanatomically informed network sca�old. �eoretical 
predictions were con�rmed with empirical neurophysiologic 
data analysis in three species (human, monkey, and mouse). 
�e model and analytic studies suggest that hub structure 
plays a critical role in directing information patterns in the 
brain. Speci�cally, higher degree nodes attract information 
�ow from lower degree nodes. �e outcomes from the model 
and empirical studies also explain the dominant directional-
ity observed from frontal to posterior parietal region in the 
eyes-closed resting state, which naturally emerges from the 
asymmetric connections between frontal (relatively sparse 
connections) and posterior parietal regions (dense connec-
tions) in the human brain.68–70,100,119 However, only simple 
oscillatory models were used in these studies, so the rela-
tionship between the network structure and directionality 
holds only for coarse-grained spatial and temporal brain 
activities, rather than the dynamic, short-term �uctuations 
of regional brain activities and connectivity. Other relevant 
studies investigated the role of hub structure on the modu-
lation of amplitude, frequency, and variability of regional 
brain activities,60,106,108,109,120 which further elucidate how 
brain network topology shapes brain functions.

Scale-free Networks and Criticality

Brain states are not static but re�ect a dynamic process.121–130 
�e brain forms and dissolves highly integrated functional 
ensembles of neuronal groups in a few hundreds of millisec-
onds, which corresponds to the temporal frame of conscious 
perceptions.126 �e dynamic evolution of the brain state with 
spatiotemporal neural coordination is the source of the wide 
neural repertoires and the prodigious information generation 

in the brain. Criticality, the state of a dynamical system at the 
boundary between order and disorder, has been proposed as 
the optimal brain state,131–136 and scale-free organization is 
one of the representative characteristics observed in a system 
existing in a critical state. �e term “scale free” is rooted in a 
branch of statistical physics called the theory of phase transi-
tions that extensively explored power laws in the 1960s and 
1970s. �e power-law behavior (scale-free property) of a sys-
tem is a phenomenon that can be observed at a critical state, 
that is, the transition point between phases (such as solid, 
liquid, and gaseous phases) in statistical physics. Criticality 
has long been considered as a potentially advantageous con-
�guration of biologic systems.137,138 Criticality in the brain 
enhances information processing and memory capability of 
neural networks, optimizing the sensitivity and adaptability 
that are crucial for survival.115,132,139 In contrast to the usual 
phase transitions, systems displaying self-organized critical-
ity (�g. 6) do not require external tuning but rather drive 
their own critical behavior. Another important property of 
the brain in a critical state is metastability, which is associ-
ated with a large temporal repertoire of brain state transi-
tions. �e diversity of brain activity re�ects the information 
capacity of the brain, which has been hypothesized to be 
essential to consciousness.47,140 Metastability typically arises 
in a self-organized critical state and becomes a source of 
complex spatiotemporal �uctuations and continuous infor-
mation generation in the brain.115,121,127,134,141,142

Over the past few years, anesthetics have been used as a 
tool to test the criticality hypothesis, which proposes that the 
brain operates in a critical state and deviation from critical-
ity could be symptomatic or causative for certain patholo-
gies.136,143 Lee et al.144 demonstrated that anesthesia reduces 
the number of functional brain connections, as well as the 
temporal complexity of the functional connection and dis-
connection patterns, among electroencephalogram channels. 
However, scale-free organization was preserved across mul-
tiple subjects, anesthetic exposures, states of consciousness, 
and electroencephalogram frequencies. �e results implied 
that the state of general anesthesia does not seem to be a com-
plete network failure but rather that the brain undergoes an 
adaptive recon�guration to maintain an optimal (i.e., scale 
free) topology of global brain network organization. Liang et 
al.145 also demonstrated that the integrity of the whole brain 
network can be conserved for the anesthetized rat brain, 
whereas local neural networks can �exibly adapt to new con-
ditions. Liu et al.146 compared the scale-free properties of 
functional magnetic resonance imaging brain networks from 
anesthetized healthy subjects and patients with unresponsive 
wakefulness syndrome (formerly known as the vegetative 
state). �ey found that the scale-free distributions of node 
size and node degree were preserved across wakefulness, pro-
pofol sedation, and recovery but absent in pathologic uncon-
sciousness. �e results suggested a fundamental di�erence in 
adaptive recon�guration of the brain networks, potentially 
explaining why, despite certain shared neural features of the 
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state, patients with pathologic disorders of consciousness do 
not recover with the same trajectory as healthy volunteers or 
patients after the discontinuation of the anesthetic. In line 
with these observations, Lee et al.37 presented evidence that 
bolus doses of propofol recon�gure dominant hubs from the 
parietal to frontal region but do not eliminate the hierarchal 
hub structure entirely. Hudetz et al.147 simulated the critical 
state of human brain networks with a modi�ed spin glass 
model and human functional magnetic resonance imaging 
signals. �is computational model demonstrated that the 
diversity of brain states is maximal at the critical state and 
signi�cantly reduced when the brain state moves away from 
the critical point. Moreover, Tagliazucchi et al.136 tested a 
theoretical prediction based on a robust feature of the criti-
cal state, called critical slowing down, which manifests as 
increased temporal autocorrelation of �uctuations through 
the system. It was estimated that when a perturbation is 
given to a system with increased temporal correlation, the 
perturbational e�ect lasts longer and spreads farther, whereas 
the e�ect is limited locally when the system is far from a 

