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Ovarian hormones, including 17β-estradiol, are implicated in numerous physiological processes, 

including sleep. Beginning at puberty, girls report more sleep complaints than boys, which is 

maintained throughout the reproductive life stage. Sleep problems are exacerbated during 

the menopausal transition, evidenced by greater risk for sleep disorders. There is emerging 

evidence that menopause-associated hormone loss contributes to this elevated risk, but age is 

also an important factor. The extent to which menopause-associated sleep disturbance persists 

into postmenopause above and beyond the effects of age remains unknown. Untreated sleep 

disturbances have important implications for cognitive health, as they are emerging as risk factors 

for dementia. Given that sleep loss impairs memory, an important knowledge gap concerns 

the role played by menopause-associated hormone loss in exacerbating sleep disturbance and, 

ultimately, cognitive function in aging women. In this review, we take a translational approach to 

illustrate the contribution of ovarian hormones in maintaining the sleep–wake cycle in younger 

and middle-aged females, with evidence implicating 17β-estradiol in supporting the memory-

promoting effects of sleep. Sleep physiology is briefly reviewed before turning to behavioral 

and neural evidence from young females linking 17β-estradiol to sleep–wake cycle maintenance. 

Implications of menopause-associated 17β-estradiol loss is also reviewed before discussing how 

ovarian hormones may support the memory-promoting effects of sleep, and why menopause 

may exacerbate pathological aging via effects on sleep. While still in its infancy, this research area 

offers a new sex-based perspective on aging research, with a focus on a modifiable risk factor for 

pathological aging. (Endocrinology 161: 1–15, 2020)
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W
omen spend approximately one-third of their 
lifespan in postmenopause, a hormone-deprived 

state that typically begins ~50 years of age. The tran-
sition to menopause (ie, perimenopause) is character-
ized by symptoms including sleep disturbance. While 
menopausal symptoms can persist 10+ years beyond 
the last menstrual period (1), the majority of research 
has focused on sleep complaints during perimenopause 
and early postmenopause. This is unfortunate, as sleep 

disturbance increases with age, with 22% to 39% of 
people aged 47 to 69  years (2) and >50% of people 
65+ years (3) reporting sleep complaints. Additionally, 
there is emerging evidence for a role of sleep disorders 
in exacerbating risk for dementia, including Alzheimer’s 
disease (AD). The prevalence of sleep disorders increases 
following menopause, with some evidence suggesting 
this is independent of aging. The extent to which ovarian 
hormone deprivation contributes to sleep disturbance in 
aging postmenopausal women remains elusive.

Abbreviations: AD, Alzheimer’s disease; CEE, conjugated equine estrogen; E2, 

17β-estradiol; EEG, electroencephalography; EMG, electromyography; EOG, 

electrooculography; FSH, follicle-stimulating hormone; HT, hormone therapy; 

MPOA, medial preoptic area; NREM, non-rapid eye movement sleep; OVX, 

ovariectomized; P, progesterone; PSG, polysomnography; REM, rapid eye move-

ment sleep; SCN, suprachiasmatic nucleus; SE, sleep efficiency; SWA, slow-wave 

activity; SWS, slow-wave sleep; VLPO, ventral lateral preoptic nucleus; WASO, 

waking after sleep onset.
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This mini-review draws from human and animal 
literature to present our current understanding of the 
role of ovarian hormones in regulating sleep and cog-
nitive health across the adult lifespan, with a discussion 
on long-term consequences of menopause-associated 
hormone loss. We review the clinical literature span-
ning the reproductive years, before discussing the 
consequences of menopause, and potential bene�ts of 
hormone therapy (HT) use. We have emphasized the 
role of 17β-estradiol (E2), the most common (across 
species) and bioactive estrogen. E2 is also increasingly 
used in HT, and so is receiving greater research focus. 
Progesterone (P) is understudied, therefore a more 
limited discussion of this hormone is provided.

Overview of Physiological Sleep Processes

Sleep is quanti�ed using polysomnography (PSG), a com-
bination of electroencephalography (EEG), electromyog-
raphy (EMG), and electrooculography (EOG), which is 
used to classify sleep stages, including rapid eye movement 

(REM) and non-REM (NREM, further subdivided into 
three stages, N1-N3) sleep. Additionally, PSG permits the 
measurement of other parameters, including total sleep 
time, sleep latency (duration to �rst sleep stage), sleep ef-
�ciency, and frequency of awakenings and arousals (tran-
sient increases in cortical activity during sleep, Fig. 1) (4). 
EEG activity during sleep is characterized by synchronous 
and desynchronous activity between regions such as the 
hippocampus, thalamus, and frontal cortex. N3 is the 
deepest stage and is characterized by slow-wave EEG ac-
tivity re�ecting synchronous activity within the frontal 
cortex. Humans tend to cycle through these stages every 
1.5 hours, and suf�cient sleep (7-9 hours) typically in-
cludes 3 to 5 cycles/night (5).

Nonhuman animals commonly used in sleep research 
include mice and rats, both of which are nocturnal and 
polyphasic, with some sleep bouts occurring during their 
active (ie, dark) phase. Despite differences in their sleep 
timing compared with humans, rodent studies provide 
valuable insight into mechanisms underlying the sleep-
wake cycle that are ubiquitous across mammals.

