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The microvascular endothelium serves as the major barrier that controls the transport

of blood constituents across the vessel wall. Barrier leakage occurs during infection

or sterile inflammation, allowing plasma fluid and cells to extravasate and accumulate

in surrounding tissues, an important pathology underlying a variety of infectious

diseases and immune disorders. The leak process is triggered and regulated by

bidirectional communications between circulating cells and vascular cells at the

blood-vessel interface. While the molecular mechanisms underlying this complex

process remain incompletely understood, emerging evidence supports the roles of

neutrophil-endothelium interaction and neutrophil-derived products, including neutrophil

extracellular traps and vesicles, in the pathogenesis of vascular barrier injury. In

this review, we summarize the current knowledge on neutrophil-induced changes in

endothelial barrier structures, with a detailed presentation of recently characterized

molecular pathways involved in the production and effects of neutrophil extracellular traps

and extracellular vesicles. Additionally, we discuss the therapeutic implications of altering

neutrophil interactions with the endothelial barrier in treating inflammatory diseases.

Keywords: cell-cell junction, endothelial barrier, extracellular vesicles, glycocalyx, inflammation, neutrophil

extracellular traps, permeability

INTRODUCTION

Serving as the blood-tissue interface, the vascular endothelial barrier plays a critical role in
regulating host defense against infection or injury. Endothelial hyperpermeability is considered
an important cause, as well as consequence, of inflammatory/immune responses associated with
sepsis, trauma, ischemia-reperfusion injury, diabetes, and metastatic tumor development (1, 2).
This pathological process involves complex cell-cell communications and molecular signaling.
Among the multiple subtypes of leukocytes in the circulation, polymorphonuclear granulocytes
(PMNs), or neutrophils, are the most impactful cells to vascular permeability, as they can alter
endothelial barrier properties via direct contacts (adhesion and transmigration) and/or by secreting
bioactive products capable of disrupting the barrier structure. Below, we discuss the effects of
neutrophil-endothelium contact and neutrophil-derived factors on endothelial permeability.
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PMN-ENDOTHELIUM INTERACTIONS

Neutrophils comprise the innate immune system providing the
first line of defense against invading bacteria and acute injury
(1). Traditionally, the life span of mature neutrophils is thought
to be short, as they normally stay in the circulation for 5–10 h
and subsequently infiltrate into tissues and die within the next
8–16 h (1, 2). Challenging this dogma, recent studies using in vivo
labeling with 2H2O reveal that the life span of human circulating
neutrophils lasts as long as 5.4 days (3), at least 10 times longer
than previously reported. Another interesting finding is that
after diapedesis, neutrophils can live in tissues for up to 7 days
in the proinflammatory microenvironment (4). Whether and
how neutrophil interaction with the microvascular endothelium
affects their life span in the circulation, or in tissues, remain as a
puzzle; however, evidence is accumulating that endothelial cells
have the ability to educate neutrophils and modify their behavior
during diapedesis (5, 6).

Adhesion and Transendothelial Migration
(TEM)
Neutrophil diapedesis is a tightly regulated process initiated
with cell rolling along the microvascular (mainly venular) wall,
followed by adhesion to endothelial surface and migration across
the endothelium. The process is mediated by adhesion molecules
whose expression is rapidly upregulated by inflammatory
cytokines, including tumor necrosis factor (TNF)-α and
interleukin (IL)-1β. In particular, ligation of neutrophil
P-selectin and endothelial E-selectin slows down neutrophils
and enables their rolling under relatively high shear stress
(7, 8). Subsequently, firm adhesion is secured via the binding
of neutrophil CD11/CD18 integrins to endothelial adhesion
molecules (7, 9). Transmigration occurs through the para-
cellular route via endothelial cell-cell junctions (6), or through
the transcellular route across endothelial cell body (10); the
former is considered the predominant pathway (∼70–90%)
(11). In 2004, Carman and colleagues identified microvilli-like
projections on endothelial cell surface that form “transmigratory
cup” to provide directional guidance for leukocyte trafficking.

