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 Abstract.-Population genetics theory suggests that temporally fluctuating selection on pheno-
 types can act to maintain genetic variance only under very restrictive conditions. However, this
 conclusion is based on models with discrete nonoverlapping generations. We propose here that
 temporally fluctuating selection can indeed contribute significantly to the maintenance of genetic
 variation when the effects of overlapping generations and age-specific or stage-specific selection
 are considered. We develop a simple model for a population with overlapping generations,
 experiencing stabilizing selection with a temporally fluctuating optimum, and subject to repeated
 invasions by mutants with alternative phenotypes. We find that an evolutionarily stable popula-
 tion must have positive genetic variance maintained by selection so long as the product (variance
 of fluctuations) times (amount of generation overlap) times (selection intensity) is sufficiently
 high. This result applies to haploid, diploid, single-locus, or multilocus inheritance, and it does
 not depend on any form of heterozygote advantage to maintain genetic variance. However, it
 depends on the map between genotype and phenotype being constrained. If a single genotype
 can produce an arbitrary distribution of phenotypes, then genetic variance is not maintained by
 selection.

 Temporally fluctuating selection, in which the relative fitness of different phe-
 notypes varies over time, has repeatedly been proposed and rejected as a signifi-
 cant process maintaining genetic variation in natural populations (Hedrick et al.
 1976; Hedrick 1986). Conditions exist under which fluctuations may promote
 polymorphisms in models for Mendelian (single-locus) traits, but they are typi-
 cally thought to be too restrictive to be of general importance (Hedrick 1986),
 with the exception of heterozygote advantages resulting from lower between-
 generation fitness variance as in the SAS-CFF models (Gillespie 1978, 1991).
 Frank and Slatkin (1990) have described a general scheme that places most formu-
 lations of spatially and temporally varying selection on Mendelian traits in a
 common framework. They conclude that maintenance of a polymorphism by
 spatially varying selection is likely, whereas under temporally fluctuating selec-
 tion it is not. Likewise, quantitative genetic models dealing with the maintenance
 of variation in quantitative (multilocus) traits through mutation-selection balance
 have shown that random temporal variation in phenotypic fitnesses increases
 genetic variance not at all, or only slightly, over that maintained under constant
 stabilizing selection (Lande 1977; Turelli 1988; Barton and Turelli 1989). For
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 haploid models of quantitative trait inheritance, Karlin (1988, p. 143) found that,
 without any mutation to restore variance, "selection would eliminate genetic

 variability even when the selection mode varies over successive generations."
 Despite the broad consensus of these findings, we propose that temporally

 fluctuating selection can indeed contribute significantly to the maintenance of

 genetic variation when the effects of overlapping generations, and age-specific or
 stage-specific selection, are considered. The mechanism we propose here is quite
 robust to varied assumptions about the underlying genetic system, applying in

 both single-locus and multilocus models, and does not depend on any form of
 heterozygote advantage to maintain genetic variance. The models discussed

 above make the assumption (prevalent throughout theoretical population genet-

 ics) that generations are discrete and nonoverlapping, so our proposal does not

 conflict with any previous mathematical results. However, it suggests that the
 biological relevance of many previous results may be limited to organisms with
 nonoverlapping generations.

 Our proposal derives from ecological theory developed to examine the role of
 temporal environmental variation in interspecific competition, combined with
 ideas from evolutionary game theory. A number of investigators (e.g., Chesson
 and Warner 1981; Ellner 1984; Shmida and Ellner 1984; Chesson 1986) have
 shown that, in an environment that alternates randomly between conditions favor-
 able to one species and those favorable to another, the two species can coexist
 provided that there is a life-history stage for each that survives over multiple
 opportunities for reproduction and that is not strongly affected by the features of
 the environment that vary. Similar results also hold for deterministic variations

 in conditions affecting reproductive success or population interactions that result

 in fluctuating population densities (Levin et al. 1977; Levins 1979; Armstrong and
 McGehee 1980).