Figure 1. Summary of sleep physiology/stages, associations with memory, and changes related to hormonal milieu. Illustrations on the left depict 

EEG activity associated with each of the four stages of sleep (American Academy of Sleep Medicine (4)), and include definitions. Note that sleep 

staging is also conducted using concurrent EMG and EOG recordings. The right panel summarizes memory and hormone findings for rodents, 

nonhuman primates, and humans, denoted with blue symbols. AD = Alzheimer’s disease; E2 = 17β-estradiol; EEG = electroencephalography; 

EMG = electromyography; EOG = electrooculography; NREM N1-3= nonrapid eye movement stages 1-3; OVX = ovariectomized; P = progesterone; 

SWA = slow-wave activity; SWS = slow-wave sleep; REM= rapid eye movement.
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The timing and duration of sleep is regulated by 
2 processes: homeostasis and circadian rhythms. 
Homeostasis is observed through sleep pressure, which 
gradually increases in proportion to time awake, and 
decreases with time asleep (6). Adenosine levels follow 
the same pattern and serve as an index of sleep drive/
need (7). Homeostatic regulation of the sleep–wake 
cycle is observable under sleep deprivation/restriction 
procedures, as extended time awake elevates sleep pres-
sure. The amount of time spent awake is typically pro-
portional to time spent in subsequent N3 (ie, slow-wave 
sleep, SWS) during recovery sleep.

Circadian rhythms are responsible for synchronizing 
our sleep–wake cycle to a ~24-hour clock (6). Circadian 
control of sleep is regulated by the suprachiasmatic nu-
cleus (SCN) of the hypothalamus (8). This structure lies 
directly above the optic chiasm, allowing direct input 
from afferent photosensitive neurons, whose activation 
promotes light-induced gene expression within the SCN 
that are entrained to the light/dark cycle. This master 
clock regulates a number of functions, including the 
release of melatonin from the pituitary gland. The se-
cretion of this hormone is suppressed by daylight, and 
rising levels at night are involved in sleep initiation (9). 

As such, the SCN and circadian rhythmicity promote 
wake during daylight and, in collaboration with ac-
cumulating sleep pressure (via homeostasis), sleep fol-
lowing nightfall, approximately 15 to 17 hours after 
wake onset (6). The extent to which E2 directly modu-
lates homeostatic and circadian processes is discussed in 
the “Role of E2 in homeostatic regulation of the sleep–
wake cycle” and ‘Role of E2 in circadian regulation of 
the sleep–wake cycle.”

Contributions of Ovarian Hormones to 
Sleep During Reproductive Years

The menstrual cycle is ~28  days in length and con-
sists of the follicular and luteal phases. Ovarian hor-
mones (E2/P) are low during the early follicular phase, 
but E2 rises rapidly towards the end. The luteal phase 
is generally associated with moderate E2 and high P 
levels, which decrease prior to menses onset (Fig.  2, 
Reproductive Years) (10). Cross-sectional studies com-
paring women in follicular to luteal phase report no 
group differences in sleep latency, waking after sleep 
onset (WASO), and sleep ef�ciency (SE; % time asleep 
in bed) (11-14). Earlier REM onset (15), reduced REM 

Figure 2. Summary of hormone levels across different reproductive states in women, and known effects on memory and sleep. Left panel 

summarizes findings in women of reproductive age (with normal ~28-day cycles), the middle panel for women in perimenopause, and the right 

panel for women in postmenopause. The top bar summarizes hormone levels during the 3 reproductive states, with menopausal symptoms, 

memory findings and sleep disorder prevalence underneath. Specific findings with respect to how sleep is measured are presented in the middle 

and lower bars. Thick colored bars within each cell indicate higher levels of symptoms/memory/sleep parameters, and colored dots indicate 

incomplete/unknown information. E2 = 17β-estradiol; EEG = electroencephalography; EMG = electromyography; EOG = electrooculography; 

FSH = follicle stimulating hormone; N3 = nonrapid eye movement stages 1-3; OVX = ovariectomized; P = Progesterone; SWA = slow-wave activity; 

SWS = slow-wave sleep; REM= rapid eye movement; RLS = restless legs syndrome; WASO = waking after sleep onset.
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(13, 16-20), and increased SWS (17) are observed 
during the luteal phase of some studies, whereas others 
report no differences (13, 21, 22) (Fig. 2; comprehen-
sive reviews are provided by others (11, 12, 14, 23)). 
The rate of change rather than absolute hormone levels 
may alter sleep, as evidenced by the association between 
decreasing E2/P levels during the late luteal phase and 
reduced SWS (20). Further, increased WASO correlates 
positively with a steeper rise in P during the midluteal 
phase (24).

Microstructural measures are sensitive to men-
strual phase (12, 13, 25, 26). Greater spindle activity 
is observed during the luteal than follicular phase (13, 
26, 27), which persists until perimenopause (28). The 
underlying mechanisms have yet to be identi�ed, but 
one possibility is that P modulates GABAA receptors 
to increase spindle activity (13, 29). The hypnotic-
sedative effects of P have been demonstrated in both 
cats (sex unspeci�ed) (30), and postmenopausal women 
following frequent sleep disruptions (31). While these 
studies implicate P rather than E2 in promoting spindle 
activity and sleep more broadly, E2 may act indirectly 
via P, as higher E2 levels have been shown to increase 
P receptor levels (32).

