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Abstract: Among gynaecologic malignancies, ovarian cancer is one of the most dangerous, with a high
fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated
that oxidative stress is involved in tumour occurrence, growth and development. Nuclear factor
erythroid 2-related factor 2 (NRF2) is an important transcription factor, playing an important role
in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate
NRF2 signalling, inducing the expression of antioxidant enzymes, such as haem oxygenase (HO-1),
catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), that protect cells
against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development
of chemoresistance, inactivating drug-mediated oxidative stress that normally leads to cancer cells’
death. In this review, we report evidence from the literature describing the effect of NRF2 on ovarian
cancer, with a focus on its function in drug resistance, NRF2 natural and synthetic modulators and its
protective function in normal ovarian preservation.
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1. Introduction

Among gynaecologic malignancies, ovarian cancer is a leading cause of death because
it is often diagnosed at an advanced stage of disease. Although the majority of ovarian
cancers are epithelial ovarian cancer (EOC), different histological subtypes of EOC have
been identified, including serous (the most common), endometrioid, clear cell and mu-
cinous cancers. The current treatment for advanced ovarian cancer is surgery, followed
by platinum/taxane chemotherapy, but many patients relapse within 18 months due to
chemoresistance onset. This explains the high mortality rates of this type of cancer [1].

Oxidative stress can affect all phases of oncogenesis, i.e., cancer initiation, promotion,
and progression, activating many transcription factors, such as nuclear factor (NF)-κB,
peroxisome proliferator-activated receptor γ (PPARγ), p53, hypoxia inducible factor 1α
(HIF-1α) and Nuclear Factor Erythroid 2-Related Factor 2 (NFE2L2 or NRF2). These
factors can induce the expression of numerous genes involved in many cellular processes,
including inflammatory responses, apoptosis, cell proliferation and differentiation [2].

Cell metabolism, infection, exposure to carcinogens and environmental toxicants are
the main producers of endogenous and exogenous Reactive Oxygen Species (ROS), highly
reactive molecules, such as hydroxyl radical (OH−), hydrogen peroxide (H2O2) and super-
oxide (O2

−), as well as reactive nitrogen species that can damage cellular DNA, proteins
and lipids, if not eliminated [3–5]. Therefore, cells developed different mechanisms to
tolerate ROS presence. In fact, cells can tolerate low ROS levels acting as second messengers
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and modulating different intracellular pathways involved in many cellular processes, in-
cluding cell proliferation, differentiation and migration [3,6]. However, high levels of ROS
cause cell death because of cellular components oxidation as membrane lipids, proteins
and DNA [3]. ROS can be neutralized by glutathione (GSH), coenzyme Q, lipoic acid or
antioxidant enzymes, such as superoxide dismutase (SOD), catalases (CATs), thioredoxins
(Trxs), peroxiredoxins (Prxs), reductases and peroxidases [3,7].

Moreover, ROS scavenging enzymes, carrying antioxidant response elements (AREs)
in their promoter regions [8], represent an intrinsic defence mechanism to avoid cell damage
caused by ROS. A key regulator of AREs is NRF2, a basic leucine zipper transcription factor
that binds ARE regions present in the promoter of many antioxidant enzyme-activating
genes [8].

Normally, NRF2 is directly bound to a negative regulator Kelch-like ECH-Associated
Protein 1 (KEAP1) that is further bound to Cullin 3 (CUL3) and RING-box protein 1
(RBX1)/E3-ubiquitin ligase, forming the KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex
that targets NRF2 for proteasomal degradation. In the presence of oxidant stimuli, the
binding between ROS and cysteine residues of KEAP1 leads to a conformation change in
KEAP1. The latter causes the inhibition of NRF2 ubiquitination and its translocation into
the nucleus (active form), with consequent binding to the ARE regions in the promoter of
antioxidant genes, inducing their expression (Figure 1) [9]. The NRF2 pathway also plays a
key role in carcinogenesis because it inhibits apoptosis, promoting cell proliferation and
chemoresistance. Thus, the NRF2 pathway is emerging as a chemotherapeutic target in
many types of cancer [10].
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Figure 1. Schematic representation of NRF2 regulation. Normally, NRF2 is directly bound to the
KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex that targets NRF2 for proteasomal degradation.
Under oxidant stimuli, ROS oxidate the cysteine residues of KEAP1 leading to a conformation
change in KEAP1 that causes the inhibition of NRF2 ubiquitination and its translocation into the
nucleus with consequent binding to the ARE regions of antioxidant genes (NQO1, GST, HO-1,
etc.). KEAP1 = Kelch-like ECH Associated Protein 1; CUL3 = Cullin 3; RBX1 = RING-box protein 1.
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To date, platinum drugs (cisplatin, carboplatin, and oxaliplatin), alone or in combina-
tion with other drugs, are the most used clinical agents in chemotherapy against ovarian
cancer, and among them, cisplatin (cis-diamminedichloroplatinum II, CDDP) is one of the
most efficient. Cisplatin forms both mono-adducts, covalently interacting with N7-guanine
in DNA, and intra- and/or inter-strand crosslinks [11–13]. Cell apoptosis, due to the block
of DNA synthesis and transcription, is the consequence of these alterations due to cis-
platin [12,14]. Unfortunately, cisplatin resistance is one of the major problems occurring in
cisplatin-based chemotherapy. Interestingly, it has been shown that the cisplatin-resistant
human ovarian cancer SKOV3 cell line, which retains high levels of GSH, could be sen-
sitized to cisplatin treatment by inhibiting NRF2. In fact, NRF2 inhibition led to GSH
depletion, increasing cisplatin cytotoxicity and proving that the NRF2 pathway plays a key
role in cisplatin resistance [15]. Interestingly, this cell line has high basal ROS levels that,
enabling NRF2 nuclear translocation, favour NRF2 antioxidant activity and allow a better
cell resistance to endogenous oxidant agents. Additionally, NRF2 and KEAP1 basal levels
are cell line specific and positively correlate both to cell growth rates and basal ROS, in the
following ovarian cancer cell lines: PEO1, PEO4, PEO6, SKOV3, OVCAR3 and OVCAR4.
In particular, basal ROS levels and cell growth are higher in SKOV3, OVCAR3 and PEO1
compared to the other cell lines. The high basal ROS levels favour NRF2 stability and
antioxidant activity, allowing a better cell resistance to the exogenous oxidant agents [16].
Similar findings were found in Doxorubicin (DR) resistance, an oxidative chemotherapeutic
drug used in the treatment of many solid tumours, including ovarian cancer [17,18].