 The basic result, called the "storage effect" (Chesson 1983; Warner and Ches-

 son 1985), derives from the fact that, although an organism or a population of
 organisms may experience considerably reduced or even complete loss of recruit-
 ment in years favorable to its competitor, it can persist so long as there are
 life-history stages that are viable for periods long enough to experience the next

 favorable year. Such life-history stages include long-lived adults (with environ-
 mental fluctuations affecting the success of their offspring) and dormant seeds of
 annual plants (with environmental fluctuations affecting the success of active
 individuals).

 Clearly, in asexual species these ecological models are directly transferable to
 a genetic system. Coexistence of species in ecological models is equivalent to
 maintaining a genetically heterogeneous population, so long as the relevant char-
 acteristics are genetically determined (Seger and Brockmann 1987). The same
 situation can also apply to models of sexual diploid species (see, e.g., Haldane
 and Jayakar 1963; Karlin and Lieberman 1974). Significantly for our analogy with
 genetic polymorphism, both Chesson (1984) and Seger and Brockmann (1987)
 have shown that temporal variation is roughly comparable to spatial variation in
 maintaining diversity in long-lived organisms with overlapping generations.

 However, the situation described by these two-species ecological models and
 the analogous two-allele genetic models is essentially a "protected polymor-
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 phism" maintained by balancing selection among a few particular types, none of
 which may be at or near the optimal phenotype for the selection regime. Thus,

 these models do not address the outcome of natural selection acting on a popula-

 tion containing a continuous range of phenotypes for the trait of interest. A well-

 known feature of evolution in fluctuating environments is the expectation that
 individuals should evolve a single phenotype, presumably supported by a single

 genotype (see, e.g., Cohen 1966; Slatkin 1974; Seger and Brockmann 1987; Phi-

 lippi and Seger 1989). This bet-hedging strategy is predicted to exclude all others

 because, although it never (or virtually never) performs better than all other types
 in a given year, it never performs really badly and is best overall in the long run.

 Therefore, our main goal here is to explore theoretically the conditions under
 which a genetically variable population is evolutionarily stable. Evolutionary sta-

 bility is defined by the property that any rare mutant not already present in the
 population will be removed by selection (Maynard Smith 1982). The significance
 of examining evolutionary stability in order to identify conditions under which
 genetic variance is maintained is illustrated by models of seed dormancy strate-
 gies (Ellner 1985). As in Seger and Brockmann's (1987) model, there are pairs of
 strategies that will coexist in a fluctuating environment (i.e., both are persistent
 in the sense of stochastic boundedness; see Chesson and Ellner 1989). However,
 there is always a single evolutionarily stable strategy (ESS) that outcompetes and
 in the long run excludes all other strategies. Unless the ESS strategy can only
 be achieved by a heterozygote, selection does not maintain genetic variance.

 We develop our proposal by analyzing a simple model for fluctuating selection
 with overlapping generations. The model derives from consideration of the effects

 of long-term egg diapause on the maintenance of genetic variation in a population
 of freshwater copepods (planktonic crustaceans), Diaptomus sanguineus, ex-
 posed to annual variations in the direction and intensity of selection imposed by
 fish predation (Hairston 1988; Hairston and Dillon 1990). The model is a general-
 ization of the processes operating in that specific example that is applicable to a

 broad variety of circumstances. A key feature of the model is the presence of a
 life-history stage immune to the environmental fluctuations, which allows the

 storage effect to operate. Consequently, more risk-prone types that have done
 poorly in recent years are quickly reestablished and may take advantage of favor-
 able conditions when they occur. When the immune stage provides an adequate

 safety net and environmental variability is high, a bet hedger is no longer able to
 exclude all of the more risk-prone strategies.

 Our second goal is to explore the behavior in this system of a second type of
 bet hedger: the mixed strategy. We generalize Seger and Brockmann's (1987)
 proposal that, if it is possible for a single genotype to produce multiple pheno-

 types, then there will be some ESS mixture of phenotypes that can successfully

 invade any population of single-phenotype genotypes.