Additional physiological factors sensitive to men-
strual cycle phase may also contribute to the �ndings 
reported above. Fluctuations in REM duration are ob-
served as a function of nighttime body temperature 
during the luteal, but not follicular phase (13, 16, 17, 
33). Greater daytime sleepiness and nap SWS duration 
have also been shown during the luteal phase (34). This 
is consistent with �ndings showing increased daytime 
sleepiness/reduced alertness during the late-luteal phase, 
but only among women with elevated premenstrual 
symptoms (20). Since body temperature also has a di-
urnal rhythm, perhaps the menstrual cycle effects on 
sleep and temperature re�ect the same underlying alter-
ations in circadian rhythmicity.

In rodents, E2 promotes the consolidation of the 
sleep–wake cycle by facilitating wakefulness rather 
than improving sleep per se. The estrous cycle is 4 to 
5 days in length and includes 4 phases (35). Proestrous 
is characterized by rapidly rising E2/P, which peak in 
the evening. This is followed by rapid decline in E2/P 
the following day (estrous). Moderate levels of these 
hormones are observed during the 2 remaining days 
(diestrous I/II). The evening of proestrous is associated 
with reduced spontaneous sleep (attenuated slow-wave 
activity (SWA or delta activity; 0.5-4 Hz) and REM, 
along with increased high-frequency cortical arousal 
and fragmentation) (36). This sleep suppression is not 
surprising, as this time frame is also marked by high 
levels of activity (37).

In sum, these studies implicate ovarian hormones 
in modulating the sleep–wake cycle during the repro-
ductive years. However, sleep is not always promoted 
by elevated E2/P. In rodents, sleep is suppressed by the 
rapid rise of E2/P during proestrous, particularly during 
the active phase. In humans, rapidly increasing P during 
early luteal is associated with increased WASO, while 
declining levels of E2/P during late luteal are associated 
with reduced SWS. The luteal phase as a whole is associ-
ated with selective increases in SWS/spindles, but is also 
associated with reduced REM, and increased WASO/
sleepiness. The extent to which these �ndings re�ect 
absolute versus �uctuating levels of ovarian hormones 
needs further investigation.

Contributions of Menopause-associated 
Hormone Changes to Sleep Disturbance

Perimenopause is characterized by gradually declining 
hormone levels (Fig.  2) and characteristic symptoms, 
including sleep disturbances, memory problems, mood 
changes, and hot �ashes (HFs) (38, 39), along with 
increasing menstrual cycle length, and eventually ir-
regular periods (for a more thorough description, see 
work from Harlow and colleagues (40)). HFs are char-
acterized by intense sensations of heat, followed by 
sweating and skin vasodilation (39, 41). Hormone levels 
stabilize at postmenopause, which begins 12  months 
after the last menstrual period (40). Menopausal symp-
toms can continue for 10+ years (1), the consequences of 
which remain elusive. Importantly, optimal sleep main-
tains brain health, and untreated sleep disturbances can 
have important implications in aging postmenopausal 
women. What follows is a review of the literature on 
menopause-associated sleep disturbance and the role of 
ovarian hormone loss.

Subjective sleep

During premenopause, 20% to 40% of women re-
port sleep complaints, which increases to 40% to 
60% during peri/postmenopause (42). Further, higher 
follicle-stimulating hormone (FSH)/lower estrone levels 
are also associated with greater severity of self-reported 
nighttime awakenings in peri/postmenopausal women 
(43) (but see (44)). Studies in perimenopausal women 
show that decreasing E2/increasing FSH are related 
to more awakenings (45), poorer sleep quality (46), 
and trouble sleeping (47). Declining E2 prior to peri-
menopause is also related to lower sleep quality (48). 
Additionally, surgical menopause is associated with 
more sleep complaints than natural menopause (49), 
further supporting the possibility that rapid changes in 
hormonal milieu contribute to sleep disturbance.
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Sleep disorders

Peri/postmenopause is associated with increased 
prevalence of insomnia (characterized by dif�culty 
falling and/or staying asleep), restless leg syndrome 
(characterized by uncontrollable leg movement), and 
sleep apnea (characterized by interrupted breathing) 
(50-56). While age itself is a risk factor for sleep 
apnea (57), higher apnea–hypopnea index (number 
of apneas or hypopneas/hour) and lower arterial 
oxygen saturation are observed in postmenopausal 
than in premenopausal women even after controlling 
for age (53), indicating that hormone loss also con-
tributes. Daytime sleepiness, which is a symptom of 
sleep disorders, is also higher among postmenopausal 
women (58). In peri/postmenopausal women with fre-
quent self-reported sleep disturbances, periodic limb 
movements and apneas are the strongest predictors 
of diminished SE (55). Compared with natural meno-
pause, surgical menopause is associated with more 
insomnia symptoms, reduced total sleep time and SE 
(50, 59, 60), and a 27% higher risk of sleep apnea 
(59). These �ndings support an important role of 
ovarian hormone deprivation in some sleep disorders 
above and beyond the contributions of aging. An im-
portant consideration relates to whether these condi-
tions persist beyond midlife, as they are implicated in 
pathological aging (see “Interaction between ovarian 
hormones and sleep: implications for cognitive health 
and pathological aging”).

