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Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that 
affects upper motor neurons (MNs) comprising the corticospinal tract and lower MNs 
arising from the brain stem nuclei and ventral roots of the spinal cord, leading to fatal 
paralysis. Currently, there are no effective therapies for ALS. Increasing evidence 
indicates that neuroinflammation plays an important role in ALS pathogenesis. The 
neuroinflammation in ALS is characterized by infiltration of lymphocytes and macro-
phages, activation of microglia and reactive astrocytes, as well as the involvement of 
complement. In this review, we focus on the key cellular players of neuroinflammation 
during the pathogenesis of ALS by discussing not only their detrimental roles but also 
their immunomodulatory actions. We will summarize the pharmacological therapies for 
ALS that target neuroinflammation, as well as recent advances in the field of stem cell 
therapy aimed at modulating the inflammatory environment to preserve the remaining 
MNs in ALS patients and animal models of the disease.

Keywords: amyotrophic lateral sclerosis, neuroinflammation, microglia, astrocytes, neural stem cells, regulatory 
T cells, dl-3-n-butylphthalide

iNTRODUCTiON

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive 
degeneration of upper and lower motor neurons (MNs) in the brain and spinal cord. ALS usually 
begins in limb or bulbar muscles, spreads to other body regions, and eventually ends with respiratory 
muscle dysfunction. The majority (more than 90%) of ALS is sporadic, whereas a minor fraction 
(about 5–10%) is familial. Mutations in Cu/Zn superoxide dismutase 1 (SOD1), the first identified 
gene in ALS, characterize more than 20% of familial and 1–4% of sporadic ALS cases (1, 2). To date, 
more than 20 gene mutations have been identified in familial ALS, and hexarepeat expansion on 
chromosome 9 open reading frame 72 (C9orf72) is reported to be the most frequent genetic cause 
of familial ALS (40%) (2, 3). Scientific advances in genetic studies have enabled the identification 
of genes contributing to ALS pathogenesis. However, no effective therapy is currently available 
for ALS patients. Riluzole, licensed by the Food and Drug Administration (FDA) in 1996, is the 
only drug that could extend the survival of ALS patients by about 3 months (4, 5). Therefore, it is 
urgent to identify new potential therapeutic target(s) for the development of more effective and 
beneficial treatments for ALS patients. In this review, we discuss not only the detrimental roles 
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but also the immunomodulatory actions of key inflammatory 
cellular players in ALS. In addition, we summarize current phar-
macological strategies targeting neuroinflammation and finally 
explore advances in stem cell therapy aimed at modulating the 
inflammatory environment to preserve the remaining MNs in 
ALS patients and animal models of the disease.

PATHOPHYSiOLOGY

Despite numerous preclinical and clinical studies that have been 
conducted to evaluate the underlying cause of MN degeneration, 
the exact pathogenic mechanism of ALS is still far from being 
understood. Several pathways, including oxidative stress, mito-
chondrial dysfunction, axonal damage, excitotoxicity, neuroin-
flammation, and protein aggregation, have been suggested to be 
involved in ALS pathogenesis (6). It seems that multiple factors, 
rather than a single mechanism, contribute to the development 
and progression of ALS.

Increased levels of free radicals were found in cerebrospinal 
fluid (CSF), serum, and urine samples of both familial and spo-
radic ALS patients (7–9). In fact, SOD1 plays a crucial role in 
the clearance of reactive oxygen species (ROS) and the aberrant 
activity of mutant human SOD1 (mSOD1) in ALS leads to oxida-
tive damage (10). However, other ALS-related proteins, such as 
mutant TAR DNA-binding protein-43 (TDP-43) and other still 
unknown factors in sporadic ALS, may promote oxidative stress 
in MNs (11).

Accumulation of misfolded mSOD1 in mitochondria leads 
to morphological alternations such as vacuolated and dilated 
organelles with disorganized cristae and membranes in spinal 
MNs and skeletal muscles of both ALS patients and SOD1G93A 
mice (12, 13), as well as physiological changes including 
abnormal release of adenosine triphosphate (ATP) and ROS, 
impaired energy homeostasis, and unusual activation of 
apoptosis (12–14). The presence of mSOD1 also contributes to 
altered mitochondrial calcium buffering capacity and reduced 
calcium uptake from the cytoplasm in SOD1G93A mice (15, 16). 
In addition, axonal transport of mitochondria along micro-
tubules is disrupted in ALS, leading to metabolic changes in 
neurons (12, 17).

