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Abstract. We study synchronization dynamics in networks of coupled oscillators with bimodal distribution
of natural frequencies. This setup can be interpreted as a simple model of frequency synchronization dy-
namics among generators and loads working in a power network. We derive the minimum coupling strength
required to ensure global frequency synchronization. This threshold value can be efficiently found by solv-
ing a binary optimization problem, even for large networks. In order to validate our procedure, we compare
its results with numerical simulations on a realistic network describing the European interconnected high-
voltage electricity system, finding a very good agreement. Our synchronization threshold can be used to
test the stability of frequency synchronization to link removals. As the threshold value changes only in
very few cases when aplied to the European realistic network, we conclude that network is resilient in this
regard. Since the threshold calculation depends on the local connectivity, it can also be used to identify
critical network partitions acting as synchronization bottlenecks. In our stability experiments we observe
that when a link removal triggers a change in the critical partition, its limits tend to converge to national
borders. This phenomenon, which can have important consequences to synchronization dynamics in case
of cascading failure, signals the influence of the uncomplete topological integration of national power grids
at the European scale.

PACS. 05.45.Xt Synchronization; coupled oscillators – 89.75.Fb Structures and organization in complex
systems

1 Introduction

The electrical power grid is an example of complex system
relying on the proper interaction between a great num-
ber of elements [1]. Recently it attained considerable at-
tention of the complex systems community due to many
features as, for instance, its non-trivial topological prop-
erties [2,3,4], the presence of cascading effects [5,6,7,8,9],
self-organized criticality as a possible explanation for the
frequency of blackouts [10], its interaction with other net-
work systems [11,12], and also synchronization phenom-
ena [13,14]. Besides, current organizational trends are pos-
ing new research challenges related to the control of elec-
tric power grids. Two main prevaliling tendencies are the
progressive integration of national networks into a European-
wide one [15], and the shift from centralized energy pro-
duction towards more decentralized smart grids [16].
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Power systems are formed by a large number of genera-
tors interconnected in a complex pattern to supply energy
to final consumers. Modeling the complete set of variables
that characterizes the whole system represents a tanta-
lizing effort. Here we follow the direction to reduce the
complexity of individual elements in favor of the complex-
ity of the interaction pattern.

Our point tries to be a compromise of two opposite
directions of research. On the one hand a more technical
perspective (electrical engineering) relies on the compli-
cated (not complex) arrangement of primary, secondary,
and tertiary circuits to analyze the frequency stability of
the generators [17,18]. On the other hand, a more statis-
tical view (network science) analyzes the global behavior
mainly from the topological static features of the network;
hence, the role of the different elements that form the net-
works (nodes for generators and loads, links for distribu-
tion lines) is uniquely associated with topological mea-
sures as, for instance, different types of centrality (local
or global) [19,20]. As discussed in [21] these two lines of
research can usefully inform each other in order to bring
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new progress into an integrated study of very large sys-
tems formed by units with internal complex dynamics.

This paper can be also seen as an extension of the
work presented in [14], since here we are providing a gen-
eral formalization of the synchronization threshold where
the previous relation was a special case. Moreover, in the
present work we apply this generalized approach to study
the influence of topological features on the stability of fre-
quency synchronization in a realistic system.

In section 2 we start the paper by reviewing the dy-
namical description of power systems as networks of Ku-
ramoto oscillators [22]. In section 3 we derive a new for-
mula describing the critical coupling strength and test its
validity using realistic network topologies. In section 4 we
analyse the sensitivity of frequency synchronization to link
removals, and our findings and conclusions are summa-
rized in section 5.