 A MODEL

 Immediately before the reproductive season each year, the population under

 consideration consists entirely of individuals in the persistent stage of the stage

 of life cycle (e.g., diapausing eggs or long-lived adults). Let Xi(t) be the abundance
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 of type i individuals (or females, in a sexual population) in year t; we assume
 for now that "type" is both phenotype and genotype (haploid genetics without
 mutation) and ignore age structure within the persistent stage. A fraction H > 0
 of the type i population engages in reproduction, with a per capita fecundity Yi(t)
 and per capita survival Sr < 1. The reproductively inactive ("dormant") individu-
 als survive at per capita rate 0 < Sd < 1. All types are assumed to have the same
 H, sr, and Sd. Define y = Hsr + (1 - H)sd, so that y measures the amount of
 generational overlap. The population dynamics are then (Cohen 1966)

 Xi(t + 1) = Xi(t) * [HYi(t) + y] . (1)

 If diapausing eggs or seeds are the persistent stage, then H is the fraction hatching
 or germinating each year and sr = 0, so that y = (1 - H)sd.

 Selection occurs because the trait of interest is assumed to affect the fecundity
 (number of surviving offspring) of active individuals. That is, Yi(t) is phenotype-
 dependent. We assume that phenotypes can be described by a single variable D
 and that the relative fitness in a given year (R) depends on the deviation between
 type i's phenotype (Di) and the optimal phenotype in year t (Me). An example is
 Gaussian stabilizing selection with a fluctuating optimum, in which the relative
 fitness of type i in year t is

 R(Dj - Mt) = exp[-(Di - Mt)2/2-2]. (2)

 The intensity of selection in equation (2) is determined by cr,,, the standard devia-
 tion of the Gaussian curve describing relative fitnesses, with more intense selec-

 tion if r,,, is small. In general, we assume that deviations from the optimal pheno-
 type are penalized-that is, that R(x) > R(y) if 0 < x < y or y < x < 0.
 "Environmental variance" (phenotypic variance not under genetic control) can

 be accommodated within this model by replacing R(Dj - Mt) by the average of
 R(D - Mt) over the phenotypic distribution of type i individuals.

 To specify the absolute fitnesses we use the "saturating yield" model intro-
 duced by Levin et al. (1984); that is, we assume that the total number of offspring
 produced in a given year by all types combined is a constant K > 0. This implies
 that

 Y1(t) KR(D -Mt) (3)
 Z HXj(t)R(Dj - Mt)

 j

 where R is the relative fitness function, and the index i runs over all types in the
 population. Since the total offspring production is always K, it follows from equa-
 tion (1) that

 ,Xj(t + 1) = K + yXj(t).
 I I

 Consequently, the total population size converges to the stable equilibrium

 X= K/(1 - y). (4)
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 Thus, selection is frequency-dependent but not density-dependent; and when
 there is only one type in the population, its abundance converges to X. Experi-
 ence with other models (Levin et al. 1984; Ellner 1985; Cohen and Levin 1991)

 suggests that results obtained for the saturating yield model generalize qualita-
 tively to some more realistic models of density-dependent competition. Except
 for very low total densities such that the denominator of expression (3) is not
 much greater than one, the saturating yield model will be nearly equivalent to
 the equation used in an earlier article (Hairston and Munns 1984) to model fecun-

 dity in Diaptomus sangguineus. Another motivation for this model is the "law of
 constant final yield" for plant populations limited by crowding (Harper 1977).
 When this law applies, the saturating yield model is equivalent to assuming that
 seed output is a constant fraction of total yield.

 INVASIBILITY ANALYSIS AND EVOLUTIONARY STABILITY

 Whether coexistence occurs in infinite-population stochastic models such as
 ours usually can be determined from an invasibility analysis based on the bound-
 ary growth rate of each competitor (Turelli 1978; Chesson and Warner 1981). For
 types d and D, type d's boundary growth rate, p(d, D), is essentially defined to
 be the log of the geometric mean growth rate for a small type d subpopulation
 invading an established population of type D individuals. Consequently,

 If p(d, D) < 0, then d cannot invade D;

 If p(d, D) > 0 and p(D, d) > 0, then d and D will coexist.