Increased glutamate levels in CSF (18) and therapeutic ben-
efits achieved by riluzole, an anti-excitotoxic drug (19), implicate 
excitotoxicity as a mechanism contributing to MN injury in ALS. 
Low endogenous calcium buffering capacity in ALS-vulnerable 
spinal and brainstem MNs makes them more susceptible to exci-
totoxic insults (20). It was reported that sera from ALS patients 
could induce abnormal N-methylaspartate receptor activation 
(21). Glutamate transport deficits have been identified in motor 
cortex and spinal cord of ALS patients and transgenic mSOD1 
mouse models. Especially affected is astroglial-specific excitatory 
amino-acid transporter 2 (EAAT2) (22–24), leading to increased 
synaptic glutamate concentration and overstimulation of post-
synaptic glutamate receptors, which contributes to excitotoxic 
neuronal degeneration (8, 25, 26). Guo et al. observed a delay in 
MN degeneration and disease progression in transgenic mSOD1 
mice overexpressing EAAT2 (27), suggesting the loss of EAAT2 
contributes to MN degeneration in ALS.

Aberrant mutant or misfolded proteins (e.g., SOD1, TDP-43, 
and FUS/TLS RNA-/DNA-binding protein) aggregate in the 
cytoplasm, nucleus, or extracellular matrix leading to cellular 
organellar damage and neuronal dysfunction in ALS (8, 28–32). 
Misfolded mSOD1 aggregates formed pore-like structures in 
lipid membrane that allowed the influx of calcium (33) and 
were even able to activate microglia in vitro (34). The ubiquitin 
proteasome system (UPS) and autophagy play a central role in 
degrading misfolded proteins and thus preventing their aggrega-
tion. Impairment of autophagy in MNs may result in the accu-
mulation of misfolded proteins and cell death (35). Alternation 
of UPS and activation of autophagy have been observed in spinal 
MNs of mSOD1 mice (36) and in postmortem samples of ALS 
cases (37). The enhancement of autophagy could improve the 
clearance of misfolded protein aggregates and neuronal survival 
in ALS models (38, 39).

Analysis of CSF and postmortem spinal cord samples from 
ALS cases revealed increased microglial activation and lympho-
cyte permeation (40, 41), indicating that neuroinflammation may 
play a role in MN degeneration. Further investigation revealed 
that microglia were activated in the early stages of ALS and played 
an either deleterious or beneficial role (42, 43). Moreover, astro-
cytes acquired toxic properties and subsequently contributed 
to MN death (44), while infiltrated T  lymphocytes controlled 
microglial response by limiting their detrimental effects and 
enhancing their neuroprotective capacity (45). In addition, the 
breakdown of blood–brain barrier and blood–spinal cord barrier 
also contributed to early MN degeneration in ALS patients and 
mice (46, 47), while restoration of the barrier integrity delayed the 
onset of neurodegeneration and disease progression (48).

NeUROiNFLAMMATiON iN ALS: 
PeRSPeCTive ON CeLLULAR BASiS

Neuroinflammation, characterized by microglial and astrocyte 
activation, T  lymphocyte infiltration, and overproduction of 
inflammatory cytokines, has been demonstrated in association 
with neuronal loss in both animal and human tissues, even during 
the presymptomatic phase of ALS (49). Accumulating evidence 
from preclinical work has implicated immune cells in either 
exerting deleterious or protective effects on MN survival depend-
ing on the stage of disease progression; however, the mechanism 
is far from being fully elucidated.

Microglia
Microglia are the first line of immune defense in the brain and 
spinal cord. They survey the surrounding environment and 
respond to “danger signals” from damaged tissues. It has been 
reported that injured MNs and astrocytes release misfolded pro-
teins (such as mSOD1) in ALS, which activate microglia through 
CD14, toll-like receptor (TLR) 2, TLR4, and scavenger receptor 
dependent pathways (34, 50, 51). Direct evidence was provided 
using positron emission tomography (PET) that widespread 
microglial activation was present in the brain of living ALS 
patients and SOD1G93A mice (52–54), with a significant correla-
tion between the intensity of microglial activation in the motor 
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cortex and the severity of clinical MN deficits (54). Studies in 
mSOD1 transgenic mice further revealed that the replacement  
of mSOD1 microglia with wild-type microglia, as well as reduced 
mSOD1 expression in microglia, postponed MN degeneration 
and extended the lifespan of the animals (55, 56). A recent work 
by O’Rourke et  al. (57) demonstrated that C9orf72 expression 
was highest in myeloid cells, and the loss of C9orf72 function 
in mice led to defects in lysosomal trafficking, decreased abil-
ity of microglia to clear aggregated proteins, as well as altered 
microglial responses, and neuroinflammation. Similar results 
were observed in macrophages. In particular, even haploinsuf-
ficiency of C9orf72 appears to contribute to altered inflammatory 
responses in macrophages. These findings suggest that C9orf72 
may have a dual effect on both neurons and myeloid cells.