2 From swing and flow equations to

oscillatory dynamics

Our aim is precisely to incorporate simple dynamical be-
havior of generators, i.e. not to deal with a complete dy-
namical description involving electromagnetic fields and
flow equations, but considering only the basic mechanism
that ensures one of the crucial dynamical properties of the
power distribution system as a whole, namely its synchro-
nization. Synchronization is understood as the ability of
an (unsupervised) system to keep a global state where gen-
erators and loads (with intrinsic different frequencies) run
with the same effective frequency (that of the distribution
system, 50/60 Hz). To this end, generators and loads are
described as phase oscillators in terms of ”swing” equa-
tions. As it has been shown recently, this equation can be
derived from a proper energy balance in the generator [13].
The mechanical/thermal power brought to the generator
gives rise to different contributions

Psource = Pdissipated + Paccumulated + Ptransmitted (1)

where
Pdissipated = γθ̇2 (2)

corresponds to the rate at which energy is dissipated due
to the rotation of the mechanical rotors (turbines) and γ
is a damping coefficient,

Paccumulated = I
dθ̇

dt
θ̇ = Iθ̇θ̈ (3)

corresponds to the rate at which kinetic energy is accumu-
lated, with I being the inertia moment of the mechanical
rotor. In Eqs. (2)-(3) θ is the angle of the mechanical ro-
tor. Finally, the energy is transmitted to the distribution
system through the lines. The transmitted power is pro-
portional to the sinus of the phase difference between the
voltages of the elements at the two end-points of the line.
Here it lies one of the crucial points of the mechanical-
electrical approach, i.e. the assumption that the voltage

angles and the rotor angles are the same. Thus, we can
write the power transmitted from element i to j

Pij = −PMAX
ij sin(θj − θi), (4)

with PMAX
ij being the maximum power transferred be-

tween generators i and j [23]. Hence, we can write for
each element

Pi = γiθ̇
2
i + I

dθ̇i
dt

θ̇i −
∑

j

PMAX
ij sin(θj − θi) (5)

assuming that PMAX
ij = 0 if elements i and j are not phys-

ically connected. This equation can describe generators as
well as loads with the only difference that for loads Pi < 0.
The frequencies of the different elements cannot be very
far from the standard frequency of the distribution system
(Ω=50/60 Hz), then we write

θi = Ωt+ ϕi (6)

assuming ϕ̇i ≪ Ω. Inserting this expression in (5) and
keeping linear terms in ϕ̇i we get

ϕ̇i =

[

Pi

2γiΩ
−

Ω

2

]

−
Ii
2γi

ϕ̈i+
1

2γiΩ

∑

j

PMAX
ij sin(ϕj−ϕi)

(7)
which, for simplicity, can be recast as

ϕ̇i = ωi − αiϕ̈i +
∑

j

wij sin(ϕj − ϕi), (8)

having introduced ωi as the natural frequency of unit i and
wij the coupling term. The simple form of Eq. (8) recalls
the swing equation and this is the reason for its name in
the technical literature, but the forcing term is what links
the evolution of the phases of the element to the distribu-
tion system. In terms of dynamical systems and complex
networks the meaning of Eq. (8) is obvious. It represents
the evolution of phase oscillators with an additional inertia
term [24,25] embedded in a complex network [26] whose
elements interact in a weighted way through the sinus of
the phase differences between the end points of a physical
distribution line.

The Kuramoto model with inertia has been an-
alyzed previously in the literature and its main
effect is on the type of transition that changes
from second to first order when the coupling is
increased. Although in [24] it is reported that in-
ertia modifies the phase diagram of the system,
one has to bear in mind that in that case the
authors consider also the effects of noise in the
system. For noiseless systems, as those considered
in [27,28], it is shown that there are two critical
values of the coupling strength and a hysteresis
behavior within this range of values. The lower
value, below which the incoherent state prevails,
is not modified with respect to the original Ku-
ramoto model; but, the upper value, above which
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the synchronized state is the only possible solu-
tion, changes with the inertia contribution. In the
intermediate region, there is a coexistence of the
synchronized and incoherent states. The hystere-
sis behavior shows that the stability of the syn-
chronized state is broken at the lower value of the
coupling strength, and this is the important ef-
fect we will look at in this work. Under usual op-
erational conditions the system is frequency (not
phase) synchronized and we want to analyze how
any disturbance (removal of some links) can affect
this state, this means that only the lower value
of the coupling strength matters, since it is the
value below which the synchronized state is not
achievable. Additionally, it has been shown [29,30]
that the inertia term modifies the time scale for
the achievement of the synchronized state but not
the existence of the state. For all these reason we
will remove the inertia term, which only speeds
up convergence of the numerical simulations but
it does not affect the conditions under which the
system can achieve synchronization.