Objective sleep

Paradoxically, peri/postmenopause are associated 
with increased SWS duration (46, 53, 61, 62) (but see 
(63)). While this certainly can re�ect improved sleep, 
higher rates of sleep complaints/disorders in these 
women suggests this is unlikely. Additionally, peri/
postmenopausal women report lower sleep satisfac-
tion while also demonstrating increased SE and SWS 
(62). While some studies report no differences between 
pre- and peri/postmenopausal women on sleep macro-
structure, including sleep latency, total sleep time, and 
SE (64-66), 1 prospective study showed increased 
fragmented sleep in women who transitioned from 
premenopause to peri/postmenopause 6  years later, 
even after controlling for HFs, depressive symptoms, 
and body mass index (67). Higher FSH levels have been 
associated with more WASO/awakenings/arousals in 
perimenopausal women, but only among those without 
insomnia (68). Increases in FSH were also positively as-
sociated with SWS (67). As discussed in “Role of E2 in 
homeostatic regulation of the sleep–wake cycle,” SWS 
duration is directly proportional to sleep need. Perhaps 

this increase in SWS re�ects reduced sleep quality, or 
increased sleep fragmentation, especially considering 
that total sleep time is reliably unaffected (68). While 
the data presented above are certainly consistent with 
this interpretation, advancing age may also be impli-
cated. Fragmented sleep does increase with age, but 
SWS tends to decrease, particularly in men (69). Thus, 
the observed �ndings might re�ect changes speci�c to 
aging women that are due at least in part to ovarian 
hormone deprivation.

Co-occurring menopausal symptoms, including 
HFs, can contribute to greater sleep disturbance. HFs 
are reported by 60% to 90% of peri/postmenopausal 
women (70-72), with frequency correlating with greater 
sleep complaints (73), WASO, and reduced SE (41). 
Augmented HFs are observed in middle-aged women 
with insomnia, and are associated with more frequent 
awakenings (74). Thus, sleep disturbance experienced 
by perimenopausal women is likely due at least in part 
to HFs. Depressive symptoms, which are more common 
during peri/postmenopause, also contribute to sleep dis-
turbance (75). Importantly, insomnia is also a symptom 
of major depression. Thus, the extent to which these 
disturbances occur as a direct result of E2 loss, inde-
pendent of age and/or other symptoms/conditions, is 
not well established.

High cortical arousal within the beta frequency range 
(15-30 Hz) is indicative of less restful sleep, and has been 
observed in an older mixed-sex sample (76), and among 
perimenopausal women with insomnia (74). Higher 
beta power is observed in late peri/postmenopausal 
women than in pre- and early perimenopausal women, 
even after controlling for age, whereas delta power 
(0.5-4 Hz) is unaffected (63). This latter result is sur-
prising given the reported increases in SWS in other 
studies. Thus, while peri/postmenopausal women spend 
more time in SWS, this may not re�ect more intense 
sleep. These �ndings suggest that sleep is less restful in 
late peri/postmenopausal women.

Spindle density decreases in women with age, whereas 
it increases in men (77), implicating ovarian hormone 
loss in age-related EEG sleep physiology. While aging 
effects on sleep physiology are well understood (78, 
79), limited attention has been paid to how menopause 
status, duration of hormone deprivation, and even HT 
use might alter sleep parameters in aging research. These 
important considerations can clarify how sleep disturb-
ances manifest in aging women, particularly beyond the 
early postmenopausal years. The next section helps to 
clarify the role of ovarian hormones by making com-
parisons between groups that are hormone-deprived to 
those taking exogenous hormones matched by age.
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Hormone therapy 

Hysterectomized postmenopausal women (47-
65 years) taking unopposed transdermal E2 had fewer 
movement-related arousals during sleep and reported 
fewer HFs, sleep complaints, and headaches than 
nonusers (80). Peri/postmenopausal women taking 
E2 reported reduced insomnia symptoms and im-
proved subjective sleep quality (81), although this may 
be restricted to women with HFs (82). Unopposed 
estrone is also associated with decreased awaken-
ings and increased REM during perimenopause (45-
55  years) (83), while estrone with micronized P (but 
not medroxyprogesterone acetate) increases SE and re-
duces WASO in postmenopausal women (45-65 years) 
(84). Strongest support for the positive effects of HT 
comes from a study using experimentally induced 
sleep disruptions (via nighttime blood draws). Older 
postmenopausal women (57-80  years) without HFs 
and >5  years from their last menstrual period taking 
either conjugated equine estrogen (CEE) or esteri�ed 
estrogens (estrone/Equilin) for at least 2  years were 
compared with non-HT users. Sleep for the HT group 
was less disrupted by the manipulation, evidenced by 
reduced sleep latency, WASO, time awake, and increased 
SWS and SE (85). Together, these studies support subtle 
bene�ts of maintaining ovarian hormone levels on sleep 
macrostructure.