critical state. �is characteristic feature of the critical state 

may explain why magnetic and electrical perturbations of 

the cortex during unconsciousness are characterized by a 

spatially localized response, whereas conscious wakefulness is 

characterized by a prolonged and spatiotemporally extended 

response.74,75,148 �e network e�ects of general anesthetics 

discussed thus far are summarized in �gure 7.

Diverse Emergence Patterns from General 

Anesthesia 

Anesthesiologists induce signi�cant transitions between con-

scious and unconscious states as a part of routine clinical 

work. Studying the profound state transitions during loss and 

recovery of consciousness gives rise to important questions 

that may require novel theoretical approaches. How does 

the brain reconstitute consciousness and cognition after a 

major perturbation like general anesthesia? What determines 

reversibility in some states (e.g., sleep) and irreversibility in 

others (e.g., coma)? Despite the signi�cant neuroscienti�c 

Fig. 6. Self-organized criticality. (A) The sand-pile thought experiment explains the key concept of self-organized criticality. (B) Imag-

ine dropping sands grain by grain. The sand grains accumulate, but at some point the growing pile is so unstable that the next grain 

may cause it to collapse in an avalanche. When a collapse occurs, the sand starts to pile up again, until the mound hits the critical 

point once again. This series of avalanches, where smaller avalanches occur more frequently than larger ones, follows a power law. 

The system does not require external tuning of the control parameters, i.e., the system organizes itself into the critical behavior. (C) 

The bursts of activities that spread through networks in the rat brain and the event trains recorded with the local �eld potentials are 

considered to be neuronal avalanches. (D) The avalanche size in the sand-pile model and the size distribution of neuronal avalanches 

in various animal brains in vitro and in vivo follow a power law. Reproduced with permission from Hesse and Gross.135

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

u
b
s
.a

s
a
h
q
.o

rg
/a

n
e
s
th

e
s
io

lo
g
y
/a

rtic
le

-p
d
f/1

2
9
/5

/1
0
2
9
/3

8
5
7
0
8
/2

0
1
8
1
1
0
0
_
0
-0

0
0
3
3
.p

d
f b

y
 g

u
e
s
t o

n
 1

6
 A

u
g

u
s
t 2

0
2
2



Copyright © 2018, the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Anesthesiology 2018; 129:1029-44 1039 U. Lee and G. A. Mashour

EDUCATION

and clinical implications, the underlying mechanism of the 
reconstitution of brain function is poorly understood.

Recent empirical studies demonstrated that brain recovery 
from general anesthesia is not random, but ordered. Hudson 
et al.149 analyzed local �eld potential data in rats and found 
that when the anesthetic iso�urane is discontinued, brain 
activities recover through an ordered series of state transitions. 
Some transition paths were found to be more probable than 
other paths. Hight et al.150 observed two distinct emergence 
patterns after general anesthesia. One pattern showed pro-
gressive spectral changes in the electroencephalogram before 
the response, whereas the other showed no explicit change of 
spectral properties before an abrupt return of responsiveness. 
A similar study was also carried out by Chander et al.151 that 
classi�ed the emergence patterns of 100 surgical patients as 
progressive (around 70% of the cohort) or abrupt (around 
30% of the cohort) based on the power spectra of δ (0.5 to 4 
Hz) and α/spindle (8 to 14 Hz) of frontal electroencephalo-
gram. �e emergence patterns can be qualitatively described 
as “progressive and earlier state transition” and “abrupt but 
delayed state transition.” Lee et al.97 applied a graph-theoretic 
network analysis that classi�ed emergence patterns as pro-
gressive and abrupt, with accompanying network features.