3 Stability of frequency synchronization

What makes a systems of oscillators interesting is its dy-
namical behavior and, from a collective point of view, the
most relevant feature is its ability to synchronize. As we
will show in this section, for a population of non-identical
oscillators, perfect phase synchronization is not possible,
whereas frequency synchronization requires a minimum
coupling strength.

3.1 Estimation of the minimum coupling required

As it was shown in [14], when we neglect the inertia term
from Eq. (8), we can relate the synchronization threshold
to the network topology. We consider the networked pop-
ulation of oscillating units, organized in a graph G com-
posed from a set of nodes N and a set of links L. Each
unit (node) i ∈ N is characterized by a natural frequency
ωi and a phase angle ϕi. The dynamics of these units is
then governed by

ϕ̇i = ωi + σ
∑

j

aij sin(ϕj − ϕi), (9)

where aij is an element of the adjacency matrix which
takes value 1 when nodes i and j are connected by a link
and value 0 otherwise. Note that compared to Eq. (8), we
have neglected the inertia term, we assume all links to be
identical, and their coupling strength is characterized by
a parameter σ. Motivated by the existence of generators
and loads in power systems, we split the nodes into two
populations of identical elements, where the members of
the first population N+ ⊆ N behave like power produc-
ing units, and thus ωi = ω+ > 0 for i ∈ N+. And vice
versa, the members of the second population N− ⊆ N ,

where N− ∪N+ = N and N− ∩N+ = ∅, behave as power
consuming units and ωi = ω− < 0 for i ∈ N−. Since the
number of generators and the number of loads are not
necessarily equal, we normalize ωi values in the following
way ω+ = 1/|N+| and ω− = −1/|N−|. The choice of the
positive sign for the natural frequency of the generators is
not arbitrary; note that in eq. (7) this is the case whereas
for loads this term is clearly negative.

In general, for a population of Kuramoto oscillators
there is a balance between the two terms in eq. (9). On the
one hand, if there is no coupling all units follow their nat-
ural frequencies ωi and there is no frequency synchroniza-
tion. On the other hand, when the coupling is very large
the effective frequencies ϕ̇i tend to zero. Then, there will
be a critical value of the coupling strength σ above which
the system synchronizes in the sense that the effective fre-
quencies become equal. Note that this frequency synchro-
nization does not imply phase synchronization, which is
only possible, for a population of non-identical oscillators,
when the coupling strength goes to infinite.

Following the derivations presented in [14], we can
write for any unit in the synchronized state

0 = ωi + σ
∑

i,j

aij sin(ϕj − ϕi). (10)

Here it is easy to see that a necessary, but not sufficient,
condition for the natural frequency of unit i being 0 is
that

σ > σc
i =

|ωi|

ki
(11)

where ki is the degree of the node i. From this expression
it is, in principle, possible to find a global bound for the
coupling strength. This bound can be, however, far from
the real value, since there are some geometric constraints
[31] (phase differences that cannot be maximized simulta-
neously) involving more than one unit. Actually, we can
write as many equations as partitions of the network into
two non-overlapping clusters, just by summing the equa-
tions for the nodes and using the fact that the interaction
is an odd function. Identifying the network partition as a
set of nodes S, we can write for the sum of the Eqs. of the
nodes in S

0 =
∑

i∈S

ωi + σ
∑

i∈S,j /∈S

aij sin(ϕj − ϕi). (12)

from which we can find the critical values of the coupling
for the partition S

σ > σc
S =

∣

∣

∑

i∈S ωi

∣

∣

∑

i∈S,j /∈S aij
(13)

which generalizes (11), containing it as particular cases of
clusters formed by individual nodes. Note that in [14] we
restricted ourselves to clusters of the same type of node,
which gives good estimations for homogeneous distribu-
tions, but not for a more even distribution as is the current
case of interest. The goal is to obtain the global minimum
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Fig. 1. Topology of the approximate model of European
interconnected power system [9]. White circles represent
positions of active (power injecting) stations and blue dots
stand for passive (power consuming) stations.

that ensures the existence of a synchronized state

σ > max
S

∣

∣

∑

i∈S ωi

∣

∣

∑

i∈S,j /∈S aij
(14)

3.2 Testing numerically the critical coupling

To test our hypothesis we use the approximative data de-
scribing the topology of the European power transmission
network [9] composed from sixteen national subnetworks.
The network topology was derived from maps published
by UCTE [32]. Functional parameters, as for example po-
sition of power producing and power consuming units,
their capacities and capacities of power lines, were esti-
mated in order to fit the publicly known volumes of cross
border flows as precisely as possible.