The major estrogen in CEE and esteri�ed estrogens is 
estrone, which has a weaker af�nity to estrogen recep-
tors, and represents only ~4% of the estrogenic activity 
of E2 (86). The source, chemical structure, and compos-
ition of estrogens in commonly prescribed HTs vary in 
their pharmacokinetics and pharmacodynamics, which 
are further in�uenced by dosage and route of adminis-
tration. Orally administered E2 results in low potency 
due to �rst-pass hepatic and intestinal metabolism into 
estrone and estrogen conjugates. This is not the case for 
nonoral routes, which bypass the intestines and liver. 
Thus, transdermal E2 has much greater bioavailability 
and potency than oral E2 (86). Despite the sedative-
hypnotic effects of P (30), studies investigating HT fail 
to acknowledge its contribution. Studies clarifying the 
effects of E2 and P, including their dosages and routes of 
administration, are sorely needed, particularly in older 
postmenopausal women.

E2 promotes thermoregulation in addition to 
maintaining sleep in ovariectomized (OVX) animals. 
Inhibiting E2 synthesis in middle/older-aged female 
OVX marmosets increases facial temperature in re-
sponse to a thermal challenge (87). Further, middle-aged 
OVX marmosets given E2 replacement demonstrate 
lower nighttime core body temperature, fewer nighttime 

arousals, and higher SWA (Fig. 1), signifying more in-
tense and restorative sleep (88). At �rst glance, these 
�ndings seem contradictory to studies in women, 
which show that menopause (and therefore ovarian 
hormone deprivation) is associated with increased SWS. 
Importantly, these studies investigate sleep stage dur-
ation rather than SWA, a measurement of SWS intensity. 
EEG spectral power analyses provide better sleep depth/
intensity quanti�cation than visual sleep staging, and 
SWA or delta activity is often considered the primary in-
dicator of homeostatic sleep regulation (89). While delta 
waves are unaffected by menopause status in women 
(63), the impact of E2 use during peri/postmenopause 
remains unexplored.

The potential bene�t of E2/P in mitigating against 
menopause-associated sleep disorders has been 
largely ignored. Animal studies suggest that E2 re-
duces adverse effects of apnea/hypopneas (90), and 
1 study in surgically menopausal women indicates 
that use of any type of HT reduces sleep apnea risk, 
while earlier menopause (and therefore increased 
time in hormone-deprived state) increases risk (59). 
Further, 1 month of E2+P was associated with fewer 
awakenings, reduced respiratory distress, and higher 
oxygen saturation among postmenopausal women 
(48-62  years) with sleep apnea (91). Finally, trans-
dermal E2 improves sleep quality, reduces sleep la-
tency, and decreases awakenings in postmenopausal 
women (47-65 years), especially those with insomnia 
(92, 93). Given that sleep apnea/insomnia are risk 
factors for Alzheimer’s disease (AD) (94, 95), attenu-
ating risk at midlife can have important implications 
for women’s health. Thus, greater research attention 
paid to the potential role of E2/P in preventing sleep 
disorders at midlife is needed.

Role of E2 in Homeostatic Regulation 
of the Sleep–Wake Cycle

To our knowledge, no study has speci�cally investigated 
whether ovarian hormones alter homeostatic control of 
sleep in women. Sex differences are observed in delta 
activity during rebound sleep, with more dramatic in-
creases in young women than men, indicative of in-
creased homeostatic sleep response (96). Interestingly, 
this sex difference is reversed in older age, with the 
quality of restorative sleep being better preserved among 
older men (97). The mechanism underlying this switch 
remains unknown, but it could involve change in meno-
pause status in women. Future studies are needed to 
address the contribution of ovarian hormones to sleep 
pressure, and whether menopause-associated hormone 
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loss attenuates this robust homeostatic response to sleep 
deprivation.

In female rodents, E2 promotes sleep following ex-
tended time awake. When the period of sleep depriv-
ation is brief, the effects appear sensitive to circadian 
timing. After sleep deprivation, E2 consolidates the 
sleep–wake cycle by suppressing sleep (and increasing 
activity) during the dark phase, and promoting sleep 
during the light phase (98, 99). For example, OVX rats 
given E2 replacement and sleep deprived for 6 hours at 
the beginning of the light phase show increased REM 
and SWA during the remaining light phase (100). When 
recovery sleep occurs during the dark phase, E2 sup-
presses REM/NREM/SWA (98, 100). If sleep depriv-
ation is suf�ciently long (at least 12 hours), E2 appears 
to promote sleep, irrespective of circadian phase (99). 
Thus, unlike �ndings presented in “Contributions of 
ovarian hormones to sleep during reproductive years,” 
which demonstrated the wake-promoting effects of 
E2/P during the dark phase, the �ndings presented here 
complement studies in humans and indicate that E2 
promotes sleep under suf�cient sleep pressure or appro-
priate circadian timing. The sleep–wake cycle may be 
modulated by E2 at least in part via direct actions in 
brain regions that regulate sleep onset and maintenance. 
Estrogen receptors are expressed in the lateral hypo-
thalamus, the medial preoptic area of the hypothalamus 
(MPOA) (101-104), and the ventral lateral preoptic 
nucleus (VLPO) (5, 105-111). Activation of MPOA 
neurons induces sleep onset, while VLPO neurons 
maintain sleep via inhibition of wake-active cells (112, 
113). Damage to these regions decreases sleep duration 
without altering sleep timing, implicating these regions 
in homeostatic sleep drive and not circadian rhythmicity 
(114, 115). During the light phase, E2 decreases sleep-
promoting lipocalin-prostaglandin D synthase expres-
sion and neural activity in the VLPO of OVX rats (116, 
117). In addition, wake-promoting orexin neurons and 
receptors in the lateral hypothalamus, which also re-
ceive VLPO and MPOA input, are highly sensitive to 
E2 �uctuation in female rats, with high E2 increasing 
orexin expression in the hypothalamus and anterior pi-
tuitary of females during the evening of proestrus (118). 
The effect of E2 within these regions following sleep de-
privation remains to be explored. Taken together, these 
�ndings suggest that high E2 levels inhibit spontaneous 
sleep in OVX rats, potentially promoting wakefulness 
to prepare for a more active dark phase (5, 119). An 
expanded discussion of the potential mechanisms of 
ovarian hormones on sleep exists elsewhere (5, 7, 78).