In addition, extracellular ATP released by dying and abnor-
mally functioning neurons may activate microglia through the 
ionotropic P2X and metabotropic P2Y purinergic receptors, 
followed by inflammatory reactions (58). The expression level 
of P2X7 was increased in activated microglia from postmortem 
spinal cord of ALS patients (59), as well as in SOD1G93A mice (58). 
Furthermore, it was observed that the upregulation of P2X4, P2X7, 
and P2Y6 receptors in mSOD1 microglia, in particular P2X7, 
was associated with reduced ATP hydrolysis in the same ALS 
microglia, which led to increased production of tumor necrosis 
factor (TNF)-α and cyclooxygenase-2 (COX-2) with consequent 
toxicity to neuronal cells (60). This toxicity through activation of 
P2X7 was also confirmed in mSOD1 astrocytes (61). Studies in 
advance have shown that microglia-mediated deleterious effects 
in ALS could be prevented by genetic ablation of P2X7 receptor or 
by using specific antagonists to the receptor (58, 59, 62). However, 
further work displayed the complex role of P2X7 in ALS patho-
genesis. Apolloni et al. found that constitutive deletion of P2X7 
receptor aggravated disease progression, exacerbated astrogliosis, 
microgliosis, and motoneuron loss, activated MAPKs pathway, as 
well as increased the release of proinflammatory markers such as 
nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) 
and inducible nitric oxide synthase in the lumbar spinal cord of 
end-stage (23 weeks of age) SOD1G93A mice (63). Furthermore, 
these studies demonstrated that only the administration of P2X7 
antagonist, Brilliant Blue G, starting at late presymptomatic stage 
(100 days/14 weeks of age) significantly enhanced MN survival in 
lumbar spinal cord through reducing microgliosis and modulat-
ing the expression of inflammatory markers, accompanied by 
delayed onset and improved motor functions (64). The key feature 
that emerged from these results might be the dual action of P2X7 
and the existence of a time window concerning its beneficial role 
in ALS. The dual action of P2X7 during ALS progression might 
correspond to the switch of microglia from protective M2 to 
deleterious M1 phenotype. Therefore, precocious ablation of the 
receptor is detrimental, and its pharmacological blockade at early 
presymptomatic phase or after disease onset might be too early or 
too late. Thus, only interventions within an effective therapeutic 
window may provide positive outcomes in ALS patients.

Once activated, microglia display distinct and plastic phe-
notypes, with either neurotoxic or neuroprotective function, 
depending on the state of activation and disease stage. During 
the early slow progressive stage of ALS, microglia display an M2 

phenotype with upregulated expression of M2 markers such as 
CD206 and Ym1, promote tissue repair and regeneration, and 
interact with protective signals such as CD200 and fractalkine 
(51, 65). As the disease progresses, injured MNs release “danger 
signals” (e.g., mSOD1) that induce microglia to acquire an M1 
phenotype with enhanced secretion of NOX2, ROS, and pro-
inflammatory cytokines (e.g., TNF-α, IL-1, and IL-6) (66, 67).  
In vitro co-culture studies further demonstrate that early stage M2 
microglia enhanced MN survival, while end-stage M1 microglia 
were toxic to MNs (66).

Astrocytes
Genes linked to ALS are not only expressed in MNs but also in 
astrocytes (68–71). Astrocytes expressing mSOD1 have been 
shown in vitro and in vivo to be toxic to both normal MNs and MNs 
derived from embryonic stem cell (ESC) carrying mSOD1 gene 
(71–73). Interestingly, mSOD1-expressing astrocytes selectively 
caused death of spinal MNs in ALS, but not spinal GABAergic or 
dorsal root ganglion neurons or ESC-derived interneurons (71). 
Selective silencing or blockage of mSOD1 gene in astrocytes, or 
transplantation of healthy astrocytes, could attenuate astrocyte-
mediated toxicity and MN loss, delayed disease progression, and 
prolonged the lifespan of mSOD1 mice (74–77). Conversely, 
transplantation of mSOD1-expressing astrocytes induced focal 
MN degeneration and death in the spinal cord of wild-type rats 
(78). In addition, astrocytes reprogrammed from ALS patient 
fibroblasts impaired the survival of MNs (79, 80). Thus, the 
expression of ALS-associated mutant proteins in astrocytes 
contributes to non-cell autonomous toxicity. Qian et  al. (79) 
recently showed that both MNs and non-MNs degenerated in the 
spinal cord transplanted with ALS astrocytes. Importantly, they 
observed that non-MNs were lost earlier than MNs, suggesting 
that non-cell autonomous toxicity by ALS astrocytes on neural 
degeneration is not specific to MNs, and non-MNs might mediate 
the degeneration.