The network is depicted in Fig. 1, where white circles
represent positions of active (power injecting) units and
blue dots stand for passive (power consuming) units (can
be seen online when the figure is sufficiently zoomed). The
first two columns in Table 1 summarize the number of ver-
tices and edges for the European network as a whole, and
for each one of the national subnetworks (i.e. those parts
of the network contained within each country boundaries).

According to the previous paragraphs, we have applied
Eq. (14) to each one of the networks in order to deter-
mine their critical coupling value σc (i.e. the minimum one

needed to have frequency synchronization)1. Specifically,
we have applied a semi-analytical approach to determine
the partition within the network maximizing the expres-
sion in Eq. (14). This procedure provides lower and upper
bounds for σc, σl

A and σu
A, respectively. The third and

forth columns in Table 1 present σl
A and σu

A for each one
of the considered networks. More details on the method-
ology can be found in the Appendix.

To verify the goodness of these values as approxima-
tions to the critical coupling, we have to check whether
they are the minimum value of σ allowing full synchroniza-
tion of the system. We have done so numerically by sim-
ulating frequency synchronization dynamics. More con-
cretely, we have run synchronization dynamics described
in Eq. (9) and measured frequency dispersion (r), which
is the order parameter proposed in [14] to measure of
the effective frequency dispersion:

r =

√

1

N

∑

i∈N

[ϕ̇i − 〈ω〉]2, (15)

Fig. 2 presents time evolution of the order parameter
r for different values of the coupling σ for the European
network. For values far enough from the critical one, the
system either fluctuates steadily around a certain value
(see σ = 0.005 in the figure) or relaxes towards full fre-
quency synchronization (σ = 0.1 case). As we get closer to
the critical value, we observe an initial tendency toward
synchronization that is sharply broken by very strong fluc-
tuations (σ = 0.011).

For each network we have executed an iterative pro-
cedure running the dynamics with several coupling val-
ues and checking whether r was relaxing towards 0. In
each case, the minimum coupling satisfying this condition
, σN , has been determined with a precision of four decimal
places.

Finally, σl
A values in Table 1 (obtained analyt-

ically applying Eq. (14)) can be checked by com-
paring them with these σN ’s obtained numerically.
Fig. 3 presents all values together to allow for a vi-
sual comparison. Generally speaking, we observe a re-
markable agreement between the two sets of results. Even
for the three cases where the difference among analytical
and numerical approximations is visible (i.e. Europe as a
whole, Germany and Poland), the obtained values are of
the same magnitude.

This outcome supports our claim that Eq. (14) is a
good estimation of the critical coupling σc, and opens the
door to simple studies on frequency synchronization in
networks. In particular, Eq. (14) can be applied to the
study of frequency synchronization’s stability against per-
turbations.

1 Absolute values of σc are fully dependent on ω+ and ω
−
.

The values of ω+ and ω
−
were chosen in a way that they sum up

to 1 and -1, respectively. As the number of nodes in national
networks differs it makes the comparison between countries
difficult.
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Fig. 2. Temporal evolution of frequency synchronization
in the European network for different coupling values.
Frequency dispersion r (the order parameter introduced
in [14]) is used to show the effect of coupling σ below
(0.005 and 0.011) and above (0.012 and 0.1) the critical
value. Notice that the plot corresponding to σ = 0.011
presents a characteristic behavior of a system very close
to criticality. First it relaxes towards synchronization but,
at a certain point, it experiences sharp fluctuations that
are stronger than those in the case σ = 0.005. Simulations
start with all phases set to 0 so, as the dynamics are purely
deterministic, only one realization per coupling value was
needed.
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Fig. 3. Comparison of σl
A values determined by means of

Eq. (14) and σN obtained numerically using the iterative
approximation method. As a guide to the eye, we have
added a dashed line corresponding to σN = σl

A. Clearly,
there is a remarkable agreement. This result supports our
claim that Eq. (14) is a good estimation of the minimum
coupling needed to assure frequency synchronization.