NRF2/ARE binding and NRF2 target genes expression are lower in the A2780 cell line,
which is highly sensitive to DR, compared to resistant ovarian carcinoma SKOV3 and OV90
cell lines. Contrarily, doxorubicin-resistant A2780DR cells show increased NRF2 activity,
enhanced GSH1 and GSH contents, suggesting that NRF2 might be a key factor in DR
sensitivity [19]. Thus, an adaptive activation of the NRF2 pathway may participate in the
development of DR-acquired resistance. NRF2 silencing in OV90 cells lead to a reduction
in GSH levels and retard cell growth sensibilizing OV90 cells to DR treatment. This causes
increased apoptosis, suggesting NRF2 as a molecular target to restore DR sensitivity and
repress tumour growth [20].

E26 transformation-specific (ETS) proteins are a family of 28 transcription factors, con-
taining a highly conserved ETS domain for DNA binding [21]. They are considered impor-
tant onco-drivers and play a pivotal role in the progression of many types of cancer [21–23].
Interestingly, H2O2 upregulates Ets-1, a member of ETS proteins family, expression in both
OV2008 and C13 ovarian carcinoma cell lines. Moreover, H2O2 treatment increases Ets-1
expression by NRF2 binding to ARE in the Ets-1 promoter, suggesting that Ets-1 is clearly
modulated by ROS in cancer cells via NRF2 signalling [24].

The aim of this review is to provide an overview of the current literature, regarding
the role of NRF2 in ovarian cancer and normal ovarian preservation, with a focus on its
cellular modulators and targets.

2. NRF2 in Ovarian Cancer Tissues

Nicotinamide adenine dinucleotide phosphate (NAD-P) H/quinone oxidoreductase 1
(NQO1) is a metabolizing enzyme, capable of generating antioxidant forms of ubiquinone
and vitamin E after free radical exposure. It has an important role in cellular defence
mechanisms against oxidative stress, acting as antioxidant enzyme. Interestingly, both
NQO1 and NRF2 are highly expressed in ovarian carcinoma compared to normal and
precancerous lesions, showing a positive correlation in the different lesions. In addition,
NRF2 is expressed in both the nucleus and cytoplasm of ovarian cells (90 ovarian carci-
nomas of different grades and 10 normal ovarian tissues) and it significantly increases as
ovarian carcinoma stage advances [25]. Therefore, the authors suggest that NQO1 and
NRF2 may be considered therapeutic targets for ovarian cancer care and possible early
diagnostic biomarkers. Similarly, Liew and colleagues reported that serous carcinoma has
higher KEAP1 cytoplasmic, NRF2 nuclear and lower E-cadherin membrane positivity than
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mucinous, endometrioid and clear cell cancers, studying 108 cases (47 serous, 23 mucinous,
13 endometrioid and 25 clear cell). Moreover, KEAP1 expression is further increased in
serous carcinoma from elderly patients. Multivariate analysis identified International Fed-
eration of Gynecology and Obstetrics (FIGO) staging and NRF2 expression as prognostic
factors. Thus, NRF2 and Keap1 can be considered key players in serous carcinoma [26].

These results are partially in agreement with another study on NRF2 and KEAP1
evaluation as prognostic indicators. In particular, low KEAP1 expression is associated
with both disease recurrence and death, while high KEAP1 expression is predictive of
better overall and disease-free survival, suggesting KEAP1 as an independent prognostic
factor, not linked to NRF2. Contrarily, high NRF2 expression shows a better overall and
disease-free survival, but the results are not statistically significant, and no significant
association is detected among chemoresistance, NRF2 and KEAP1 expression [27].

Others reported that nuclear NRF2 expression is low in serous, clear cell, and en-
dometrioid ovarian carcinomas, while it is high in mucinous subtype. Moreover, low
nuclear NRF2 expression in those carcinomas is associated with aging. No significant
difference was detected in oestrogen receptor α (ERα) expression, comparing all ovarian
cancer subtypes, but low-grade carcinomas showed a significantly higher ERα expression
compared to high-grade ones. Interestingly, NRF2 cytoplasmic expression was positively
correlated with ERα expression in serous ovarian carcinoma and their expressions have
been associated with longer overall survival. This suggests that the inhibition of NRF2 may
represent an effective therapeutic strategy for OEC treatment [28]. In addition, cytoplasmic
NRF2 expression is significantly correlated with both progesterone receptor A and B (PRA
and PRB) expressions and associated with increased overall survival [29].

Looking at the studies discussed in this section (and summarized in Table 1), it is
possible to see that many of them reach contradictory conclusions. This can be due to the
small cohorts’ study and to the limitations of the technique (immunohistochemistry).

Table 1. NRF2 expression and correlation with ovarian cancer subtypes.