 In our model, from equation (1) we have p(d, D) = E ln[HY(d, D, t) + y] where
 Y(d, D, t) is the per capita fecundity of rare type d eggs in a stable population of
 type D individuals; that is,

 KR(d -Mt -(1-Mt
 Y(d,D, t) M () I - y)HR(D -M t) (5) HXR(D - Mt) R(D -

 Therefore, in our model

 R(d - Mt)(6
 p(d, D) = E ln (1 - )R(D - M)(6)

 Previous articles (Chesson and Ellner 1989; Ellner 1989) give the general defini-
 tion of boundary growth rates and technical conditions under which the invasibil-
 ity analysis outlined above is valid. For the specific examples discussed later,
 those conditions are satisfied. Therefore, if a type D* is an ESS, it must be the
 case that p(d, D*) ? 0 for all d $ D* and hence that

 ap(D*,D*)= 0 (7)

 (the first-order condition for a local maximum). We will refer to any solution of
 equation (7) as a "candidate ESS."

 Our goal in analyzing the model is to determine whether a population containing
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 multiple types will tend to become monomorphic or instead will settle into fluctu-

 ations with many types coexisting. We use Ludwig and Levin's (1991) approach
 based on a Taylor series approximation to p(d, D) near a candidate ESS D*; a
 second-order approximation is necessary because all first-order terms vanish at
 a candidate ESS. Define

 a2 p a2p
 Pdd = dd2(D*, D*), PDD = (D*, D*).

 The signs of PDD and Pdd determine the sign of p(D*, d) and p(d, D*), respectively,
 for d and D near D*. These tell us whether D* can invade and be invaded by
 nearby types (i.e., types other than D* in some interval around D*). Specifically,
 if Pdd > 0, then D* can be invaded by any nearby type; but if Pdd < 0, then D*
 is a local ESS that cannot be invaded by any nearby types. If PDD > 0, then D*
 can invade all nearby types; but if PDD < 0, then D* cannot invade any nearby
 types.

 Two cases are particularly important for our analysis. If Pdd < 0 and PDD > 0,
 then D* is noninvasible and can itself invade any nearby strategy; hence, D* is
 a continuously stable strategy, or CSS (Eshel and Motro 1981; Eshel 1983). In
 this case a monomorphic population with all individuals having a CSS phenotype
 would be the predicted outcome of natural selection. On the other hand, if Pdd >
 0 for all candidate ESSs, then any monomorphic population is invasible, and
 multiple types must be coexisting at any stable state of the population. A candi-

 date ESS with Pdd > 0 and PDD > 0 can be invaded by nearby types, but it can
 itself invade all nearby types; D* is then an evolutionarily compatible strategy,
 or ECS, as defined by Cohen and Levin (1991).

 RESULTS

 The conclusion from invasibility analysis is that whether a genetically variable
 population is evolutionarily stable in our model depends on the signs of Pdd and

 PDD. For our model it is straightforward to calculate these quantities in terms of
 the relative fitness function R, by differentiating inside the expectation in equation
 (6). This requires some mild assumptions about the selection regime; it is suffi-

 cient to assume that the optimal phenotype Mt lies within some finite interval [ml,
 M2] with probability 1 and that R and 1 IR are twice continuously differentiable on
 [ml, M2].

 For convenience in presenting the results from these calculations, we first scale
 R so that R(O) = 1; this can always be done since R measures relative rather
 than absolute fitnesses. We then define 4(x) by R(x) = exp(- b * 4(x)), where +

 is a nonnegative function with 4(0) = 0 and 4(1) = 1. Then b .(Di - Mt) is a
 measure of the penalty for deviating from the optimal phenotype in year t, and
 the parameter b measures the intensity of selection. In terms of b and +, the
 condition (7) defining a candidate ESS can be expressed as

 E[k'(D* - Mt)] = 0, (8a)
 and we have

 Pdd = C (ybV - E) (8b)
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 and

 PDD- C (,yb?V + E), (8c)
 where

 V= var[kf'(D* - )], (8d)

 E= E[i"(D* - )], (8e)

 and C is a positive number whose value depends on model parameters.
 The general conclusion from equation (8) is that overlapping generations pro-

 motes the maintenance of genetic variation under fluctuating selection. Note that

 V is nonnegative, and, if the optimal phenotype Mt fluctuates, then V will be
 positive. An increase in the amount of generational overlap y (e.g., by increasing
 the survival rate Sr or Sd) has no effect on the values of D*, E, or V. Hence, such
 changes may move Pdd from negative (in which case D* is an ESS) to positive
 (D* can be invaded), but not vice versa. Thus, the general effect of generational
 overlap is to destabilize any population equilibrium at which the genetic variance
 is zero.