Country Name N L σ
l

A σ
u

A

Europe 1254 1943 0.00818157 0.00818253
Austria 36 429 0.112499 0.1125
Belgium 22 21 0.116666 0.116667
Croatia 17 20 0.25 0.250001

Czech Republic 34 52 0.090909 0.09091
Denmark 8 8 0.466666 0.466667

France 318 519 0.034482 0.034483
Germany 229 313 0.0294113 0.0294123
Hungary 27 36 0.166666 0.166667

Italy 139 204 0.0476074 0.0476084
Luxemburg 3 2 0.999999 1
Netherlands 22 24 0.290598 0.290599

Poland 99 140 0.043478 0.043479
Portugal 24 44 0.188889 0.18889
Slovakia 25 30 0.166666 0.166667
Slovenia 8 8 0.333333 0.333334

Spain 193 316 0.03125 0.031251
Switzerland 47 76 0.115384 0.115385

Table 1. Network size and the values of σl
A and σu

A for the
whole European high-voltage electrical network and the
national networks. Values σl

A and σu
A have been calculated

according to Eq. (14) following the procedure described in
the Appendix.

4 Resilience of power systems in terms of

frequency synchronization stability

There is a bulk of literature analyzing the robustness of
power systems. Since power systems can be represented as
networks, most of these approaches deal with the robust-
ness of the system to the removal of links or vertices. This
kind of robustness analysis has been addressed in many
different ways. Initial purely topological approaches [33]
have shown to be limited [8], and recent ones combine
structural changes with different processes such as flow
dynamics [6,34].

Following up from this literature, we address the ro-
bustness of power systems to link removal from the view-
point of the stability of frequency synchronization. A straight-
forward way to make such an analysis is to calculate to
what extent the removal of a link from the network mod-
ifies the critical value of the coupling σc for the whole
system.

More concretely, the idea is to test whether remov-
ing certain links from the network can increase the min-
imum coupling value required to ensure synchronization
(i.e. making it less stable) or the other way around, de-
crease it (subsequently improving its robustness).

4.1 Effect of link removal on synchronization stability

Our starting point is the complete European network.
Fig. 4 shows the location of the partition maximizing Eq. (14)
and, therefore, determining σc. Then, for each one of the
links in the European network e, we take it out from the
grid, calculate the new value of σl

A(e), and restore it to its
position.
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Fig. 4. Critical partition of the European network. The
shadowed area corresponds to the partition defining the
critical value of coupling (σl

A) when the European net-
work is complete, and the links marked in green connect
it to the rest of the network. Notice that, given the condi-
tions stated in section 2, the complementary partition (i.e.
the whole network except the shadowed area) presents the
same critical coupling, so any of the two could be consid-
ered the critical one.
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Fig. 5. Impact over global frequency synchronizity of re-
moving each edge of the European Network. New critical
coupling values σl

A were obtained from Eq. (14) as de-
scribed in the Appendix, and edges are ordered according
to their Edge Betweenness CB(e). Inset: Cumulative prob-
ability distribution of σl

A values. The network is robust
to removal of all but very few edges, whose actual impact
when taken out is not correlated with their centrality.

As shown in Fig. 5, only few links in the whole Euro-
pean network have an impact on the global σc value when
removed. Among them, a minority decrease σl

A (i.e. make
overall frequency synchronization easier if erased), while
the other ones exercise the opposite influence, since their
removal increases σl

A value.
We can also observe that such effects of link deletion

are not related to link betweenness [35]. This result is es-
pecially relevant, since purely topological measures (such
as link betweenness or degree centrality) have been tradi-
tionally used to assess resilience in power grids and other
networked systems. On the contrary, here a strictly topo-
logical approach is no longer valid and we need to include
dynamical aspects in our analysis. Accordingly, under-
standing the effects shown in Fig. 5 requires interpreting
how a link removal affects synchronization dynamics in
Eq. (9) and, as a consequence, modifies the global critical
coupling.