Tissues Studied Proteins
Analysed Results Ref.

10 normal tissues

NQO1
NRF2

NQO1 and NRF2 increased expression in ovarian carcinoma
compared with normal and pre-cancerous lesions. NRF2

expression increases with ovarian carcinoma stage advancing
[25]

20 benign tumours:
12 serous

8 mucinous
20 borderline tumours:

12 serous
8 mucinous

50 ovarian carcinomas:
35 serous

15 mucinous

108 ovarian carcinomas:
47 Serous

23 Mucinous
13 Endometrioid

25 Clear cells

KEAP1
E-cadherin

NRF2

Serous carcinoma has a higher KEAP1 cytoplasmic, NRF2
nuclear expression and lower E-cadherin membrane

positivity than mucinous, endometrioid and clear cell
carcinomas. Patients with serous carcinoma are older in age
and show highest KEAP1 expression and least percentage of

E-cadherin immunoreactivity.

[26]

100 Clear cell carcinomas:
81 Chemosensitives
19 Chemoresistants

KEAP1
NRF2

Low KEAP1 expression is associated with disease recurrence
and death. High KEAP1 expression is predictive of better
overall and disease-free survival. No association among

chemoresistance, NRF2 and KEAP1 expression is detected but
patients with high KEAP1 expression have significantly lower

recurrence rates and death. Significant and positive
correlations between the intensities of cytoplasmic NRF2 and

KEAP1 expression.

[27]
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Table 1. Cont.

Tissues Studied Proteins
Analysed Results Ref.

156 EOC:
110 serous

21 endometrioid
12 clear cells
13 mucinoses

ERα
NRF2

Nuclear NRF2 expression is low in serous, clear cell, and
endometrioid carcinomas but high in the mucinous subtype.

Low nuclear NRF2 expression is associated with age of
patients. No association of ERα expression among subtypes
but high ERα expression is present in low-graded carcinomas
compared to high-graded ones. NRF2 cytoplasmic expression
correlates with ERα expression. Both NRF2 cytoplasmic and
ERα expressions are associated with longer overall survival in

serous carcinoma.

[28]

156 EOC:
110 serous

21 endometrioid
12 clear cells
13 mucinoses

PRA
PRB

NRF2

NRF2 cytoplasmic expression is correlated with both PRA
and PRB expressions, and is associated with a significant
impact on overall survival. Grading, FIGO, lymph node
involvement (pN), and distant metastasis (pM) show no

significant differences.

[29]

EOC: Epithelial ovarian cancer; PRA: Progesterone Receptor A; PRB: Progesterone Receptor B; ERα: Estrogen
Receptor α.

3. NRF2 Cellular Modulators in Ovarian Cancer

MicroRNAs have been associated with many pathological processes, including human
pregnancy complication [30–32], cancer progression [33–36] and chemo- or radiotherapeutic
resistance [37,38]. MiR-181d is highly expressed in ovarian tissues of DDP-(cisplatin)
resistant patients and in the cisplatin-resistant A2780/DDP cell line. Moreover, ectopic
expression of miR-181d increases DDP resistance in A2780 non-resistant cells. miR-181d
negatively regulates O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) expression
by targeting its mRNA in 3′UTR. OGT is an essential enzyme for KEAP1 glycosylation and
stabilization that implies NRF2 inactivation [39], resulting in increased DDP resistance in
an A2780 cell model [40]. This study highlighted a key role of miR-181d in modulating
DDP resistance in ovarian cancer through the OGT/KEAP1/NRF2 axis.

In addition to microRNAs, there are an increasing number of studies showing an
important role of long non-coding RNAs (lncRNAs) in carcinogenesis [41–43]. In partic-
ular, LncRNA H19 is encoded by the H19 gene and is one of the first discovered lncR-
NAs [44]. LncRNA H19 plays a pivotal role in tumorigenesis and malignant progression,
promoting many cell processes, including cell growth, invasion, migration and epithelial-
mesenchymal transition [45]. Interestingly, lncRNA H19 levels are significantly increased
in cisplatin-resistant A2780/CDDP cells. Moreover, H19 levels are higher in patients with
high-grade serous ovarian cancer (HGSC) and correlate with cancer recurrence. Further-
more, A2780/CDDP cells with lncRNA H19 knockdown result in the recovery of cisplatin
sensitivity and reduce the expression of six NRF2-modulated proteins, such as NQO1,
Glutathione-Disulfide Reductase (GSR), Glucose-6-phosphate Dehydrogenase (G6PD),
Glutamate-Cysteine Ligase catalytic subunit (GCLC), Glutamate-cysteine ligase regulatory
subunit (GCLM) and Glutathione S-Transferase Pi 1 (GSTP1), involved in oxidative stress
control. Additionally, these cells have low glutathione levels and are significantly more
sensitive to H2O2 treatment, suggesting that lncRNA H19 may play a key role in cisplatin-
resistance-modulating NRF2 signalling [46]. Moreover, mutations of common oncogenes,
such as KRAS, BRAF, and MYC, increase NRF2 transcription and activity in malignant cells,
protecting tumour cells from ROS cytotoxic effects induced by chemotherapeutic drugs,
such as cisplatin, and play a key role in cisplatin resistance [47,48].