A Potential Network Mechanism of Diverse 

State Transitions

State transitions have been a focus of nonlinear dynam-
ics and the physics of complex systems for the last three 

decades.152 Taking into account the fact that some degree 
of neural synchronization is a condition for e�cient neural 
information transmission across brain regions, the recovery 
of appropriately coordinated activities after anesthesia may 
be a mechanism of the recovery of normal neural commu-
nication. It can therefore be hypothesized that gradual and 
abrupt patterns of emergence from the anesthetized state are 
associated with, respectively, continuous and discontinuous 
synchronization transitions in functional brain networks. 
Recent empirical and computational studies support rapid 
or “explosive” synchronization as a mechanism for abrupt 
state transitions in the brain. �is form of synchronization 
has long been studied in physics and network science but 
only recently applied to biologic systems. Variations in the 
network conditions that give rise to diverse synchroniza-
tion pathways (gradual vs. explosive) might also give rise 
to diverse behavioral state transition patterns after general 
anesthesia. Kim et al.95 found that just over the threshold 
of unconsciousness induced by sevo�urane anesthesia, the 
brain develops the conditions for explosive synchronization, 
as represented by speci�c high-density electroencephalo-
graphic network con�gurations. More recently, in another 
study, Kim et al.153 demonstrated that both gradual and 
abrupt transitions in a neuroanatomically informed model 
of human brain networks follow distinct synchronization 
processes at the individual node, cluster, and global levels. 
�e characteristic synchronization patterns of “gradual and 
earlier” and “abrupt but delayed” provide novel insights 

Fig. 7. Summary of the anesthetic effects on the brain network. Anesthetics act on the brain network at multiple scales: node, 

edge, structure, and dynamics. The altered brain network reduces the brain’s capacity to generate information and to integrate 

spatiotemporally distributed information, which consequently results in unconsciousness.
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into how regional brain functions are reconstituted during 
gradual and abrupt emergence from the anesthetized state. 
Furthermore, a more precise understanding of network tran-
sitions might provide insight into altered states of conscious-
ness or cognition in the postanesthetic period. For example, 
emergence or postoperative delirium might represent partial 
network recovery that is amenable to graph theoretical anal-
ysis as a potential biomarker.

Convergence of Anesthesiology and 

Network Science

How might the �eld of anesthesiology bene�t from a greater 
integration of network science? Recently, major government-
led brain projects have been launched in the United States, 
European Union, China, Japan, Korea, Canada, and Taiwan to 
uncover more precisely both brain structure and function. �ese 
massive endeavors and rapidly evolving technology will create 
big data that can represent networks composed of interconnec-
tions linking the many elements of large-scale neurobiologic 
systems. �e data can span multiple levels of organization (neu-
rons, circuits, systems, and whole brain) and di�erent domains 
of biology and data types. �is integrative perspective of both 
brain function and structure will be especially pivotal for anes-
thesiology to understand multiscale mechanisms of anesthetic 
actions from molecular and neuronal levels to behavior and cog-
nition. Network science will bring new approaches and analytic 
methods that could transform the types of questions that can be 
asked and the hypotheses that can be tested. Another important 
frontier of network science is network dynamics, which can lead 
to greater understanding of state transitions due to diverse anes-
thetic perturbations. Network-based theories and analyses of 
big data in neuroscience might enable greater predictive power 
in the clinical realm as well. For example, it is conceivable that 
the loss of consciousness, recovery of consciousness, and speci�c 
altered cognitive functions could be predicted based on struc-
tural or functional network architectures and their dynamic 
response to anesthetic or sedative interventions. Such a frame-
work could create new opportunities for clinical anesthesiolo-
gists to perturb consciousness and cognition or manipulate state 
transitions. In conclusion, network science has the potential 
to richly inform the scienti�c understanding of the interfaces 
between neuroscience and anesthesiology as well as contribute 
to new approaches to predicting and controlling neurologic 
function in the perioperative period and beyond.
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Appendix 1

•  Consciousness: Experience; the feeling of what it is like 
to be in a mental state.

•  Unconsciousness: A state devoid of experience, often 
operationally (and imperfectly) de�ned as a loss of respon-
siveness to command.

•  Levels versus Contents of Consciousness: Levels of con-
sciousness refer to the overall state of alertness, whereas 
contents of consciousness refer to the particular phenom-
enal aspects or qualities of conscious experience.

•  Network: A system of interconnected parts. Networks are 
de�ned by the nodes (or vertices) and the links (or edges) 
that connect them.

•  Degree: �e number of links an individual node has 
to other nodes. �e connections between nodes can be 
directed or undirected.

•  Path Length: �e number of steps it takes to get from one 
node to another. Path length is inversely related to e�-
ciency—the easier it is to get from one node to another, 
the more e�cient the network is.

•  Network Topology: �e layout of a network; the way dif-
ferent nodes in a network are connected to each other.

•  Hub: A highly connected node in a network that creates 
“shortcuts” across it and (in the context of neural net-
works) plays a crucial role in communication and infor-
mation transmission in the brain.

•  Information: In terms of Shannon entropy, reduced 
uncertainty de�nes the information created in a brain 
network. By contrast, the integrated information theory 
approaches information more generally. According to 
integrated information theory, information is de�ned as 
the cause–e�ect repertoires of a system.

•  Integration: According to integrated information theory, 
integration is de�ned as an intrinsically irreducible cause–
e�ect structure that is speci�ed by independent subsystems. 
In plain words, it is de�ned as the extent to which a system 
generates more information than the sum of its parts.
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