 For Gaussian stabilizing selection (eq. [2]), j(x) = x2 and b = 1/(2a',). The

 only candidate ESS is D* = E(Mt), the optimal phenotype under average condi-
 tions, so we have E = 2 and V = 4 var(Mt). Therefore PDD > 0, SO D* is either
 a CSS or an ECS, depending on whether Pdd is negative or positive. Substituting
 the values of V and E into expression (8) and using the definition of b give that
 D* is an ECS if

 ,y var(Mt)/cr ,! > 1, (9)

 and D* is a CSS if equation (9) holds with the sign reversed. When equation (9)
 holds, there is no ESS, so as noted earlier a population with zero genetic variance
 cannot be evolutionarily stable.

 Consequently, expression (9) is the condition under which genetic variance is
 maintained at evolutionary equilibrium with Gaussian stabilizing selection. An
 intuitive explanation of equation (9) is as follows. Suppose that the persistent
 stage consists of diapausing eggs. If generations do not overlap (H = 1), the
 winning strategy is to adopt the phenotype with the highest fitness in the average
 environment. But if eggs can persist in dormancy and the temporal environmental
 variability is sufficiently high, the phenotype that "bets" on the average can be
 invaded by but also can invade riskier phenotypes that have more widely fluctuat-
 ing fitnesses and rely on the egg bank to cushion their losses in bad years. Simi-
 larly, a short-lived adult with few opportunities to reproduce must bet on the
 average, while a long-lived adult can play a riskier strategy with occasional big
 payoffs.

 These qualitative results do not depend on selection being exactly Gaussian.
 One simple generalization is to consider fitness penalties of the form j(x) =
 +1(I x I), where +'(x) > 0 and 4"(x) > 0 for x > 0. Then E and V are both positive,
 so as with Gaussian selection any candidate ESS is either a CSS or an ECS. The
 condition for maintaining genetic variance is Pdd > 0, which is true if

 yb > EIV. (10)
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 Thus, genetic variance will be maintained if selection is intense and there is a

 high level of generational overlap, and genetic variance will be lost if selection is

 too weak or there is too little overlap.
 If 4" is not always positive, then it is possible to have E ? 0. In such cases Pdd

 is positive, so long as the phenotypic optimum fluctuates and there is some long-

 term dormancy. Hence, any candidate ESS is invasible, and genetic variance will
 be maintained.

 Two simple but significant extensions of these results are possible. First, the

 conditions for maintaining genetic variance can be extended in the usual way to
 diploid models with an arbitrary finite number of loci, under the standard assump-
 tions of random mating and infinite population size. Assume that the trait of
 interest depends on the individual's genotype at a single locus with incomplete
 dominance. The dynamics of a phenotypically monomorphic population in our
 model are independent of the genetics. When a rare mutant allele enters such a

 population, it is present almost exclusively in individuals heterozygous at the
 locus where the mutation arose. Consequently, the boundary growth rate (eq.
 [5]) is correct for invasion by a rare allele such that heterozygotes are type d,
 whereas homozygotes for the common allele are type D. It therefore follows that
 if type D* is an ECS as defined earlier, any genetically homogeneous population
 can be invaded by rare alleles. Conversely, if D* is an ESS and there is an allele

 A such that AA homozygotes are type D*, then all rare alleles will have negative
 boundary growth rates and cannot invade.

 The second extension is to allow fluctuations in the intensity of selection, for

 example, by changing the relative fitness function to R(di, t) = exp(-Itb4[di -
 Mt]) where It is a nonnegative random variable with a mean of one, representing
 fluctuations in selection intensity. If It and Mt are independent, the value of V is
 increased by a factor of 1 + var(It), and otherwise equation (8) and the conditions
 for maintaining genetic variance are unchanged. Thus, fluctuations in selection
 intensity that are uncorrelated with fluctuations in the optimal phenotype favor

 the maintenance of genetic variance. If It and Mt are not independent, equation
 (10) still holds (with slightly different formulas for V and E), so fluctuations in
 selection intensity do not affect the conclusion that genetic variance is maintained
 when there is strong selection and a high level of generational overlap.