Fig. 6 provides such a detailed view of the local struc-
ture for five of the links which deletion changes the global
critical coupling. Removed links are marked in red, the
shadowed areas correspond to the partition becoming crit-
ical after the removal, and green ties are their remaining
connections with the rest of the network.

Figs. 6(a)-(d) show cases where the deletion of the link
marked in red makes the critical coupling σc to increase.
It is quite intuitive to see that the removed links were
partition’s ’boundary’ links (i.e. pointing to outside of the
partitions) and, therefore, their removal reduces the con-
nections of the partitions to the rest of the network (e.g. in
case 6(a), for instance, from two to just the one marked in
green). In accordance with Eq. (14), this reduction leads
to an increase of the partition’s critical coupling, which
eventually becomes the new global σc.

Fig. 6(e) presents an example of the opposite case (i.e.
σc diminishing). Here the erased link was an inner one,
connecting a leaf (i.e. a node of degree one) to the rest of
the partition. Therefore its deletion reduces the size of the
partition and, again according to Eq. (14), makes the crit-
ical value of the coupling for the partition smaller. This
reduction then let other partitions in the network with a
critical coupling lower than the previous global σc become
the new critical partition. In this particular case, the new
critical partition corresponds to the Iberian Peninsula. No-
tice that in contrast with case 6(d), which presents the
same resulting critical partition, in this case the number
of remaining boundary links are 3, so the critical coupling
of the partition is lower.

5 Conclusions

We studied how synchronization dynamics of networked
oscillators depend on their topological configurations.When
neglecting control mechanisms present in real power sys-
tems and considering only some aspects of the swing and
flow equations, oscillatory dynamics can be captured by
the Kuramoto model assuming a bipolar distribution of
natural frequencies. For this setup we are here giving accu-
rate analytical estimation of the critical coupling strength.
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(a) (b)

(c) (d)

(e)

Fig. 6. Examples of link removals modifying the critical
value of coupling σl

A of the European network. In cases
a) - d), the link removal increases σl

A, while it is reduced
in case e). For all cases, removed links are marked in red
and indicated with an arrow, the new critical partition is
marked as a shadowed area and the links connecting it to
the rest of the network are marked in green. More details
are provided in the main text.

It leads to the solving of a combinatorial optimization
problem on the graph. This can be efficiently done us-
ing methods of binary linear programming even for very
large networks with an arbitrary precision. We validated
our results on realistic network topologies and by compar-
ing them with numerical simulations we found very good
agreement.

Furthermore, we studied the robustness of the synchro-
nization process with respect to removals of single links.
When links are removed, only a small percentage of them
have an impact on the synchronization threshold. Thus

network is in this respect very robust. While some links
are increasing the synchronization threshold the others are
decreasing it. The concrete effect depends on whether they
are decreasing the size of the critical cluster or affecting its
connectivity with the rest of the network. We also tested
whether the positions of links influencing the synchroniza-
tion threshold is correlated with their global topological
properties as is sometimes assumed when assessing the
resilience of real-world network topologies. Here we find
no correlation. This can be explained when interpreting
the Eq.(14) which estimates the synchronization thresh-
old. For a given subset of nodes the threshold value is
higher the higher is the sum of natural frequencies for
given subset of nodes and the less tightly are these nodes
connected with the rest of the network. Thus the synchro-
nization threshold depends on the local properties of the
critical network partition.

When analyzing the geographical positioning of criti-
cal partitions, we often found them being identical to bor-
ders between European countries. For example, for the
original network without removed links the critical clus-
ters are connected along the western French border (see
Fig. 4). When links are removed, in some cases critical
clusters are connected along the Spanish-French border
(see Figs. 6d and 6e). Another example is the critical par-
tition corresponding to the Dutch network (see Fig. 6b).
These observations indicate the tendency of national net-
works to be more tightly connected internally than across
borders, which is a signature of an on-going (incomplete)
European-wide integration process. This fact can have
positive consequences from a practical point of view, as it
leads to a natural tendency in the network to split along
these areas in critical situations. The major disruption in
the synchronization of the European network in Novem-
ber 2006, which resulted in a temporal division of the sys-
tem into three regions mainly following existing or former
national boundaries, is an illustrative example of this de-
pendence [36].