In sum, E2 modulates rebound sleep in humans and 
rodents. What remains unknown is whether advancing 

age alters the observed effects of E2. Additional studies 
that experimentally manipulate both hormone levels 
and sleep timing/duration while incorporating older 
rodents will advance our understanding of whether 
ovarian hormone deprivation exacerbates the effects of 
continued sleep disturbance in aging postmenopausal 
women. In addition to clarifying divergent effects be-
tween younger and older women, and between human 
and rodent studies, future research is needed to bridge 
the behavioral and molecular effects of E2.

Role of E2 in Circadian Regulation of 
the Sleep–Wake Cycle

There are well-established cross-species sex differences 
in SCN morphology and activity (106, 120). In humans, 
the relative volume and length of the anterior–posterior 
axis of the SCN are larger in women (121), who also 
have more estrogen receptor α expression in this region 
than men (122). Circadian activity also varies by sex, 
as young/middle-aged women typically have an earlier 
chronotype (go to bed and wake up earlier) (106, 123), 
have higher peak levels of melatonin (124, 125), and 
lower temperature nadir than men (125).

There is some evidence that menopause alters circa-
dian rhythmicity. Postmenopausal women (58-71 years) 
have lower nighttime melatonin concentrations and 
shorter secretion duration than perimenopausal women 
(43-51  years), suggesting that melatonin release may 
be suppressed by ovarian hormone deprivation and/or 
advancing age (126). This alteration in nighttime mela-
tonin may lead to greater problems initiating or staying 
asleep, consistent with insomnia symptoms. Another 
important consideration is thermoregulation, which is 
critical for sleep maintenance. Menopause in humans is 
marked by HFs. As previously mentioned, E2 has been 
associated with lower nighttime core body temperature 
and more restorative sleep in middle/older-aged OVX 
marmosets (88). Since both body temperature and sleep 
are sensitive to circadian timing, these results suggest 
that ovarian hormones may play a crucial role in modu-
lating circadian rhythmicity.

There is also evidence that ovarian hormones are 
sensitive to altered circadian rhythms, suggesting a bi-
directional relationship. For example, 20+ months of 
rotating night shifts increases the risk of early meno-
pause (before 45 years) (127). Shift work also increases 
the prevalence of menstrual disorders (128) and alters 
E2 level �uctuation (129) in women, implicating circa-
dian rhythms in the physiological functions of E2.

In female rodents, the ability for E2 to promote 
sleep depends on circadian timing (see “Role of E2 
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in homeostatic regulation of the sleep–wake cycle”), 
and hypothalamic E2 activity is implicated in circa-
dian rhythmicity. OVX reduces while E2 replacement 
increases melatonin binding sites and synthesis in the 
hypothalamus and medulla pons when samples are col-
lected during the dark phase (130). Unfortunately, no 
known study has addressed whether E2 promotes mela-
tonin production during the light phase. Greater con-
sideration of circadian phase in rodent studies is needed 
to reconcile �ndings from animal and human literature.

In rodents, the ventral SCN responds to E2 replace-
ment with increased neuronal �ring (131) and enhanced 
transcription factor expression (132). Further, there are 
sex differences in the circadian patterns of neuropep-
tides in the lateral SCN, which are likely in�uenced by 
E2. For example, peak expression of the SCN signaling 
molecule vasoactive intestinal polypeptide-encoding 
gene, vip, occurs at the beginning of the dark phase in 
gonadally intact males, and during the light phase for 
females. OVX shifts the rhythm to be more male-like, 
whereas E2 administration returns the rhythm to the 
light phase (133). E2 also advances the expression of 
the Period Circadian Regulator 2 gene (Per2) to earlier 
(134), which may shift circadian timing to promote an 
earlier chronotype. It remains to be seen what impact 
menopause-associated E2 loss has on SCN functions 
in humans, and whether alterations may predispose 
women to sleep disorders, particularly insomnia.

Interaction between Ovarian Hormones 
and Sleep: Implications for Cognitive 
Health and Pathological Aging

Ovarian hormones modulate the memory-

promoting effects of sleep

Despite the vast literature on memory-promoting 
sleep effects, few studies have addressed sex or hor-
monal milieu as potential modulators. In 1 study, REM 
was selectively reduced by placing rats on a platform 
in a water chamber for 72 hours. This platform per-
mits rats to fall asleep, but prevents them from entering 
REM, as the associated atonia leads them to touch/
fall into the water. Impaired spatial learning was dem-
onstrated across groups, but was most pronounced 
in OVX rats (135), implicating E2/P in the learning-
promoting effects of sleep in females. Human studies 
provide consistent support. For example, men and 
women in the midluteal, but not early follicular phase, 
bene�ted from postlearning napping (Fig. 1). E2 levels 
were positively associated with learning among women, 
and a learning-related increase in spindle activity was 
demonstrated only in men and midluteal women (136). 