 SIMULATIONS

 The invasibility analysis only considers pairwise competition, and it is local
 (i.e., it applies for phenotypes near a candidate ESS). Extrapolation of these
 results to competition among many types, some of them far from a candidate
 ESS, is a reasonable but unproved conjecture. We therefore ran simulations of
 the model to observe its behavior over an extended period and verify the conjec-
 tures that an ESS also outcompetes any "coalition" of invaders and that the
 existence of an ECS implies that the population tends to develop an evolutionarily
 stable combination, or ESC (Ludwig and Levin 1991), of several coexisting types.

 Baseline values of parameters were chosen in rough correspondence with the
 situation occurring in the copepod population mentioned earlier. The character
 under selection is the date at which females switch to producing diapausing eggs
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 rather than immediately hatching eggs. The interannual variation in the optimal

 switch date is Gaussian with a standard deviation of 13 d (Hairston and Munns
 1984; Hairston 1988). Gaussian stabilizing selection was employed with selection

 intensity set at b = 0.01 to approximate the selection intensities estimated from

 a cohort model of the population dynamics (Braner and Hairston 1989). The

 fraction of eggs deposited in the lake sediment that emerge from diapause in any

 given year is unknown but proposed to be less than 50% (Hairston and De Stasio
 1988). Based on De Stasio (1989) we used H = 0.25. Survival of dormant eggs

 is unknown but presumed to be high: Sd = 0.9.

 Results from our simulations are fully consistent with equation (9). The baseline

 parameters are in the ECS region, and a positive variance is maintained (fig.
 1A), which is similar to typical phenotypic variances observed in the copepod

 population (median phenotypic SD = 8.5 d, n = 9; Hairston and Dillon 1990).

 Reducing the standard deviation of the phenotypic optimum M, to 7 d or increas-
 ing H to 0.85 moves the model into the ESS region, and the phenotypic variance
 drops toward zero (figs. 1B, C). Over 100 other parameter combinations were
 tried, with parameters chosen and simulations run by students as a homework

 exercise, and the results were again consistent with equation (9).

 These results underscore the significance of using evolutionary stability, rather
 than the existence of alleles that can be maintained in a polymorphism, as the

 mathematical criterion for identifying conditions under which selection maintains

 genetic variance. For all of the parameter values shown in figure 1, there are
 many pairs of alleles that could coexist in a two-allele polymorphism maintained
 by selection (this can be proved by approximating p near D* as discussed previ-

 ously and finding types that can invade each other). An analysis based on evolu-
 tionary stability allows us to identify the differences in the long-term dynamics.

 MIXED-STRATEGY BET HEDGING

 We can now explore, much as Seger and Brockmann (1987) have done, what
 role a mixed strategy plays in our previous result. The dynamics of our haploid

 model in equation (1) can be expressed as

 Xi(t + 1) = Xj(t)rj(t)

 where

 ri(t) = HYi(t) + y.

 If we assume that there is a stable combination and choose any two members i
 and j, then the long-term average growth of each type is zero:

 E[log ri(t)] = E[log rj(t)] = 0 . (11)

 Consider invasion of the combination by a mixed strategy in which each individ-
 ual chooses phenotype i with probability p and phenotype j with probability 1 -
 p. The mixed strategy's boundary growth rate is then

 E{log[pri(t) + (1 - p)rj(t)]}. (12)

 By Jensen's inequality (Breiman 1992), unless ri(t) = r1(t) with probability 1,
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 equation (12) is always greater than

 E[p log ri(t) + (1 - p) log rj(t)],

 which equals zero by equation (11). Thus, if mixed strategies are possible, any
 combination containing several distinct genotypes is invasible. This result also

 applies if the combination consists of mixed strategies; hence, if all mixed strate-

 gies are possible, there cannot be an evolutionarily stable combination. However,
 the advantage of mixed strategies depends on the occurrence of environmental

 variability: if fitnesses are constant, then equation (11) implies that ri(t) rj(t)
 1, so a mixed strategy does not confer increased fitness.