Protein p62/SQSTM1 (sequestosome 1) is an antiapoptotic mediator acting as a cargo
protein that identifies (via a ubiquitin-binding domain) and delivers specific organelles
and protein aggregates to autophagosomes for degradation (a process called selective
autophagy) [49]. In this way, autophagy can allow tumour cell survival and growth, facili-
tating the supply of metabolic demands during tumour progression [50,51]. Autophagy is
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also involved in processes inducing cisplatin resistance of human ovarian cancer cells [52],
and it is higher in cisplatin-resistant SKOV3/CDDP cells than cisplatin-sensitive SKOV3
cells. In particular, p62 interacts with the KEAP1/NRF2/ARE pathway i.e., after p62
phosphorylation, it physically interacts with KEAP1 and, subsequently, NRF2 transfers to
the nucleus, activating the expression of antioxidant genes in SKOV3/DDP cells. Therefore,
p62 can prevent ROS-induced apoptosis activating the KEAP1/NRF2/ARE signalling [53].

Another protein, Sirtuin 5 (SIRT5), belonging to the Sirtuin family of proteins (Sirt1–7),
is involved in the regulation of multiple cellular processes, including glycolysis, fatty acid
oxidation, nitrogen metabolism and drug resistance in cancer cells [54,55]. Interestingly,
SIRT5, a mitochondrial NAD-dependent deacetylase, is increased in ovarian cancer tissues,
predicting a poor response to chemotherapy. Moreover, SIRT5 levels are higher in cisplatin-
resistant SKOV-3 and CAOV-3 ovarian cancer cells than in cisplatin-sensitive A2780 cells.
SIRT5 overexpression facilitates ovarian cancer cell growth and cisplatin-resistance in an
in vitro A2780 cell model, because SIRT5 suppresses cisplatin-induced DNA damage by
increasing NRF2 and Haem Oxygenase 1 (HO-1) expression [56].

The KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex is a key inhibitor of NRF2
levels [57]. It is known that the NRF2 pathway is a critical starting pathway for oxidative
stress response and this pathway is constitutively active in serous ovarian carcinomas
(OVCA) [58,59]. In fact, it has been reported that almost 90% of OVCA cases exhibit loss-
of-function alterations in any components of the above inhibitory complex. Copy-number
loss (CNL) is the most prominent disruption mechanism and most frequently observed in
the RBX1 component. Consequent reduced mRNA complex expression enhances NRF2
target gene expression, suggesting that a remarkably high frequency of DNA and mRNA
alterations of the KEAP1/CUL3/RBX1 complex leads to high levels of NRF2, found in
OVCA [60].

The p53 upregulated modulator of apoptosis (PUMA) is a member of the Bcl-2 fam-
ily, localized in the mitochondria and involved in mitochondrial-dysfunction-mediated
apoptosis [61]. PUMA is an antagonist of both BCL-XL and MCL-1 antiapoptotic Bcl-2
family members, then acting as a proapoptotic factor [62]. Although the mechanism of
action of PUMA remains unclear, it is possible that it could play a key role in inhibiting
tumour growth [63]. PUMA, mainly located into the mitochondria, induces apoptosis by
ROS production and increases both NRF2 and HO-1 expression in transfected A2780 and
SKOV3 cells. Thus, PUMA induces ROS generation, damaging DNA and leading to cell
apoptosis, but it enhances NRF2/HO-1 expression, providing an antioxidant response to
ROS-mediated oxidative stress [64].

The same research group showed NRF2 nuclear (active form) localization in the
majority of EOC specimens analysed with more frequency in clear cell EOC subtype and
an upregulation of NRF2 target genes. In fact, 29% of clear cell carcinoma samples shows
genetic mutations of the KEAP1 sequence. Importantly, patients with an active NRF2
pathway show resistance to platinum-based therapy and lower overall survival compared
with those patients where the NRF2 pathway is inactivated [58]. Others showed that
KEAP1 mutations have a key role in NRF2 activation and in platinum-based therapy
resistance onset in EOC. In this study, the heterodimer, between the wild-type KEAP1 and
the mutant KEAP1 subunits, is inactive and is unable to repress NRF2 in tumours with
KEAP1 mutations [65]. Pylväs-Eerola and colleagues showed an increased expression of
KEAP1 after Platinum-based neoadjuvant chemotherapy, suggesting a role of KEAP1 in
degrading NRF2, promoting chemotherapy response [66]. Studies discussed in this chapter
has been summarized in Table 2.
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Table 2. NRF2 cellular modulators in ovarian cancer.

Modulator Model
Studied Results Ref.

miR-181d
Ovarian tissues

A2780 and
A2780/DDP cells

Increased miR-181d expression in ovarian tissues of
DDP-resistant patients and in the A2780/DDP cell line.
MiR-181d increases DDP resistance by downregulating

OGT that represses NRF2 expression through
glycosylation of KEAP1.

[40]

Lin-H19 A2780 and
A2780/DDP cells

Increased expression of LIN-RECK-3, H19, LUCAT1,
LINC00961 and linc-CARS2-2 in A2780/CDDP cells.
Lin-H19 knockdown in A2780/CDDP cells leads to
cisplatin sensitivity and reduces the expression of

NQO1, GSR, G6PD, GCLC, GCLM and GSTP1.

[46]

p62/SQSTM1 SKOV3 and
SKOV3/CDDP cells

SKOV3/CDDP has higher levels of p62 than the
cisplatin-sensitive SKOV3 cells. P62 activates

KEAP1-NRF2-ARE pathway that induces the expression
of antioxidant genes in SKOV3/DDP cells.

[53]

KEAP1/CUL3/RBX1
E3-ubiquitin ligase
complex alterations

Serous ovarian carcinomas
(OVCA) patients

Almost 90% of OVCA cases shows function alterations
in any components of the NRF2 inhibitory complex.

Copy-number loss (CNL) is the most prominent
disruption mechanism and most frequently observed in
RBX1 component. High frequency of DNA and mRNA
alterations of the KEAP1/CUL3/RBX1 complex leads to

high levels of NRF2 in OVCA.