As discussed above, astrocytes play an important role in ALS; 
however, it is still unclear how ALS-associated mutant proteins 
contribute to the dysfunction of astrocytes and how dysregulated 
astrocytes exert non-cell autonomous toxicity to MNs. In normal 
conditions, astrocytes clear excess glutamate from synaptic 
clefts through glutamate transporters. In sporadic and familial 
ALS patients as well as mSOD1 mice, the loss of glutamate 
transporter, EAAT2/GLT-1, led to less efficient uptake of gluta-
mate by astrocytes and therefore exacerbated MN degeneration  
(22, 78, 81, 82). Mitochondrial defects in mSOD1 but not wild-type 
astrocytes were reported to be toxic for MNs (83), and this could 
be prevented by antioxidants and nitric oxide synthase inhibitors 
(83, 84). Ferraiuolo et al. revealed the metabolic dysfunction in 
ALS astrocytes, particularly in the astrocyte lactate efflux trans-
porter, with resultant decrease in spinal cord lactate levels (85). 
In addition, astrocytes from postmortem tissues from ALS cases 
and SOD1G93A mice were reported to exert toxic effects on MNs 
by secreting inflammatory mediators such as prostaglandin E2, 
leukotriene B4, nitric oxide, and NOX2 (76, 84, 86). Recently, 
astrocytes have been demonstrated to trigger MN death by 
activating a caspase-independent form of programmed cell death 
called necroptosis, which involves the loss of plasma membrane 
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integrity through receptor interacting serine/threonine-protein 
kinase 1 (RIPK1) and mixed lineage kinase domain-like (MLKL) 
(87). Inhibition of the key necroptosis effectors, RIPK1 or MLKL, 
could protect MNs against sporadic ALS astroglial toxicity and 
delay the onset of motor dysfunction (87, 88), therefore suggest-
ing these as potential new therapeutic targets.

T Lymphocytes
In SOD1G93A mice, CD4+ T  cells were observed in lumbar spi-
nal cords at early stages of the disease, while at the end stage, 
both CD4+ and CD8+ T  cells were present (45, 89). Genetic 
removal of CD4+ T  cells or functional total T  cells accelerated 
disease progression with upregulated expression of NOX2 and 
proinflammatory cytokines in mSOD1 mice (90, 91), while 
reconstitution of T cells could prolong the survival of mSOD1 
mice and inhibited the activation of M1 microglia (91). The 
neuroprotection associated with CD4+ T cells in ALS is probably 
due to their interactions with microglia and astrocytes. Beers 
et  al. (92) reported that endogenous regulatory T  cells (Tregs) 
were increased in spinal cords of mSOD1 mice at early slow pro-
gressive disease stage, accompanied by increased expression of 
IL-4 and levels of protective M2 microglia, while these decreased 
when disease rapidly accelerated with loss of forkhead box P3 
(FoxP3) expression in Tregs. Passive transfer of Tregs obtained 
from donor mSOD1 mice during the stable stage without ex vivo 
activation extended the stable disease progression phage and 
lengthened survival of recipient mSOD1 mice (92). Accordingly, 
in ALS patients, the number of Tregs decreased in blood and 
spinal cord tissues accompanied by reduced expression of FoxP3, 
transforming growth factor-β, IL-4 and GATA binding protein 
3 (Gata-3) at the rapidly progressive stage, and the number of 
Tregs was inversely correlated with the progression rates and 
severity (92, 93). A further analysis revealed that ALS patients 
with low FoxP3 levels showed more rapid progression, indicating 
that low FoxP3 expression might be predictive of future rapid 
disease progression (93). However, it is still unknown whether 
Tregs from ALS patients still keep their suppressive capabilities. 
Recently, Beers et  al. (94) demonstrated that Tregs from both 
slowly and rapidly progressing ALS patients were dysfunctional 
and exhibited reduced suppressive capabilities on the prolifera-
tion of responder T lymphocytes compared to Tregs from healthy 
volunteers. Moreover, Treg suppressive deficiency correlated 
with disease burden and rates of disease progression. This study 
further illustrated that the loss of suppressive capabilities of Tregs 
from ALS patients was not permanent. Tregs regained their sup-
pressive capabilities when removed from their environment and 
expanded in vitro, thus suggesting a potential novel therapeutic 
strategy for ALS patients.