This paper is contributing to a better understanding of
the interplay between the network topology determining
the spatial positioning of network elements and frequency
synchronization dynamics. Future steps could include the
study of the cascading behaviours, whereas the Kuramoto
equations allow to define link flows, or investigation of the
validity of our results when considering a more realistic
model, e.g. by introducing heterogeneous links or various
types of generators and loads. Finally, this article was
focused on the existence and stability of frequency
synchronization, where the inertia has a limited ef-
fect. Possible extensions of our work could address,
for instance, the non-trivial influence of the inertia
term on transient states pointed out in section 2.
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Appendix: Methodology

The problem of identifying the subset of nodes maximiz-
ing Eq. (14) can be efficiently solved by using binary linear
programming [37]. First, we formulate it as a combinato-
rial optimization problem: Let us have a graph G(N,L)
where N is a set of nodes and L is a set of links. Each
node has a real value ωi associated to it. The problem is
to find a nonempty subset of nodes S ⊂ N maximizing the

expression
∑

i∈S ωi∑
i∈S,j /∈S aij

.

Thus, we need to decide which nodes are, and which
nodes are not, included in the subset S. Such decision can
be modeled by a set of binary variables yi ∈ {0, 1} for
i ∈ N . Variable yi = 1 iff i ∈ S and otherwise yi = 0. In
the denominator of Eq. (14), we consider the number of
links connecting nodes belonging to the set S with nodes
which do not belong to the set S. To count them, we
introduce for each link connecting nodes i and j a binary
variable xi,j ∈ {0, 1}. Variable xi,j takes value 1 iff either
i ∈ S and j ∈ N − S or j ∈ S and i ∈ N − S and
xi,j = 0 otherwise. Then we can formally formulate this
combinatorial optimization problem:

Maximize f =

∑

i∈N ωiyi
∑

(i,j)∈L xi,j
(16)

subject to
∑

i∈N

yi ≥ 1 (17)

xi,j ≥ yj − yi for (i, j) ∈ L (18)

xi,j ≥ yi − yj for (i, j) ∈ L (19)

yi, xi,j ∈ {0, 1} for i ∈ N, (i, j) ∈ L (20)

Constraint (17) ensures that the set S is nonempty.
The set of constraints (18) and (19) make sure that for
each link connecting nodes i and j variable xi,j = 1 if yi =
1 and yj = 0 or when yi = 0 and yj = 1. The objective
function (16) is forcing variables xi,j to take value of zero
whenever it is possible. Therefore xi,j is zero if yi = 0 and
yj = 0 or if yi = 1 and yj = 1.

Note that we obtained an optimization problem with a
non linear objective function (16) that is optimized with
respect to the linear set of constraints (17)-(19). When
substituting the value of the objective function (16) by
the variable σ we can rewrite the problem (16)-(19) as:

Maximize f = σ (21)

subject to

σ
∑

(i,j)∈L

xi,j ≥
∑

i∈N

ωiyi (22)

∑

i∈N

yi ≥ 1 (23)

xi,j ≥ yj − yi for (i, j) ∈ L
(24)

xi,j ≥ yi − yj for (i, j) ∈ L
(25)

σ ≥ 0, yi, xi,j ∈ {0, 1} for i ∈ N, (i, j) ∈ L
(26)

If we replace the variable σ by an arbitrary constant
c we obtain a linear optimization problem which can be
easily solved by traditional integer solvers as, for example,
XPRESS-IVE [38]. The remaining problem has a feasible
solution only if c ≤ σc and there is no solution if c >
σc. Thus, by using a binary search on c and repeatedly
solving the optimization problem for different c values we
can find an arbitrarily tight lower σl

A and upper σu
A bounds

for σc. Moreover, values of variables yi corresponding to
the lower bound σl

A (when feasible solution exists) define
which nodes belong to the partition whose σ = σl

A ≤ σc <
σu
A.
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