Reverse TEM (RTEM)
To prevent excessive inflammation and secondary tissue injury,
activated neutrophils at sites of inflamed tissue have to be
timely cleared, which can happen in several ways (12). Apoptosis
and subsequent clearance by macrophage phagocytosis are
thought to be a common fate to innate immune cells, such
as neutrophils, eosinophils, and basophils (12–14). However,
a growing body of evidence suggests that neutrophils can re-
enter the circulation through RTEM (15–17). Some mechanisms
have already been revealed. For instance, leukotriene (LT)B4
can disrupt the junctional adhesion molecule-C and facilitate
neutrophil reverse migration (18). Macrophages are shown to
promote reverse migration through neutrophil redox-Src family
kinase signaling, whereas Src deficiency impairs neutrophil
RTEM (19). This might represent another mechanism of
macrophage clearance of neutrophils, in addition to macrophage
phagocytosis of apoptotic neutrophils. Interestingly, reverse

transmigrated neutrophils display high expression of intercellular
adhesion molecule (ICAM)-1, which is minimally expressed
in circulatory neutrophils (20); the functional implication of
this phenotype change is unclear. It is suggested that RTEM
assists in the dissemination of systemic inflammation (18).
Therefore, neutrophil RTEM contributes to not only resolution,
but also propagation, of inflammation. More work is warranted
to establish the pathophysiological significance of neutrophil
TEM/RTEM. Of particular interest is how these processes affect
endothelial barrier property.

ENDOTHELIAL BARRIER

The endothelial barrier of exchange microvessels (capillaries and
post-capillary venules) has three major components (Figure 1A):
cell-cell junctions, luminal surface glycocalyx, and basolateral
focal adhesions (9). These components act in concert to
determine the barrier permeability.

Cell-Cell Junctions
In the microvasculature, at least two types of junctions are
identified: tight junctions (TJs) and adherens junctions (AJs)
(Figures 1A,C). TJs have been extensively studied with respect to
blood-brain barrier (BBB) and blood-retinal barrier due to their
predominant expression in cerebral and retinal microvasculature,
respectively. TJs are composed of occludins and claudins,
tetraspanning molecules linked to the actin cytoskeleton through
cytoplasmic adaptor proteins, zonula occludens (ZO) (21).
AJs are considered the primary junctions in the peripheral
microvasculature. They mainly consist of the transmembrane
homophilic dimers, vascular endothelial (VE)-cadherin, which
are anchored to the actin cytoskeleton through catenins (α-, β-,
γ-, and p120-catenin) (22, 23).

Disassembly or opening of AJs can lead to increased
paracellular permeability (24). Given the rapid nature of leak
responses to inflammatory agonists, such as histamine and
vascular endothelial growth factor (VEGF), which occur in
minutes following stimulation (25), dynamic changes of barrier
conformation via post-translational modification (PTM) of
junction molecules are considered to be an important underlying
mechanism. Protein phosphorylation is a commonly studied
PTM. It is generally accepted that tyrosine phosphorylation
of VE-cadherin triggers its dissociation from catenins, thereby
weakening the junction anchorage to cytoskeleton (26, 27).
VE-cadherin can be phosphorylated by tyrosine kinase Src or
protein kinase C (PKC) (28). Phosphatases also regulate VE-
cadherin de-phosphorylation thereby altering barrier function
(27). There is evidence that VE-cadherin phosphorylation
and dephosphorylation at different sites differentially regulate
vascular permeability (29). Other junction proteins, such as
β-catenin, can be phosphorylated by proline-rich tyrosine
kinase (Pyk)-2 (26), promoting its dissociation from the VE-
cadherin junction (30). In addition to junction molecules,
cytoskeleton molecules undergo conformational changes upon
phosphorylation. For example, myosin light chain kinase
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FIGURE 1 | Endothelial barrier structure. (A) The endothelial barrier of exchange microvessels is composed of endothelial cells connected to each other via junctions,

with its luminal surface protected by glycocalyx and basolateral side anchored to the extracellular matrix in the basement membrane through focal adhesions.

Endothelial cell-cell adhesion is mediated by two types of junction: the claudin-based tight junction which is linked to the actin cytoskeleton through zonula occludens

(ZO), and the VE-cadherin-based adherens junction which binds actin through catenins. Some images of cells or organelles were obtained from Servier Medical Art

(www.servier.com). (B) Glycocalyx in mouse lung capillary under transmission electron microscopy. EC, endothelial cells. Red arrows indicate glycocalyx. Scale bar =

1µm. (C) Immunofluorescent staining of VE-cadherin on human umbilical vein endothelial cells. Green, VE-cadherin. Blue, DAPI. Scale bar = 20µm.