Since spindles are important for memory consolidation 
(137, 138), these �ndings suggest that E2 plays a direct 
role in promoting sleep-dependent memory consolida-
tion. Reduced postnap associative memory performance 
was also observed among women close to menses (–5 to 
+6  days around menses onset; perimenses; low E2/P), 
but not those outside the perimenses phase (>6  days 
from menses; nonperimenses). Associations with EEG 
events also differed across conditions, with perform-
ance correlating with spindles during perimenses and 
slow oscillations during nonperimenses (139). Thus, not 
only does hormonal milieu affect the ability to bene�t 
from sleep, it also appears to in�uence which memory-
supporting mechanisms are reinforced during sleep.

Ovarian hormones also modulate cognition across 
species, with the affected domains overlapping with 
those sensitive to sleep (66). There is also considerable 
overlap between the neuronal mechanisms impacted 
by sleep loss and those that support memory (140). 
For example, neurotransmitter systems implicated in 
sleep–wake cycle maintenance, including the cholin-
ergic, glutamatergic, dopaminergic, and serotonergic 
systems, interact with E2 to modulate memory and 
memory-related brain regions in rodents (141-145). For 
example, ovarian hormone deprivation (via OVX or ad-
ministration of the drug 4-vinylcyclohexene diepoxide) 
is associated with reduced levels of norepinephrine, 
serotonin metabolites, and amino acids (tryptophan 
and tyrosine) in the rat hippocampus (146). Melatonin 
is produced from serotonin via tryptophan (147); there-
fore, reduced tryptophan and/or serotonin levels may 
lower melatonin production. While speculative, perhaps 
melatonin levels are reduced following menopause due 
to altered serotonin availability. Altered synaptic plasti-
city may be another mechanism through which E2-sleep 
interactions promote memory (140). Given these �nd-
ings, greater consideration of sex/hormonal milieu will 
improve identi�cation of important mechanisms pro-
moting the bene�cial effects of sleep on memory.

Ovarian hormone loss and pathological aging 

in women

Unfortunately, menopause-associated sleep disturb-
ance and memory loss are typically studied in isolation. 
In addition to teasing apart the effects of aging from 
those of menopause-associated hormone loss, we also 
recommend cognitive measures be incorporated into fu-
ture studies to identify the long-term consequences of 
sleep disruptions in postmenopausal women.

Women are more likely than men to develop AD, due 
in part to increased longevity (148). Older cognitively 
healthy women with elevated β-amyloid (characteristic 
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of neurodegeneration) demonstrate more rapid cogni-
tive decline than age-matched men with comparable 
β-amyloid levels (149). Among individuals with ele-
vated genetic risk (ie, carriers of the ε4 allele of the 
apolipoprotein E gene), women are 43% more likely 
to develop mild cognitive impairment, ~4 times more 
likely to develop AD, and experience more rapid brain 
atrophy than male carriers (150). Animal studies cor-
roborate these �ndings. Female transgenic AD mouse 
models have elevated β-amyloid accumulation (151), 
which accumulates at an earlier age than males (152). 
Together, these data indicate that female sex is a risk 
factor for AD. While speculative, perhaps menopause-
associated sleep disturbance places women, particularly 
ε4 carriers, at higher risk.

In addition to supporting memory consolidation, 
sleep plays a critical role in the glymphatic system, a glial-
dependent waste clearance pathway (153), involving 
the removal of toxins including AD-associated proteins 
(β-amyloid/tau). Toxins build up during wake and are 
eliminated during sleep, particularly SWS (154, 155), 
and acute sleep deprivation increases β-amyloid in mice 
(156) and young humans (157). Sleep fragmentation is 
a risk factor for AD (158), and emerges well before the 
clinical onset of AD (159). Sleep apnea, which is char-
acterized by fragmented sleep, is also more common 
among patients with AD (160). However, the ε4 variant 
is also a risk factor for apnea (79), suggesting a bidirec-
tional relationship between the 2. As discussed in “Role 
of E2 in homeostatic regulation of the sleep–wake cycle,” 
both fragmented sleep and sleep apnea prevalence in-
crease in peri/postmenopausal women, and in younger 
women with surgical menopause (93). Insomnia, which 
is also higher among peri/postmenopausal women (64, 
65), is also considered a risk factor for AD (161). If sleep 
disturbances emerge at midlife and remain untreated, 
they can adversely affect women’s brain health and cog-
nitive functioning speci�cally, potentially elevating AD 
risk, particularly among ε4 carriers.

Estrogens are known to enhance cognition in fe-
males (162-166), yet few studies have focused on older 
females, including older postmenopausal women 60+ 
years. One important caveat related to the critical 
window hypothesis relates to the timing of treatment 
initiation, with many older studies initiating HT 10+ 
after last menstrual period, resulting in null �ndings or 
even adverse effects (167). Additionally, the effective-
ness of HT may relate to the presence of ε4. For ex-
ample, “oral estrogen” was found to reduce the risk of 
cognitive impairment among cognitively healthy older 
noncarriers (aged 65+ years), but had no effect on car-
riers (168). In another study, E2 use was associated with 

lower β-amyloid deposition among slightly younger 
postmenopausal (52-65 years) ε4 carriers (169). Taken 
together, these data suggest that while estrogens bene�t 
cognition and reduce neurodegeneration, they may not 
prevent cognitive decline among ε4 carriers. It remains 
unknown whether E2 use alleviates sleep disturbance 
among older postmenopausal women, and to what 
extent ε4 status affects the pattern of results. Animal 
studies suggest that E2-induced synaptic sprouting and 
expression of apolipoprotein E messenger ribonucleic 
acids in rodents could support an E2–APOE interaction 
that warrants further investigation (170, 171).