Evidence has been provided that the expression of Th17 
related cytokines (IL-17 and IL-23) was elevated in blood, CSF, 
and spinal cord tissues from ALS patients, suggesting Th17 might 
also play a role in ALS pathogenesis (95–97). However, little is 
known about Th17 in mSOD1 transgenic mice. Another T-cell 
subpopulation participating in ALS is natural killer T (NKT) 
cells. Rentzos et  al. reported that NKT  cells were increased in 
peripheral blood of ALS patients (98). Moreover, NKT cell levels 
and activation state increased in the spinal cord, spleen, and liver 

of mSOD1 mice, and immunomodulation of NKT cells led to the 
reduction of MN loss, delayed disease onset, and prolonged the 
life span of mSOD1 mice (99).

Monocytes/Macrophages
Ample previous evidence has uncovered the role of activated 
microglia in the CNS and altered T  cells in the peripheral 
nervous system of ALS patients and mSOD1 mice as dis-
cussed above. However, much less is known about the role of 
peripheral macrophages and monocytes in MN degeneration. 
Several studies have reported the activation of monocytes in the 
peripheral blood of ALS patients (100), as well as the increased 
invasion of peripheral monocytes into the spinal cord of ALS 
patients and mice (101, 102), which contributed to MN loss. 
Activated monocytes from ALS patients exhibited deceler-
ated phagocytosis, altered adhesion behavior, and impaired 
proinflammatory cytokine secretion (102, 103). A recent study 
revealed 233 differentially expressed genes in ALS monocytes. 
Among these was a unique inflammation-related gene expres-
sion profile, including IL-1β, IL-8, FOSB, CXCL1, and CXCL2, 
suggesting ALS monocytes were skewed toward a proinflam-
matory state in the peripheral circulation, which might play a 
role in rapidly progressing ALS (104). Murdock et al. further 
suggested that an increased ratio of neutrophils to monocytes 
displayed a better correlation with disease progression (105). 
Another recent study has observed macrophage-mediated 
inflammation in the skeletal muscle of familial ALS rats (106), 
which might be another therapeutic target for novel treatment 
of ALS.

Complement System
The complement system plays a crucial role in the recruitment 
of mononuclear cells and macrophages (mediated by C3a and 
C5a) and in the deposition of cytotoxic pore-forming membrane 
attack complex (formed by C5–C9) on the cell surface. Multiple 
complement components including C1q, C5a, and C5b-9 are 
elevated in the plasma, CSF, and spinal cord of ALS patients and 
transgenic mSOD1 mice (107–110). However, the role of the 
complement pathway in ALS pathogenesis is still controversial. 
Complement factor C1q was observed to colocalize with neuro-
filament and deposited on motor end plates in intercostal muscle 
of ALS patients, suggesting that complement activation may 
precede end-plate denervation in human ALS (111). Lobsiger 
et al. showed that genetic deletion of C1q and C3 from ALS mice 
did not affect the overall onset and progression of the disease, 
thus suggesting that C1q induction and classical or alternative 
complement pathway activation do not contribute significantly 
to mSOD1-mediated ALS pathogenesis in mice (112). On the 
contrary, others have reported that terminal complement activa-
tion and C5a production occurred in skeletal muscle tissue of 
SOD1G93A mice (113). Local activation and increased expression 
of C5a–C5aR1 signaling contributed to the recruitment of mac-
rophages that might have accelerated muscle denervation and 
MN death in SOD1G93A mice (113, 114). Selective inhibition of 
C5a–C5aR1 signaling ameliorated disease pathology, reduced 
motor symptoms, and extended the survival of SOD1G93A mice 
(110, 115).
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TABLe 1 | Summary of drugs and compounds targeting neuroinflammation in ALS.

Drug Mechanism Trial no. Phase Status Reference

Minocycline Suppressing microglial activation and modulating apoptosis NCT00047723 III Failed Gordon et al. (119)

NP001 Modulation of monocyte activation and downregulation  
of NF-kB in macrophages

NCT01281631
NCT02794857

II Completed
Ongoing

Miller et al. (120)

Masitinib Tyrosine-kinase inhibitor NCT02588677 II and III Completed Trias et al. (122)

Ibudilast (MN-166) Phosphodiesterase 4 inhibitor NCT02238626
NCT02714036

II Ongoing
Ongoing

Martinez et al. (123)

Fingolimod Sphingosine-1-phosphate receptor modulator NCT01786174 II Completed Potenza et al. (125)

RNS60 Modulator of PI3K–Akt pathway NCT02525471 I Active, not 
recruiting

Crisafulli et al. (126)

Tocilizumab IL-6 receptor antagonist NCT02469896 II Ongoing Mizwicki et al. (130)

Anakinra IL-1 receptor antagonist NCT01277315 II Not known Maier et al. (129)

Celebrexib COX-2 inhibitor NCT00355576 II Failed Cudkowicz et al. (133)