[60]

SIRT5 SKOV-3, CAOV-3 and
A2780 cells

SIRT5 levels are higher in cisplatin-resistant SKOV-3 and
CAOV-3 ovarian cancer cells than in cisplatin-sensitive

A2780 cells. Overexpression of SIRT5 in A2780 cells
facilitates cell growth and cisplatin-resistance

suppressing cisplatin-induced DNA damage by
increasing NRF2 and HO-1 expression.

[56]

KEAP1 mutations Epithelial ovarian cancer
(EOC) patient specimens

Nuclear NRF2 is present in over half of EOC specimens
with a more frequency in clear cell subtype and

upregulation of NRF2 target genes. Genetic mutations
of KEAP1 sequence in 29% of clear cell carcinoma

samples and 8% of other subtypes. Patients with active
NRF2 pathway show resistance to platinum-based

therapy and lower overall survival.

[58]

PUMA A2780 and SKOV3 cells
PUMA-overexpressed in A2780 and SKOV3 cells shows

increased ROS generation and increased NRF2, HO-1
expression and apoptosis.

[64]

4. NRF2 Cellular Targets in Ovarian Cancer

Oestrogen Receptor α (ERα) mediates the effects of female steroid hormones and can
be considered a key regulator of apoptosis and cell proliferation in EOC [67–69]. In addi-
tion, Progesterone Receptor (PGR) expression has been associated with improved overall
survival (OS) and progression-free survival (PFS), probably due to its anti-proliferative
effect [70,71]. Interestingly, ERα is reduced in all ovarian cancer cell lines (OVCAR3, ES2,
UWB1.289, and TOV112D) compared to the benign cell line HOSEpiC. Contrarily, NRF2 is
highly expressed in ovarian cancer cell lines compared with the benign HOSEpiC cell line.
Interestingly, NRF2 silencing induces an increase in ERα and PGR mRNA expressions in
OVCAR3 cell lines [28,29], confirming a role of NRF2 in regulating ERα and PGR expression
in ovarian cancer cell lines.

Another molecule involved in many cellular processes, including apoptosis, cell
proliferation and differentiation, is CD99, a transmembrane glycoprotein coded by the MIC2
(MHC class I related antigen 2) gene [72] that is considered a prognostic marker of ovarian
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cancer [73]. Wu and colleagues demonstrated that CD99 is highly expressed in cisplatin-
resistant ovarian cancer cells, using in vitro models (A2780/CDDP and COC1/CDDP) and
ovarian tissues. Contrarily, CD99 is poorly expressed in cisplatin-sensitive ovarian cancer
cells (A2780 and COC1) and ovarian tissues. Thus, CD99 overexpression results in cisplatin
resistance, while CD99 knockdown sensitizes ovarian cancer cells to cisplatin. In addition,
NRF2 overexpression increases CD99 expression and cell viability after cisplatin treatment
in cisplatin-sensitive cells. Conversely, NRF2 knockdown decreases CD99 expression and
cell viability after cisplatin treatment in cisplatin-resistant cells. We can summarize that
simultaneous CD99 overexpression and reactivated cisplatin resistance in ovarian cancer
cells suggest that CD99 can be an NRF2 downstream gene and that NRF2 can modulate
cisplatin resistance by CD99 up or downregulation [74].

Another study demonstrated that NRF2 silencing represses NRF2 signalling in SKOV3
cells and causes cell growth G0/G1 phase arrest. Moreover, NRF2 silencing induces
tumour growth retardation in mouse xenografts and a significant decrease in ErbB2 expres-
sion, a member of the human epidermal growth factor (EGF) receptor family that plays
an essential role in cell proliferation and differentiation [75]. At the same time, ErbB2
downregulation leads to a pAKT decrease and p27 increase, enhancing the effect of NRF2
knockdown in SKOV3 growth [76]. Furthermore, NRF2 inhibition increases the sensitiv-
ity to docetaxel cytotoxicity and apoptosis, providing important findings on its role in
docetaxel-based chemotherapy.

Aldo-keto reductases comprise AKR1C1–AKR1C4, four enzymes that catalyse NADPH-
dependent reductions [77] but are also involved in chemoresistance [78]. Interestingly,
NRF2 knockdown leads to decreased AKR1C1, AKR1C2 and AKR1C3 expression and
increased ROS production after cisplatin treatment in SKOV3 cells. Moreover, a significant
activation of the pJNK/p38 pathway and decreased phosphorylation of Activating tran-
scription factor-2 (ATF2), a member of the leucine zipper family of DNA-binding proteins,
implicated as a tumour suppressor, was observed in NRF2 knockdown cells, suggesting
that NRF2 markedly modulates cisplatin resistance, regulating the AKR family members
via the activation of the pJNK/p38 pathway [79].

Hepatocyte Growth Factor Receptor (HGFR/c-MET) and Epidermal Growth Factor
Receptor (EGFR) are cell surface receptor tyrosine kinases (RTK), primarily expressed by
epithelial cells that modulate different cell functions, including cell proliferation, survival
and motility. Additionally, they can induce chemotherapy resistance [80]. Interestingly,
NRF2 silencing increases miR-206 expression and reduces c-MET and EGFR levels through
the direct binding to the 3′-untranslated region of the c-MET and EGFR genes in SKOV3
cells. The increased miR-206 levels have repressed c-MET/EGFR expression, inhibiting cell
proliferation. In addition, miR-206 inhibits BCRP/ABCG2 expression, the human breast
cancer resistance protein (BCRP, gene symbol ABCG2) that is an ATP-binding cassette (ABC)
efflux transporter, and increases doxorubicin sensitivity, suggesting NRF2 as a modulator
of BCRP/ABCG2 expression via miR-206 regulation [81].