(MLCK) phosphorylates myosin light chain and triggers actin-
myosin contraction, pulling away the neighboring cells and
leading to intercellular gaps (31).

Additional PTM mechanisms implicated in junction
permeability include nitrosylation (32) and lipidation. We
have recently identified a new lipidation pathway, endothelial
protein palmitoylation mediated by palmitoyl acyltransferase
DHHC21, in promoting neutrophil-endothelium adhesion and
microvascular permeability (33).

Glycocalyx
Covering the luminal surface of endothelial barrier is a matrix
meshwork, glycocalyx, constituted with glycosaminoglycans
(GAG), proteoglycans, and glycoproteins (Figures 1A,B)
(34). The GAG chains contain heparan sulfate, chondroitin
sulfate, and hyaluronic acid; the latter binds to a transmembrane
glycoprotein, CD44 (35). Proteoglycans, the core transmembrane
proteins, include syndecans and glypicans. Glycoproteins include
selectins and integrins, which participate in neutrophil adhesion
and other intravascular processes such as coagulation and
fibrinolysis (36). A dynamic equilibrium exists between the
biosynthesis and shedding of endothelial glycocalyx constituents,
which determines glycocalyx thickness, morphology, and
function (37).

An important function of endothelial surface glycocalyx is
providing a protective layer to prevent the endothelium from
being exposed to circulating cells or agents (38). It participates
in a number of biological events, including neutrophil-
endothelium cross-talk (36, 37). Glycocalyx disruption
contributes to compromised endothelial barrier integrity
and increased microvascular permeability (39). Shedding
of glycocalyx constituents occurs via enzymatic digestion
by metalloproteases and hyaluronidase, or non-enzymatic

stimulation such as oxidative stress (40, 41); both are activated
during neutrophil-mediated innate immune response. Our
recent study revealed an important role of a disintegrin and
metalloproteinase 15 (ADAM15) in glycocalyx destruction
(35). In particular, ADAM15 is upregulated during infection,
and it cleaves glycocalyx constituents, including CD44. The
cleaved products target endothelial cells in a paracrine manner
inducing barrier dysfunction and microvascular leakage (35).
We also show that syndecan-3/4 can be cleaved by thrombin
to produce ectodomain fragments, and these fragments trigger
AJ disorganization and stress fiber formation, causing elevated
para-cellular permeability (42). Consistent with our findings,
other studies show that in septic lungs, glycocalyx degradation
leads to increased availability of endothelial surface receptors
for neutrophil adhesion molecules and thereby facilitating
neutrophil infiltration (43).

Focal Adhesions
At the basolateral side, endothelial cells are attached to
extracellular matrix (ECM) through focal adhesions, complex
transmembrane structures consisting of integrins, focal adhesion
kinase (FAK), and adaptor proteins (44). While they are essential
to the maintenance of endothelial barrier properties under basal
conditions (28, 31), their activation or redistribution contributes
to paracellular leakage (45). Studies have shown that both FAK
and β1/3 integrins are required for microvascular leak responses
to blood clot fibrinolysis products (46).

FAK is a non-receptor tyrosine kinase that controls focal
adhesion assembly and distribution. We have previously
reported that FAK mediates endothelial barrier dysfunction
caused by C5a-activated neutrophils, an effect dependent on
FAK signaling activity (9). Certain inflammatory mediators
secreted by neutrophils can activate FAK by inducing its
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phosphorylation (47, 48). FAK phosphorylation at tyrosine-
925 exposes the SH2-binding site for Grb2, which triggers
downstream signals involving Ras-ERK1/2 and MLCK-
dependent actomyosin contraction (9). FAK inhibition
alleviates venular hyperpermeability caused by neutrophils
or VEGF (48, 49).