Thalidomide TNF-α antagonist NCT00140452 II Failed Stommel et al. (131)

Lenalidomide TNF-α antagonist N/A N/A N/A Neymotin et al. (132)

AMD3100 CXCR4 antagonist N/A N/A N/A Rabinovich-Nikitin et al. (128)

NBP Anti-oxidant, reduction of glial activation ChiCTR-
IPR-15007365

II and III Ongoing Feng et al. (137)

Celastrol Inhibition of inflammatory cytokines and induction of  
heat shock protein response

N/A N/A N/A Kiaei et al. (134)

ALS, amyotrophic lateral sclerosis; IL, interleukin; COX-2, cyclooxygenase-2; TNF, tumor necrosis factor; NBP, dl-3-n-butylphthalide; N/A, not available.
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PHARMACOLOGiCAL STRATeGieS 
TARGeTiNG NeUROiNFLAMMATiON iN ALS

Multiple preclinical studies and clinical trials have been 
conducted to search for the underlying cause of MN degen-
eration; however, the exact mechanism remains largely unclear. 
Therefore, the development of effective and targeted therapies is 
still underway worldwide. In recent years, increased interest has 
been focused on finding appropriate tools to effectively target 
neuroinflammation in ALS. Multiple compounds with anti-
inflammatory properties have been reported to enhance MN 
survival in transgenic mice, even though none has been shown 
to be effective for ALS patients (116). A number of neuroprotec-
tive agents targeting neuroinflammatory pathways in ALS are 
summarized in Table 1.

Minocycline, a broad-spectrum tetracycline antibiotic, was 
shown to reduce the loss of MNs, delay disease onset, and extend 
survival of SOD1G93A mice (117), probably by suppressing micro-
glial activation and modulating apoptosis (118). Unfortunately, 
a phase III trial (ClinicalTrials.gov Identifier: NCT00047723) 
revealed harmful effects after its continuous administration to 
ALS patients (119), limiting its further application. NP001 is a 
small molecule that regulates monocytes and macrophages by 
switching them from an inflammatory phenotype to a basal non-
inflammatory phenotype. In the completed phase I and II trials 
in ALS patients (ClinicalTrials.gov Identifier: NCT01091142, 
NCT01281631), NP001 was found to be safe, well tolerated, and 
presented a positive trend in slowing disease progression (120, 121).  
Currently, a second phase II trial is ongoing to confirm these 
data (ClinicalTrials.gov Identifier: NCT02794857). Masitinib 
is a tyrosine-kinase inhibitor that was observed to decrease 
aberrant glial cells, microgliosis, and MN degeneration in the 

spinal cord of mSOD1 mice, and therefore prolonged survival 
of the animals (122). A phase II and III clinical trial aimed at 
assessing the efficacy and safety of masitinib in combination 
with riluzole in the treatment of ALS patients (ClinicalTrials.
gov Identifier: NCT02588677) has recently completed with a 
total of 394 patients enrolled, and the final results are expected 
to be announced soon. Ibudilast (MN-166), a non-selective 
phosphodiesterase 4 inhibitor, is reported to modulate the 
production of proinflammatory agents from resident immune 
cells, and also influences their survival and activation (123). 
Two clinical trials with ibudilast are ongoing in ALS patients. 
One is administration of ibudilast in combination with riluzole 
to evaluate its general safety and tolerability (ClinicalTrials.gov 
Identifier: NCT02238626). Another trial is to investigate the 
impact of ibudilast on neuroinflammation measured by PET 
imaging and blood biomarkers (ClinicalTrials.gov Identifier: 
NCT02714036). Fingolimod, a modulator of sphingosine-
1-phosphate receptor, is the first oral drug approved by FDA for 
the treatment of relapsing remitting multiple sclerosis, because 
it reduces the number of circulating lymphocytes in peripheral 
blood by sequestering them in secondary lymphoid organs 
through its modulation of the sphingosine-1-phosphate recep-
tor (124). In a recent preclinical study, fingolimod improved the 
outcome and survival rate of mSOD1 mice, and the beneficial 
effect was associated with modulation of microglial activation 
and innate immunity (125). A phase II trial evaluating the safety 
and tolerability of fingolimod in ALS patients (ClinicalTrials.gov 
Identifier: NCT01786174) has recently been completed with no 
major safety issue reported.