ABC transporters are a superfamily of thirteen transporter (ABCA3, ABCB1 (MDR1),
ABCB6, ABCB8, ABCB10, ABCB11, ABCC1 (MRP1), ABCC4, ABCC9, ABCD3, ABCD4,
ABCE1, and ABCF2) proteins that transport various molecules across membranes, utilizing
ATP as an energy source [82]. It has been reported that many of the ABC transporters are
involved in chemoresistance occurrence, including ABCF2 that is involved in cisplatin
resistance [83]. Interestingly, it has been reported that ABCF2 has a functional antioxidant
response element (ARE) in its promoter region, suggesting ABCF2 as an NRF2 target
gene. In fact, A2780 cells, overexpressing NRF2, contain high levels of ABCF2 and are
more resistant to cisplatin-induced apoptosis, while the NRF2-knockdown A2780 cell line
contains low ABCF2 levels and is more sensitive to cisplatin treatments. Furthermore,
ABCF2 overexpression decreases apoptosis and increases cell viability following cisplatin
treatment, indicating ABCF2 as a novel NRF2 target gene, playing a critical role in cisplatin
resistance in ovarian cancer [84].
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Solute carrier family 40 member 1 (SLC40A1) is an iron exporter, essential for iron
metabolism homeostasis [85]. Interestingly, cisplatin-resistant ovarian cancer cells (A2780CP,
COC1/DDP, PEO4) increase NRF2 levels and reduce SLC40A1 levels compared with
cisplatin-sensitive cells (A2780, COC1, PEO1). Moreover, NRF2 knockdown leads to in-
creased expression of SLC40A1, while NRF2 overexpression decreases SLC40A1 expression,
showing that SLC40A1 expression is controlled by NRF2. In conclusion, SLC40A1 overex-
pression could reverse cisplatin resistance induced by NRF2, while SLC40A1 knockdown
could restore cisplatin resistance and increase iron concentration. [86]. Studies discussed in
this section are summarized in Table 3.

Table 3. NRF2 cellular targets in ovarian cancer.

Protein Regulated
by NRF2

Model
Studied Effect Ref.

ERα

OVCAR3, ES2, UWB1.289,
and TOV112D ovarian

cancer cells and HOSEpiC
(benign cells)

NRF2 silencing increases ESR1 expression in OVCAR3 and
ES2 cells. NRF2 is highly expressed in the ovarian cancer cell
lines OVCAR3, ES2, UWB1.289, and TOV112D compared with
the benign cell line HOSEpiC. ERα, is reduced in all ovarian
cancer cell lines compared to the benign cell line HOSEpiC.

[28]

CD99
A2780, A2780/CDDP,

COC1 and
COC1/CDDP cells

CD99 is highly expressed in cisplatin-resistant both ovarian
cancer cells (A2780/CDDP and COC1/CDDP) and tissues

compared to both ovarian cisplatin-sensitive cells (A2780 and
COC1) and tissues. CD99 overexpression leads to cisplatin

resistance while CD99 knockdown sensitizes ovarian cancer
cells to cisplatin. NRF2 silencing leads to decreased CD99

expression and cell viability after cisplatin treatment in
cisplatin-resistant cells.

[74]

ErbB2 SKOV3 cells

NRF2 silencing represses NRF2 signaling leading to cell
growth G0/G1 phase arrest, tumour growth retardation and a
significant decrease of ErbB2 expression in mouse xenografts.

ErbB2 downregulation leads to a decrease in pAKT and
increase p27 protein, enhancing the effect of NRF2

knockdown in SKOV3 growth.

[76]

AKR1C1
AKR1C2
AKR1C3

SKOV3 cells

NRF2 knockdown decreases AKR1C1-3 expression and
increases ROS production after cisplatin treatment. Moreover,

NRF2 knockdown increases activation of the pJNK/p38
pathway and decreases phosphorylation of ATF2.

[79]

c-MET
EGFR SKOV3 cells

NRF2 silencing increases miR-206 expression and reduces the
levels of c-MET and EGFR inhibiting cell proliferation and

increasing doxorubicin effect in SKOV3 cells.
[81]

PGR
OVCAR3, ES2, UWB1.289,

HOSEpiC and
TOV112D cells

NRF2 is increased and PGR decreased in the ovarian cancer
cell lines compared with the benign line (HOSEpiC). NRF2

silencing induces higher PGR mRNA expression in OVCAR3.
[29]

ABCF2 A2780 cells
ABCF2 has a functional antioxidant response element (ARE)
in its promoter region that is regulated by NRF2 responsible

for cisplatin resistance.
[84]

SLC40A1

cisplatin-sensitive (A2780,
COC1, PEO1) and
cisplatin-resistant

(A2780CP, COC1/DDP,
PEO4) cells

Increased levels of NRF2 and reduced levels of SLC40A1 in
cisplatin-resistant cells compared with cisplatin-sensitive cells.

NRF2 knockdown leads to SLC40A1 overexpression while
NRF2overexpression caused SLC40A1 downregulation.

SLC40A1 overexpression reverses cisplatin resistance induced
by NRF2, while SLC40A1knockdown restores cisplatin

resistance and increases iron concentration.