PMN REGULATION OF ENDOTEHLIAL
PERMEABILITY

Neutrophils regulate endothelial permeability by altering
the structure and function of the aforementioned barrier
components: cell-cell junctions, glycocalyx, and focal adhesions.
During inflammation, activated neutrophils exert detrimental
effects to these structures via direct contacts established
during adhesion and transmigration, or via secretion
of barrier-disrupting molecules (Figure 2). Neutrophil
respiratory burst produces reactive oxygen species (ROS),
and neutrophil degranulation produces myeloperoxidase,
elastase, cathepsin G, and metalloproteases; all are capable of
cleaving glycocalyx. Glycocalyx injury results in the loss of
protective layer and exposure of endothelial surface receptors for
neutrophil adhesion, further activating neutrophil-endothelium
interactions. In endothelial cell-cell junctions, VE-cadherin
is particularly susceptible to enzymatic degradation, and its

cleavage by metalloproteases, elastase, and cathepsin G leads to
impaired junction integrity (27, 50). At the basal lateral site, FAK
activation and integrin engagement in response to neutrophil
TEM, or their secreted products, promote focal adhesion
assembly and redistribution in alignment with contractile
cytoskeleton, providing support for endothelial cells to undergo
conformational changes. Below we discuss further details on
how neutrophils regulate endothelial barrier function, focusing
on adhesion-dependent and secretion-dependent pathways.

PMN Adhesion and Endothelial
Permeability
Traditionally, neutrophil adhesion followed by TEM is thought
to physically damage the endothelial barrier. Challenging this
dogma, transmission electron microscopic studies show that
no tracer leakage is coupled with neutrophil TEM, and that
TEM can occur without impairing the junctional structure
(9, 51). While the physical attachment of neutrophils to the
endothelium can exacerbate barrier injury, it is not required for
hyperpermeability responses.

Several studies suggest the importance of adhesion molecule
engagement in barrier regulation. In particular, ICAM-1
engagement in the absence of leukocytes is sufficient to
increase endothelial permeability (52). Ligation of endothelial
ICAM-1 can directly increase permeability (26, 52), and
antibodies blocking ICAM-1 alleviate endothelial injury during

FIGURE 2 | Neutrophils regulate endothelial barrier function through adhesion-dependent and secretion-dependent mechanisms. Neutrophil adhesion to endothelial

cells activates ICAM-1 signaling, which increases permeability through both para-endothelial and trans-endothelial routes. In addition, neutrophils can generate ROS,

inflammatory mediators, granular contents, neutrophil extracellular traps (NETs), and extracellular vesicles (EVs), which in turn cause junction disruption, glycocalyx

degradation, focal adhesion reorganization, and cytoskeletal contraction, leading to intercellular gap formation and increased para-endothelial permeability.

Neutrophils also release barrier-protecting factors, including annexin 1. EC, endothelial cells. Blue dots, blood constituents. Images of cells were obtained from Servier

Medical Art (www.servier.com).
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inflammation (53). The signal transduction downstream from
ICAM-1 engagement involves Rac, which subsequently activates
NADPH oxidases and causes ROS production. ROS activate
Src or Pyk2, which phosphorylate VE-cadherin molecules and
promote their dissociation. Src also activates FAK and initiates
focal adhesion redistribution. Moreover, ICAM-1 ligation
induces dissociation of vascular endothelial protein tyrosine
phosphatase from VE-cadherin, promoting VE-cadherin
phosphorylation (5). In the cytoskeleton, MLCK is also activated
after ICAM-1 ligation (54). Together, these signaling reactions
lead to a focal adhesion-supported cytoskeleton contraction and
junction opening (9, 55).

In addition to its role in paracellular permeability, neutrophil
adhesion also activates the trans-endothelial route of protein
transport through ICAM-1 signaling (Figure 2) (53). ICAM-
1 ligation facilitates Src phosphorylation of caveolin-1, a
major component of caveolae. Caveolae serve as the primary
mechanism of moving albumin across the endothelial cell body,
from the luminal side of cell membrane toward basement
membrane. The relative contributions of ICAM-1 to paracellular
vs. transcellular permeability remains to be established.

PMN Secretion and Endothelial
Permeability
It is well-known that neutrophils cause barrier dysfunction
by producing ROS, secreting inflammatory mediators, and
releasing granular contents (Figure 2) (1, 56). The mechanisms
by which ROS induce vascular hyperpermeability include
junction disruption and endothelial cell contraction mediated
by MLCK, MAPK, PKC, tyrosine kinases, and Rho GTPases
(56, 57). Other permeability-increasing agents released by
neutrophils include TNF-α, IL-1β, and chemokines CXCL1, 2,
3, and 8 (5, 58). Through degranulation, neutrophils release
metalloproteases, elastase, cathepsin G, and proteinase 3; these
proteolytically active enzymes can breakdown junctional
complexes, glycocalyx constituents, and focal adhesion
components (59, 60). Additionally, neutrophil-derived LTA4
induces the synthesis of biologically active LTB4 (61), LTB4 then
further activates neutrophils to release heparin-binding protein
(a granule component), causing endothelial cell contraction (62).
TNF-α can stimulate neutrophil release of elastase and cathepsin
G, which cleave VE-cadherin and disrupt the junction integrity
(63). These findings suggest a synergistic action of neutrophil-
derived agents in regulating barrier property. While these
mechanisms represent the traditional pathways of neutrophil
secretion-induced permeability, below we discuss two newly
characterized barrier-altering factors produced by neutrophils.