Blockage of proinflammatory mediators (e.g., IL-6, IL-1, 
TNF-α, COX-2, and CXCR4) in ALS to modulate neuroinflam-
mation and decrease MN death is another strategy that resulted 
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in delayed symptom onset and prolonged survival of mSOD1 
mice, and clinical trials for these compounds are ongoing  
(4, 123, 126–134) (Table 1). dl-3-n-Butylphthalide (NBP) was 
initially isolated from the seeds of Apium graveolens (celery) 
and has been approved by the State FDA of China for clinical 
use since 2002. NBP has been demonstrated to exert neuro-
protective roles in cerebral ischemia and vascular dementia  
(135, 136). In preclinical work, NBP reduced glial cell activation, 
attenuated MN death, and thus prolonged the survival interval 
of SOD1G93A mice (137–139), suggesting this compound might 
be a novel treatment for ALS. A phase II and III multicenter, 
randomized, double-blind, placebo-controlled clinical trial 
with oral administration of NBP in ALS patients is ongoing in 
China to evaluate its efficacy and safety (Chictr.org.cn Identifier: 
ChiCTR-IPR-15007365).

CeLL THeRAPY FOR ALS

Stem cell therapy offers a promising alternative for ALS, and 
preclinical studies have demonstrated that cell-based treat-
ment could increase MN survival and delay disease progres-
sion. Different sources and types of cells have been and/or are 
being tested in preclinical stages and clinical trials for ALS 
(140, 141).

Mesenchymal stem cells (MSCs) derived from adipose or 
bone marrow tissue are the most studied cells in ALS animals 
and clinical trials. Studies with MSCs grafted in mSOD1 mice 
have reported beneficial effects on disease progression includ-
ing attenuated neuroinflammation, improved motor function, 
reduced loss of MNs, and prolonged survival (142, 143). MSCs 
may also serve as a carrier to deliver neurotrophic factors (144). 
Due to the positive results obtained from in vivo models of the 
disease, numerous cell-based clinical trials have used MSCs and 
reported the feasibility, safety, and immunomodulatory effects of 
administration of MSCs to ALS patients (142, 145, 146). However, 
adverse effects of MSCs, such as enhancing tumor growth and 
metastases (147, 148), and triggering ROS generation and inflam-
mation (149), have also been reported. Thus, more careful and 
detailed studies concerning the clinical safety and efficacy of 
MSCs should be further performed.

Embryonic stem cells have the potential to differentiate into 
any cell types of the three germ layers, including specific cells 
of neuronal or glial fates. However, whether MNs derived from 
ESCs could exert beneficial effects on ALS animals is still contro-
versial (150, 151). The application of ESCs is also limited due to 
the difficulty of generating high-purity lineage-specific cell lines 
without risk of tumorigenesis and ethical issues. The generation 
of induced pluripotent stem cells (iPSCs) provides an alternative 
therapeutic approach to cell-based treatment for ALS. Autologous 
iPSCs might represent an ideal cell source that can be derived 
from patients’ own somatic cells with similar features as ESCs, 
but with no ethical issues, reduced risk of immune rejection, 
and less need for immunosuppressive drugs. Transplantation of 
iPSC-derived neural cells into SOD1G93A mice showed survival 
of donor cells, axonal sprouting, and reduction of macro- and 
microgliosis (152, 153). However, the use of iPSCs in the clinic 
is still under debate due to its capacity of tumor formation after 

transplantation, inefficient in vitro differentiation methods, and 
inherent genetic deficits from donors. Thus, it is still a big chal-
lenge to produce safe iPSC-derived neural cells for clinical cell 
therapy.