[86]
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5. NRF2 in Ovarian Function Preservation

Ovarian cancer is an important worldwide public health problem and thousands
of young women are exposed to cytotoxic chemotherapy, causing DNA damage and
apoptosis of oocytes, leading to infertility and ovarian aging [87,88]. Thus, preserving
ovarian function and fertility in young women exposed to these therapies is important to
guarantee a major quality-of-life factor in these patients. Currently, cryopreservation of
gametes and ovarian tissues is an important tool to preserve fertility in young women, but
it cannot reverse menopause or restore the ovarian function [89,90]. Thus, finding natural
or synthetic compounds able to preserve ovarian function during chemotherapy may be
a more useful way than cryopreservation, in maintaining fertility in these patients. In
addition, cryopreservation of ovarian tissues induces ROS generation and oxidative stress
that damage follicles, affecting the recovery efficiency and pregnancy rate.

Doxorubicin (DOX) is one of the most used antitumour drugs that causes gonad
toxicity, inducing oxidative stress and leading to ovarian dysfunction [87]. Interestingly,
Niringiyumukiza and colleagues found that DOX intraperitoneal injection in ICR mice
increases NRF2, HO-1 and catalase (CAT), while reducing Glutathione peroxidase (GSH-Px)
and SOD-1 expressions. DOX administration with SB216763, a potent Glycogen synthase
kinase 3 (GSK-3) inhibitor, enhances NRF2 expression, restoring GSH-Px and SOD-1 ex-
pression levels. Moreover, DOX significantly decreases the number of primordial, primary,
preantral and antral follicles, while it increases the number of atretic follicles, but these
effects were reversed by SB216763 administration. Furthermore, SB216763 and DOX com-
bined administration reduces the mature oocyte abnormalities, suggesting that GSK-3 and
NRF2 crosstalk may reduce DOX-induced ovarian damages [91]. Thus, the use of naturals
or synthetic GSK-3 inhibitors [92] could be useful tools for fertility preserving in young
women undergoing DOX chemotherapy treatments.

Natural compounds (also called phytochemicals or phytonutrients) are biological
substances present in plants (e.g., carotenoids, flavonoids, anthocyanins and polyphenols)
that are normally used to protect themselves from external influences or against preda-
tors [93,94]. Although the precise mechanism of action of many natural compounds is
unknown, these are normally used as worldwide supplements, showing beneficial effects
in many diseases [93,95–98]. Despite remarkable toxicities, Busulfan, Cyclophosphamide
and Melphan (Bu/Cy/Mel) is one of the most frequent drug combinations used in the
treatment of patients with haematologic malignancy [99,100]. Interestingly, Wu and col-
leagues found that Resveratrol (3,5,4′-trihydroxy-trans-stilbene, RES), a natural phenol with
antioxidant properties, derived from plants, relieves oogonial stem cells loss, attenuating
the busulfan/cyclophosphamide (Bu/Cy)-induced oxidative apoptosis in mouse ovaries.
RES could exert antioxidant function, activating NRF2, and it could be used combined to
chemotherapeutics to prevent chemotherapy-induced ovarian aging [101].

Melatonin (N-acetyl-5-methoxytryptamine) is mainly synthesized and secreted by the
pineal organ, acting as scavenger for many free radicals, and as an antioxidant, upregulating
the expression of antioxidant proteins [102]. Interestingly, it has been shown that melatonin
could protect follicular integrity, preventing cell apoptosis, decreasing ROS production,
malondialdehyde (MDA) and nitric oxide (NO) levels. Moreover, melatonin could increase
the activities of glutathione peroxidases (GSH-Px), GSH, CAT, and SOD in cryopreserved
ovarian tissues. These effects may be related to NRF2 pathway activation, since the authors
found increased NRF2 downstream genes, such as haem oxygenase-1 (HO-1), glutathione
S-transferase M1 (GSTM1), SOD, and CAT. In summary, melatonin plays an important role
in protecting follicular integrity during cryopreservation, acting not only as a direct ROS
scavenger, but also inducing antioxidative enzymes activation, probably modulating the
NRF2 pathway [103].

Cyclophosphamide (CTX) is a common drug used to treat female cancers but in-
duces ROS production, damaging DNA and inducing follicular apoptosis, leading to early
menopause and infertility [104]. For this reason, preserving female fertility during CTX
treatment is very important. Interestingly, female mice exposed to CTX and treated with



Antioxidants 2022, 11, 663 11 of 17

Epigallocatechin gallate (EGCG) and theaflavins (TFs), two natural compounds derived
from green tea or black tea, improved the ovarian endocrine function and reproductivity.
These natural compounds reduce DNA follicular damage due to oxidation induced by
activating the NRF2/HO-1 and SOD2 pathways and reducing the apoptosis in growing
follicles [105].

The organic solvent, 1-Bromopropane (1-BP), also known as n-propyl bromide, is
widely used in industrial and commercial applications. However, it has been reported
that exposure to 1-BP can cause toxic effects on the nervous system [106] and induce
ovarian dysfunction [107]. Yang and colleagues showed that 1-BP treatments led to an
increase in both ROS and MDA production and decreased SOD activity in OVCAR-3
cells. Moreover, they found that 1-BP activates NRF2, increases HO-1 expression and
apoptosis. Interestingly, vitamin C alleviates 1-BP-induced apoptosis, activating the NRF2
pathway. Therefore, it can be deduced that 1-BP induces oxidative stress and apoptosis by
inactivating NRF2 signalling in OVCAR-3 cells [108].

Cigarette smoke contains thousands of harmful components that have been reported
to be dangerous on female reproductive organs, including ovaries, causing ovarian dys-
function. In fact, the use of Cigarette Smoke Extract (CSE), commonly used to simulate
smoking effects in in vitro studies, showed that it can impair ovulation, oocyte morphology
and causes apoptosis [109]. CSE treatments reduce cell proliferation by reducing Cyclins B1
and D1 expression, and induce apoptosis, modulating the Bcl-2 signalling in SKOV3 and
OVCAR3 ovarian cancer cell lines. Additionally, CSE induces oxidative stress, increasing
ROS levels and decreasing NRF2 expression by increasing KEAP1. This causes ovarian
function damage, inducing the inhibition of cell proliferation and oxidative stress, probably
by NRF2 activity [110].