Neutrophil Extracellular Traps (NETs)

Neutrophils can release nuclear components (DNA and
histones) and cytoplasmic granular proteins (elastase,
myeloperoxidase, cathepsin G, and metalloproteases) into
the extracellular environment, which form NETs to trap invading
microorganisms. This pathogen-killing mechanism was first
described by Brinkmann et al in 2004 (64). Peptidylarginine
deiminase (PAD)4 plays a key role in NET formation by
converting arginyl residues on chromatin histones to citrulline

(which lacks positive charge), releasing the ionic bonds that
constrain nuclear DNA to nucleosomes and thus freeing the
strands of DNA to unfurl (65). In parallel, neutrophil elastase
translocates to the nucleus and degrade histones, facilitating
chromatin decondensation (66). Subsequently, decondensed
chromatin fused with granule components is released to
extracellular space.

NETs are originally thought to be generated by neutrophils
undergoing cell death, a process known as suicidal NETosis.
Non-suicidal vital NETosis was subsequently described, which
occurs via blebbing of the nuclear envelope and vesicular
exportation, thus displaying intact plasma membrane and viable
neutrophils (67, 68). Additionally, Yousefi et al. identified
mitochondrial NET, which is formed in living neutrophils and
contains mitochondrial, but not nuclear, DNA (69). It is unclear
whether and how these different types of NETs coexist, and what
distinct functions they exert.

NET production can be induced by biological and chemical
agents, including live bacteria, ROS, inflammatory cytokines
(e.g., IL-1β, IL-8, and TNF-α), phorbol 12-myristate 13-acetate
(PMA), and calcium ionomycin (70). NET formation is enhanced
in infection and inflammation-associated diseases. The primary
function of NETs is to trap pathogens and prevent dissemination
of infection, being protective (64). Subsequently, NETs have been
shown to be detrimental in multiple diseases including lung
disease, thrombosis, cancer, and autoimmune disease (71). For
instance, NETs exhibit the pro-inflammatory feature in chronic
airway disease (72). The finding that PAD4 inhibition decreases
arterial thrombosis in apolipoprotein-E−/− mice indicates the
pro-coagulant nature of NETs (73). NETs are recently shown
to awaken dormant cancer cells and facilitate tumor metastasis
through the activation of integrin and FAK/ERK/MLCK/YAP
signaling by laminin fragments generated by neutrophil elastase
and MMP-9 cleavage (74). NETs associated components are
potential inducers of autoantibody production, a hallmark
for auto-immune diseases. Not surprisingly, blocking NET
formation decreases disease severity in a mouse model of
systemic lupus erythematosus (75). A recent study demonstrates
that partial PAD4 deficiency (PAD4+/− or DNase I treatment)
reduces lung injury and improves survival in a murine model
of bacterial pneumonia, while PAD4−/− mice show increased
bacterial load and inflammation (76). This finding highlights
the pleiotropic roles of NETs in pro-inflammation and anti-
inflammation, which needs to be taken into consideration when
targeting NETs as therapeutics.

With respect to NET regulation of microvascular
permeability, we are at the very early stage of understanding
NET’s effects on endothelial barriers and their underlying
mechanisms. In vitro, NETs increase the flux of albumin or
10-kDa dextran across endothelial cell monolayers (77, 78).
Neutralizing NET components by DNase 1, or inhibition
of NET formation by PAD2/4 inhibitor or PAD4 gene
deletion, reduces lung vascular permeability in murine models
of transfusion-related acute lung injury and LPS-induced
endotoxemia, respectively (76–78). Our recent study reveals
that citrullinated histone 3, a major protein component of
NETs, causes microvascular leakage and barrier dysfunction
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by disrupting AJs and rearranging contractile cytoskeleton in
endothelial cells (79). Consistent with our finding, others show
that NETs increase albumin permeability through disrupted AJs
(80). Serine proteinases (e.g., neutrophil elastase) and MMPs,
enriched in NETs, can cleave VE-cadherin and compromise
junction integrity (63, 81). MMPs further activate barrier-
disrupting cytokines and chemokines, such as IL-1β, TNF-α,
and CXCL8 (82, 83), which may amplify the hyperpermeability
signaling. Figure 3 depicts effects of specific NET components
on endothelial permeability.