 CONCLUSIONS

 Organisms with life histories that dictate strongly overlapping generations have
 the capacity to maintain genetic variation in temporally fluctuating environments.
 It is the storage of genotypes in long-lived stages on which the fluctuating selec-
 tion does not act that provides the mechanism for maintenance of polymorphism.
 Given sufficient levels of generational overlap, environmental variation, or both,
 genetic and phenotypic variation is maintainied. The appearance of a genotype
 that can produce a mixture of phenotypes leads in theory to maintenance of
 phenotypic variation but the loss of genetic variation. The latter result is not
 unique to our model. Indeed, as Gillespie and Turelli (1989) observe, the mainte-
 nance of genetic variation by selection always depends on constraints to what a
 single genotype can achieve: if a model contains a genotype that is best under all
 conditions, then genetic variance cannot be maintained by selection. In Cohen's
 (1970) model for the optimal timing of diapause, mixed strategies were generally
 favored under density-independent selection with nonoverlapping generations.
 However, Ludwig and Levin (1991) found that coexistence of mixed strategies
 could occur in a spatially structured model for plant populations with nonoverlap-
 ping generations. Consequently, our result that mixed strategies cannot coexist
 may not persist in models with age or spatial structure.

 We have obtained general results by restricting our analysis to the qualitative
 question of whether selection on phenotypes acts to remove variance (the ESS/
 CSS case) or maintain variance (the ECS case). Our presumption, in interpreting
 the results, is that these would generally correspond to "low" versus "high"
 levels of variation in realistic settings where mutation and drift are also operating.

 FIG. 1.-Dynamics of the frequency distribution of phenotypes in the haploid model (eq.
 [1]), with Gaussian stabilizing selection (eq. [2]) and parameters based on Diaptomus san-
 guineus populations in Rhode Island. Each plot is based on 100 simulation runs of the model
 with the same parameter values and initial conditions but different random fluctuations in

 selection. Solid curves show the mean (over simulation runs) of the phenotypic frequency
 distribution's standard deviation; dotted curves show the mean ? 1 SD (over simulation
 runs) of the same quantity. In all simulations the survival rate of dormant eggs was s = 0.9,
 the selection intensity was b = 1I(2u2,) = 0.01, and the distribution of the optimal phenotype
 Mt was a zero mean Gaussian. A, H = 0.25, SD(Mt) = 13 d. B, H = 0.25, SD(Mt) = 7 d.
 C, H = 0.85, SD(Mt) = 13 d.
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 However, further work is necessary to determine how strongly the specific ge-

 netic basis of a trait can affect the equilibrium level of phenotypic variance under
 a given selective regime in the ECS case.

 For the case of haploid asexual inheritance, our model exemplifies the fact that
 overlapping generations allow fluctuating selection to maintain a genetic polymor-
 phism. Previously this situation was generally thought to be impossible (J. Gilles-
 pie, personal communication), although the result is closely related to some re-

 cent work in population genetics, and the corresponding result for competing
 species has been in the literature for over a decade (Chesson and Warner 1981).

 Frank and Slatkin (1990) observe that standard models for haploid selection fail
 to maintain polymorphism because all individuals of the same genotype have the
 same fitness, and they mention that spatial heterogeneity could create fitness
 variations that allow polymorphism. Our results show that, as one might expect,
 overlapping generations can have the same effect. Gillespie (1991, pp. 154-189)
 studies the dynamics of "c-haploid" models via diffusion approximations, includ-
 ing the result that polymorphism can occur for c < 1. The c-haploid model is a

 standard discrete-generation haploid model in which the change in allele frequen-
 cies between generations is multiplied by an arbitrary constant c > 0. Gillespie
 (1991) uses c-haploid models strictly as a tool for analyzing diploid models. How-
 ever, it is easy to show (by converting to allele frequencies rather than numbers)
 that, in the case of haploid inheritance, our model is equivalent to a c-haploid
 model with c = (1 - y).