Despite the elevated AD risk among older 
postmenopausal women, limited research has been de-
voted to understanding contributing factors. Genetic 
risk is obviously an important consideration, but add-
itional factors, including sleep disruptions are becoming 
increasingly recognized, particularly as potential early 
markers. Postmenopausal women experience frag-
mented sleep and elevated risk for sleep conditions as-
sociated with AD, including apnea and insomnia. The 
contribution of ovarian hormone loss remains elu-
sive. Future studies are needed to better understand 
the consequences of long-term ovarian hormone loss 
on sleep, including any interactions with neurotrans-
mitter systems, whether poor sleep contributes to de-
mentia risk and how early interventions targeting sleep 
and hormone levels may improve cognitive outcomes in 
aging women. Not only should future studies elucidate 
the effectiveness of E2/P in bene�tting sleep at midlife, 
but also determine if they aid in prevention of patho-
logical aging both among ε4 carriers and noncarriers.

Conclusion

This mini-review highlights cross-species evidence 
supporting the involvement of ovarian hormones in 
maintaining the female sleep–wake cycle across the 
adult lifespan. In addition to neurological evidence 
implicating E2 in regulating the sleep-wake cycle, be-
havioral evidence suggests that E2 consolidates the 
cycle by promoting activity during the night and sleep 
during the day. In premenopausal women, the extant 
literature suggests subtle effects of menstrual cycle on 
sleep physiology. Peri/postmenopause is associated 
with elevated sleep complaints and disorders, but the 
sleep physiology literature is more limited, and suggests 
the effects are restricted to increased cortical arousal, 
SWS, sleep fragmentation, and spindle decline. Many of 
these studies are confounded by age. Stronger support 
comes from comparisons between HT users and non-
users, which show improved self-reported sleep quality, 
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reduced sleep latency and fragmentation, and decreased 
insomnia symptoms and sleep apnea risk. Correlational 
studies provide support for a direct role of E2 loss (or 
elevated FSH) on fragmented sleep.

Several gaps in knowledge remain, including the ex-
tent to which menopause-associated sleep disturbance 
continues beyond midlife, particularly for untreated 
sleep conditions, as they may predispose women to 
dementia, particularly among ε4 carriers. Additional 
gaps include the indirect effects of sleep disturbance 
on cognition at midlife, and the contributions of circa-
dian rhythmicity and synaptic plasticity in menopause-
associated sleep disturbance. Shift work is associated 
with early menopause (127) and can disrupt men-
strual cycles in premenopausal women (128), but the 
long-term consequences on sleep and cognition are un-
known. Importantly, early menopause has been associ-
ated with increased cardiovascular disease risk, as well 
as shorter life expectancy and cognitive decline (172).

Not only should greater research attention be placed 
on investigating sleep in older postmenopausal women, 
but researchers that study sleep and cognition need to 
place greater emphasis on addressing biological sex/hor-
monal milieu. This is particularly important in non-human 
animal studies, which frequently use male-only samples. 
Future studies of nonhuman animals considering time-
of-day effects will clarify the precise functions of ovarian 
hormones in the brain while helping to identify long-term 
consequences of chronic sleep restriction.

In humans, the role of E2 in modulating sleep during 
other periods of hormonal �ux, such as puberty and 
pregnancy, also warrants increased research attention 
to ensure that girls and women maintain optimal sleep. 
Addressing the potential bene�ts of speci�c HT types 
(eg, E2 with P) and the multifactorial nature of sleep 
disruption will help us to better characterize optimal 
healthy sleep, especially within the context of reduced 
memory and/or mood in everyday life. While our review 
provides convincing evidence for a role of ovarian hor-
mones in sleep modulation across species, the literature 
is inconsistent. Studies that properly control for age, 
hormone regimen, and other relevant factors are needed 
before �rm conclusions can be made.

Research currently suggests that 30% to 50% of 
medical residents in their �nal training year are “not at 
all” prepared to manage menopausal symptoms (173). 
This has obvious implications for peri/postmenopausal 
women seeking treatment for menopause symptoms 
and can have repercussions for their brain health years 
later. Ultimately, the effects of HT on sleep and brain 
function depend on initiation, duration of use, and type 
of HT, and the relevance of these variations on sleep, 
dementia, and cognitive aging remain to be con�dently 

established. Sleep is altered in healthy and pathological 
aging, and so it is important to consider how ovarian 
hormones contribute to either process. This can ad-
vance sex-based sleep disorder identi�cation and treat-
ment approaches, while clarifying why women are at 
elevated risk for dementia. This review highlights many 
remaining questions about effects of ovarian hormone 
loss on sleep; clearer answers that will enhance health 
and quality of life in women are, frankly, long overdue.
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