The NET pathway is also under negative regulation.
Lactoferrin, an iron-binding protein present in secondary
granules of neutrophils, is released during neutrophil
degranulation. A recent study by Okubo and colleagues
demonstrates that lactoferrin suppresses NET formation,
acting as an intrinsic inhibitor of NETs (84). Mice deficient
in the lipoxin receptor 2 generate more NETs, leading
to elevated lung injury and mortality after pneumonia
(76). Thus, lipoxin receptor 2 may negatively regulate NET
formation. Additionally, activated protein C (APC), a natural
anticoagulant, is known to protect barrier function and
decrease vascular permeability. Recent evidence shows that
APC inhibits NET formation (85). It would be interesting to
investigate whether NET inhibition by APC contributes to its
barrier-protective effects.

Neutrophil-Derived Extracellular Vesicles

Extracellular vesicles (EVs) are heterogeneous membrane
enveloped structures released by a variety of cells into body
fluids (86). Based on their size and formation pathways, EVs

FIGURE 3 | Effects of specific NET constituents on endothelial barrier

function. NETs are composed of decondensed chromatin (e.g., citrullinated

histone 3) and granular enzymes (MMPs and serine proteinases). Citrullinated

histone 3 induces actin stress fiber formation and VE-cadherin junction

discontinuity; MMPs and serine proteinases cleave glycocalyx and other

barrier molecules; both lead to increased para-endothelial permeability. Images

of cells were obtained from Servier Medical Art (www.servier.com).

are divided into 3 types: apoptotic bodies, microparticles (also
known as microvesicles), and exosomes. Apoptotic bodies are the
largest EVs with a diameter of 800 to 5,000 nm. They are released
during the last stage of apoptosis, characterized by a permeable

plasma membrane with externalized phosphatidylserine. This

process is mediated by caspase and Rho-associated kinase I.
Microparticles, ranging 100–1000 nm in diameter, are formed

by the outward blebbing of the cell membrane, a process
called “ectocytosis.” During its formation, the cytoskeleton

is reorganized, and phosphatidylserine is redistributed to the
outside of the plasma membrane, which involves multiple

complex pathways, including calcium signaling and Rho-

associated kinase I and II, nuclear factor-κB, p38MAPK, or
TNF-related apoptosis-inducing ligand (87). Exosomes are the

smallest EVs of 30–120 nm in diameter and exhibit a cup-like

shape (88). In contrast to apoptotic bodies and microparticles
that derive from plasma membrane, exosomes stem from the

endosomal system. Exosomes are intraluminal vesicles contained
in multivesicular bodies, which then fuse with the plasma

membrane and are released into extracellular environment (89).

The formation and secretion of exosomes are regulated by
endosomal sorting complexes required for transport-dependent

(90) and -independentmanners (tetraspanins, lipid rafts, and Rab

GTPases) (86, 91).

FIGURE 4 | Effects of neutrophil-derived EVs on endothelial barrier function.

Neutrophil-derived EVs display either positive or negative impact on endothelial

permeability depending on their cargo contents. Barrier-disrupting cargo, such

as S100A8, A9, MPO, and cathepsin G, are able to disrupt junction integrity

and increase permeability. In contrast, barrier-protecting cargo, such as

annexin 1, maintain junction integrity, and decrease permeability. Images of

cells were obtained from Servier Medical Art (www.servier.com).
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Originally thought as inactive cell debris, EVs have been
studied as biomarkers for cell injury. Recently, growing
evidence has emerged showing that EVs are active players
in cell-cell communication (86, 89). EVs carry nucleic acids
(e.g., microRNA), peptides, proteins, carbohydrates, and
lipids that act as bioactive molecules to regulate multiple
biological processes, including angiogenesis, immune response,
cell migration and differentiation. In addition, EV cargos
can be exchanged between cells as a mean of cell-cell
communication or recycling.