 Several other theoretical studies have suggested that environmental variability
 can contribute to maintaining genetic variability, but the mechanisms are very
 different from the one proposed here. One mechanism is a lower fitness variance
 in heterozygotes relative to homozygotes. Gillespie's SAS-CFF models (Gillespie
 1978, 1991) incorporate genotype-environment interactions such that in each envi-
 ronmental state the fitness of the heterozygote is at least the arithmetic mean of
 the homozygote fitnesses, which allows polymorphisms to be maintained. Simi-
 larly, Gillespie and Turelli (1989) showed that genotype-environment interactions

 could maintain additive genetic variance in a polygenic model without fluctuating
 selection. In their model alleles have additive effects on the phenotype, so a
 genotype's variance in fitness over environments is a decreasing function of the
 number of heterozygous loci, and consequently polymorphisms are maintained
 by selection. A. Kondrashov (personal communication) has found that fluctuating
 selection with large fluctuations in the optimal phenotype can increase the amount
 of genetic variance maintained by mutation-selection balance, in a polygenic
 model similar to that of Turelli (1988). In Kondrashov's model generations do
 not overlap, and without mutation all genetic variance would be lost.

 In the copepod example referred to earlier, the authors (Hairston and Munns
 1984) found substantial phenotypic variation in an important fitness trait (repro-
 ductive phenology) expressed in a population of freshwater copepods known to
 experience significant interannual variation in the direction and intensity of selec-
 tion (Hairston 1988). A subsequent article (Hairston and Dillon 1990) reported
 that, in both field and laboratory studies, a substantial fraction of the observed
 phenotypic variation was genetically based. They raised the question of whether
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 the presence of an egg bank of propagules in long-term dormancy (shown to exist

 in Hairston and De Stasio 1988; De Stasio 1989), in combination with fluctuating
 selection, might furnish an explanation for the existence of genetic variation

 where none might otherwise have been expected.
 The results presented here provide a general foundation in support of such an

 interpretation but with an intriguing caveat: genetic variation is expected, but only

 so long as a mixed-strategy bet hedger is absent. It is difficult without additional
 information to proceed further in comparing our theoretical and empirical results.

 Obviously, for any specific system such as the copepod population that motivated

 our exploration, more data and more detailed models are needed. At present, we

 can only raise but not answer a number of questions. Is a mixed-strategy bet
 hedger truly absent from the copepod population? If so, is mixed-strategy bet
 hedging prevented by some constraint against it such as physiological cost or

 inherent complexity of the proposed adaptation? If not, is trait heritability ex-
 plained by the presence of more than one mixed-strategy genotype, each produc-
 ing a different mixture of phenotypes?

 Overlapping generations are not special cases in the biological world. Long-
 term dormancy is widespread among organisms in all five kingdoms, including a
 wide variety of microorganisms (Henis 1987), algae (Sandgren 1988), higher plants

 (Leck et al. 1989), aquatic invertebrates (e.g., rotifers: Nipkow 1961; crustaceans:
 Hutchinson 1967; and probably a large number of freshwater and marine inverte-
 brates with dormant stages), and insects with prolonged dormancy (Tauber et al.
 1986). An equally large array of organisms have long-lived, iteroparous adults.

 One group of these, coral reef fishes, was the topic of an early article on the
 storage effect and species diversity in ecological communities (Chesson and War-
 ner 1981). There are, indeed, many organisms that have both dormant propagules
 and long-lived adults (e.g., perennial plants).

 Overlapping generations, especially plant seed banks, have for the most part
 been viewed as phenomena slowing down the rate of evolutionary change (Tem-

 pleton and Levin 1979; Hairston and De Stasio 1988; Venable 1989). It is in
 some ways paradoxical that the same phenomena should be responsible for
 the maintenance of genetic variation on which evolutionary response to natural
 selection depends. Yet it is precisely because genetic change is slow in long-lived
 stages immune to selection that variation is maintained. Populations with high
 genetic variation are then capable of significant changes in gene frequencies in
 response to short-term changes in selection. In the face of sustained directional
 selection, however, response is limited by the rate of removal of variation from
 the pool of genotypes stored in long-lived individuals.
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