6. Conclusions and Further Remarks

Recent studies show that the NRF2/KEAP1/ARE pathway plays a key role in many
processes involved in the regulation of ovarian cancer progression, proliferation and
chemoresistance. It is clear that NQO1 and NRF2 are highly expressed in ovarian carci-
noma compared with normal tissues and that NRF2 expression increases with ovarian
carcinoma stage advancing. Moreover, low KEAP1 expression is associated with disease
recurrence and death, while high KEAP1 expression is predictive of better overall and
disease-free survival. Interestingly, it has been reported that both low nuclear NRF2 expres-
sion and high KEAP1 expression depend on the age of patients, suggesting that efficiency
in countering ROS decreases with aging and it is associated to an increased risk of carcino-
genesis. Moreover, NRF2 can regulate ERα and PGR expressions in ovarian cancer cells,
playing a pivotal role in cell response to oestrogen and progesterone (see Tables 1 and 3).

Several lines of research have demonstrated that NRF2 signalling can be indirectly
modulated by non-coding RNA, such as miR-181d and Lin-H19, and that these can modu-
late drug response in ovarian cancer [40,46]. Moreover, p62 can activate NRF2, protecting
cancer cells from chemotherapeutic agents inducing autophagy [53,111]. Moreover, it is
known a direct action of NRF2 on proteins involved in chemoresistance such as AKR1C1-3,
ABCF2, SLC40A1, as well as on the modulation of important growth factor receptors, such
as c-MET, ErbB2 and EGFR regulating tumour growth [76,81].

Unfortunately, chemotherapy causes cytotoxic effects, both in cancer and normal
cells. Every year, thousands of young women are exposed to chemotherapy, with seri-
ous consequences on fertility and ovarian tissue [87]. To date, the ovarian tissues and
gametes cryopreservation is the only way to give a chance to these women to become
pregnant [89]. It has been reported that GSK-3 inhibitors, resveratrol, melatonin, epigallo-
catechin gallate, theaflavins can protect ovarian tissues exposed to chemotherapeutic agents
or cryopreservation, activating NRF2 signalling to preserve female fertility (see Table 4).
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Table 4. Modulators of NRF2 in ovarian preservation.

Protector
Compound Harmful Agent Mode

Studied Effect Ref.

SB216763
(GSK-3 inhibitor) Doxorubicin (DOX) Mice

SB216763 and DOX combined treatment
enhances NRF2 expression restoring
GSH-Px and SOD-1 levels. SB216763

increases primordial, primary, preantral
and antral follicles number while
decreases atretic follicles number.

SB216763 and DOX coadministration
reduces the mature oocyte

abnormalities.

[91]

Resveratrol (RES)
Busulfan and

Cyclophosphamide
(Bu/Cy)

Mice

RES activates NRF2 and relieves
oogonial stem cells loss attenuating the
Bu/Cy-induced oxidative apoptosis in

mouse ovaries.

[101]

Melatonin ROS due to
cryopreservation Rat ovarian tissues

Melatonin increases GSH-Px, GSH, CAT
and SOD activities in cryopreserved
ovarian tissues by activating NRF2

downstream genes HO-1, GSTM1, SOD,
and CAT.

[103]

Epigallocatechin
gallate (EGCG)

Theaflavins (TFs)

Cyclophosphamide
(CTX) Mice

Mice exposed to CTX and treated with
EGCG and TFs improve ovarian

endocrine function and reproductivity
reducing the oxidation-induced

follicular DNA damage by activating
the NRF2/HO-1 and SOD2 pathways

and reducing the apoptosis of
growing follicles.

[105]

Vitamin C 1-BromoPropane (1-BP) OVCAR-3 cells

1-BP treatment leads to increased ROS
and MDA production and decreased

SOD activity. Vitamin C alleviates
1-BP-induced apoptosis activating

NRF2 pathway.

[108]

– Cigarette Smoke
Extract (CSE)

SKOV3 and OVCAR3
cells

CSE reduces cell proliferation by
Cyclins B1 and decreases D1 expression,

and induces apoptosis. CSE induces
oxidative stress increasing ROS levels
and repressing NRF2 expression by

increasing KEAP1.

[110]

In conclusion, NRF2 has many important functions, modulating different enzymes,
receptors and miRNAs (see Figure 2). Thus, the NRF2/KEAP1/ARE pathway can protect
cells from oxidative stress and regulate cancerous cells response to chemotherapeutic
agents. Therefore, NRF2 can be considered a promising target for future research on
ovarian cancer progression and treatment and could have a significant clinical impact in
developing new therapies. Moreover, the use of natural or synthetic compounds activating
NRF2 can play a pivotal role in ovarian function preservation in patients undergoing
chemotherapy treatments.
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Figure 2. Schematic representation of NRF2 modulation. Vitamin C, SB216763, resveratrol, melatonin,
epigallocatechin-3-gallate and theaflavins increase NRF2 expression in ovarian cells improving their
response to oxidant agents. In ovarian cancer cells, increased levels of miR-181d, Lin-H19, p62,
SIRT5, PUMA and KEAP1/CUL3/RBX1 alterations lead to an increase in NRF2 expression. However,
decreased levels of NRF2 lead to an increased expression of ERα, PGR, SLC40A1, miR-206 and
decreased expression of CD99, ErbB2 and AKR1C1-3. In addition, NRF2 indirectly decreases c-MET
and EGFR expression by increasing miR-206 levels.
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