EVs in the blood mainly derive from blood cells (leukocytes,
platelets) and vascular cells (endothelial cells) (86, 92); their
molecular property and cargo contents vary depending
on the origin and pathophysiological state of parent cells
that produce them. Neutrophil-derived EVs are in small
amounts under normal conditions, but significantly increased
in the blood during sepsis and inflammation (93–95).
Pathophysiological stimuli, such as bacteria, complements,
inflammatory cytokines, calcium, and platelet activating
factor, are able to induce neutrophil production of EVs
(95). In general, these EVs are considered to be foe to the
endothelial barrier because they contain pro-inflammatory cargo,
although the distinct effects of specific cargo contents remain
to be established.

We propose that neutrophil-derived EVs possess both barrier-
disrupting and barrier-protecting capabilities depending on
their cargo components (Figure 4). In particular, proteomic
analysis reveals that microparticles generated from fMLP-
activated neutrophils contain > 300 different proteins, including
pro-inflammatory S100A8, S100A9, MPO, and cathepsin G
(96). S100A8, S100A9, or S100A8/A9 complexes induce F-
actin and ZO-1 disassembly; they also increase endothelial
monolayer permeability through activating p38 and ERK1/2
signaling pathways via binding to receptors TLR4 and RAGE
(97). MPO can bind to the glycocalyx heparan sulfate by ionic
interaction (independent of its catalytic property), which induces
the release of neutrophil granular proteinases to cause syndecan-
1 shedding and glycocalyx impairment (98). Cathepsin G is
known to increase endothelial permeability to albumin through
the detachment of plasminogen activator inhibitor-1 from the
subendothelial matrix, causing F-actin rearrangement (99). In
addition, cathepsin G can degrade VE-cadherin and impair
junction integrity (100). All these studies suggest that neutrophil-
derived EVs may have permeability-enhancing effects.

Other studies suggest the beneficial role of EVs in vascular

homeostasis and endothelial permeability (101–104). For

example, neutrophils adhering to endothelial cells generate
microparticles enriched of annexin 1, an anti-inflammatory

and pro-resolving protein that inhibits neutrophil adhesion
and recruitment (104). Annexin 1, also known as annexin

A1 or lipocortin 1, is expressed by brain microvascular

endothelial cells and mediates the anti-inflammatory effects of
glucocorticoid hormones. Annexin 1−/− mice display increased
BBB permeability as a result of disrupted TJs and disorganized
actin cytoskeleton, which could be rescued by exogenous annexin
1 administration (105). This indicates that annexin 1 maintains

endothelial tight junctions and BBB homeostasis (Figure 4).
Annexin 1 is also shown to prevent inflammation-induced
impairment in cerebrovascular endothelial barrier function
(106). Annexin 1 targets endothelial cells by binding to G
protein-coupled receptor formyl peptide receptor (or lipoxin
A4 receptor) and subsequently activating intracellular signaling
(107, 108). Therefore, the net effect of neutrophil-derived EVs
may depend on their cargo contents and balance between
barrier-protecting and barrier-disrupting molecules.

THERAPEUTIC IMPLICATIONS

Vascular leakage is a common complication of various infectious
or inflammatory diseases (109). The importance of protecting
endothelial barriers and repairing leaky vessels has increasingly
been appreciated, as evidenced by many recent trials aimed at
targeting endothelial dysfunction. Molecules that demonstrate
the capability to enhance barrier property include sphingosine 1-
phosphate, APC, angiopoietins, PKC inhibitors, RhoA inhibitors,
corticosteroids, histamine receptor blockades, anti-VEGF, and
vasopressin type 1a agonists (110–113). While all of them display
beneficial roles in animal models, many do not demonstrate
clinical efficacy. For example, anti-neutrophil adhesion therapies
using monoclonal antibodies against CD18 or ICAM-1 have
failed to improve clinical outcomes in patients with burn
injury, traumatic shock, and ischemia-reperfusion injury (114).
The lack of endothelial barrier-specific therapies highlights the
need for further studies to identify novel therapeutic targets.
As accumulating evidence supports the important contribution
of NETs and neutrophil-derived EVs to vascular barrier
dysfunction, additional work is warranted to investigate whether
altering their production, or interfering their mechanistic
pathways, has clinical implications or therapeutic potential. In
view of the complexity of human diseases, targeting specific
molecular pathways key to barrier structure and function holds
great promise to the treatment of diseases associated with
aberrant immune/inflammatory response.
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