Neural stem/progenitor cells (NPCs) are multipotent cells 
committed to the neural cell lineage that can self-renew and 
be readily expanded in  vitro. NPCs derived from an already 
formed nervous system have not been reported to cause tumor 
formation with metastasis after transplantation, which is an 
important criterion for a donor cell population in clinical cell 
transplantation. However, the limited replication and decreased 
differentiation potential with time, as well as the ethical con-
cerns imposed by NPC origins and derivation should not be 
ignored. NPCs, derived from adult and fetal CNS tissues, as well 
as from ESCs and iPSCs as mentioned above, have been reported 
to survive, differentiate into mature neural cells, and may delay 
disease progression in association with extended lifespan after 
transplantation in ALS animals (154). The potential mechanism 
of grafted NPCs to repair injured MNs has been widely inves-
tigated. It has been demonstrated that NPCs may provide an 
effective treatment by directly replacing the lost and damaged 
neural cells, enhancing functional synaptic formation, provid-
ing neuroprotection by producing neurotrophic factors, or 
even stimulating endogenous neurogenesis (153, 155–158). As 
discussed previously, neuroinflammation is a key player in ALS 
pathogenesis that contributes to MN degeneration. However, it 
is still unclear whether grafted NPCs are able to modulate the 
inflammatory environment around damaged MNs in ALS and 
how donor NPCs interact with host immune cells. NPCs were 
reported to inhibit T-cell proliferation and promote apoptosis 
of encephalitogenic CNS-infiltrating T cells through apoptotic 
receptor ligands (e.g., FasL and Apo3L) and release of soluble 
mediators (e.g., nitric oxide synthase, leukemia inhibitor fac-
tor, heme oxygenase-1, and prostaglandin E2) in the chronic 
inflammatory environment of experimental autoimmune 
encephalitis (159–164). In spinal cord injury, grafted mouse 
NPCs could lead to a reprogramming of the local inflamma-
tory microenvironment from a “hostile” to an “instructive” 
state by increasing the proportion of Tregs and reducing that 
of M1 macrophages (165). In our previous work with in vitro 
allogeneic co-culture settings, we demonstrated that human 
fetal-derived NPCs reduced proliferation of peripheral blood 
mononuclear cells via the upregulation of Tregs (166) and influ-
enced allogeneic microglial activation and functional activity 
through enhanced CD200-CD200R interaction between NPCs 
and microglia (167). A recent work by Gao et al. indicated that 
induced NPCs directly reprogrammed from mouse embryonic 
fibroblasts were able to influence microglia activation and the 
acquisition of neuroprotective phenotypes via CXCL12/CXCR4 
signaling (168). Further studies concerning the immunomodu-
latory effects of grafted NPCs in mSOD1 rodents and even ALS 
patients are urgently needed. Due to the encouraging results of 
preclinical studies with neural cell therapy, several clinical trials 
with human NPCs or human glial restricted progenitor cells are 
either completed or ongoing (Table 2). Till now, the donor cells 
have been well tolerated and no safety issue has been reported 
(169–175).
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TABLe 2 | Clinical trials of human NPCs in ALS.

Cell type Donor cells Delivery 
method

Adjutant treatment Follow-up 
(months)

Trial no. Phase Status Reference

SpC-NPC NSI-566RSC Intraspinal Basiliximab 18 NCT01348451 I Completed Glass et al. (174)
Tacrolimus Riley et al. (173)
Mycophenolate Riley et al. (172)

Feldman et al. (171)
Tadesse et al. (175)

SpC-NPC NSI-566RSC Intraspinal Basiliximab 24 NCT01730716 II Completed Glass et al. (169)
Tacrolimus
Mycophenolate

NPC Fetal NPCs Intraspinal Tacrolimus 18 NCT01640067 I Completed Mazzini et al. (170)

NPC CNS10-NPC-
GDNF

Intraspinal N/A N/A NCT02943850 I/IIa Ongoing ClinicalTrials.gov

GRP Q-Cells Intraspinal N/A 9 NCT02478450 I/IIa Active, not 
recruiting

ClinicalTrials.gov

ALS, amyotrophic lateral sclerosis; NPC, neural stem/progenitor cell; SpC-NPC, human spinal cord-derived NPC; GRP, human glial restricted progenitor cell; N/A, not available.
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CONCLUSiON

Effective therapy for ALS is still in its infancy, even after years of 
intense investigation with chemical compounds and cell-based 
treatment. The pathogenesis involved in MN death in ALS is 
complex, and neuroinflammation has been accepted as a key  
contributor to MN degeneration and disease progression. 
However, a big challenge regarding the development of new thera-
pies for ALS patients is the failure to translate positive preclinical 
results into successful clinical practice. Several issues should be 
taken into consideration when designing therapeutic strategies 
targeting neuroinflammation in ALS. First, most preclinical ALS 
studies invariably employ the mSOD1 transgenic rodents (gener-
ally SOD1G93A mice), which is a limited disease condition related 
to a small subgroup of ALS patients with SOD1 gene mutation. 
Therefore, transgenic mouse models with different gene muta-
tions (e.g., TDP-43 and C9orf72) should be employed in preclini-
cal studies to find out whether they share common mechanisms 
involved in neuroinflammation. Second, therapeutic strategies in 
transgenic animals are usually applied during presymptomatic 
or slowly progressive disease stage. Despite promising treatment 
outcomes in these preclinical studies, they cannot be translated 
into patients because most ALS patients are identified and diag-
nosed during the late and rapidly progressive phase. Third, the 

inflammatory environment of ALS varies with disease progres-
sion, and involves both neurotoxic and neuroprotective aspects. 
Thus, specific therapeutic timing may influence the pathogenic 
target and choice of drugs. Fourth, the heterogeneity of patients 
may also contribute to the failed translation of therapeutic effects 
from homogeneous transgenic animals to ALS patients. In addi-
tion, one should consider promoting anti-inflammatory and 
neuroprotective properties of immune cells, instead of simply and 
completely suppressing inflammatory and immune responses to 
achieve precise and personalized treatment for ALS patients.
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