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Abstract: Oxygen is vital for life as it is required for many different enzymatic reactions involved
in intermediate metabolism and xenobiotic biotransformation. Moreover, oxygen consumption
in the electron transport chain of mitochondria is used to drive the synthesis of ATP to meet the
energetic demands of cells. However, toxic free radicals are generated as byproducts of molecular
oxygen consumption. Oxidative stress ensues not only when the production of reactive oxygen
species (ROS) exceeds the endogenous antioxidant defense mechanism of cells, but it can also occur
as a consequence of an unbalance between antioxidant strategies. Given the important role of
hepatocytes in the biotransformation and metabolism of xenobiotics, ROS production represents a
critical event in liver physiology, and increasing evidence suggests that oxidative stress contributes
to the development of many liver diseases. The present review, which is part of the special issue
“Oxidant stress in Liver Diseases”, aims to provide an overview of the sources and targets of ROS in
different liver diseases and highlights the pivotal role of oxidative stress in cell death. In addition,
current antioxidant therapies as treatment options for such disorders and their limitations for future
trial design are discussed.
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1. Introduction

Oxidative stress reflects the imbalance between the excessive formation of reactive
oxygen/nitrogen species (ROS/RNS) and limited antioxidant defenses. A direct conse-
quence of excessive ROS production derives from its interaction with cellular biomolecules,
such as DNA, lipids, and proteins, which are modified and may cause cell death. Besides
exogenous sources, such as ionizing radiation, diet, metals, pesticides or other toxic com-
pounds, ROS are also generated endogenously as byproducts of a variety of enzymatic
reactions and metabolic pathways that require molecular oxygen and are likely involved
in the pathogenesis of different human diseases including liver diseases (Figure 1). Liver
is one of the most critical organs in the body due to its numerous functions. Importantly,
the metabolism and detoxification of alcohol and drugs are its main tasks which produce
ROS as byproducts [1]. In addition, it is responsible for the storage of vitamins (A, B, D, E,
and K), glycogen, and minerals like iron and copper which are involved in ROS-generating
reactions. Remarkably, all chronic hepatic disorders, independently from their etiology,
share as a common feature a highly oxidative milieu that perpetuates cellular damage and
contributes to the progression of fibrosis, cirrhosis, and ultimately hepatocellular carcinoma,
meaning that all could benefit from the same therapeutic strategies aiming to boost the
antioxidant defense system.
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Figure 1. Reactive oxygen species can be produced by (1) exogenous sources such as alcohol, drugs, virus infection, UV light, radia-

tion, stress, and smoking, or (2) endogenous sources during metabolic pathways in which oxygen is involved. The metabolism of 

molecules like ethanol, drugs (such as APAP), and FFA in hepatocytes induce an increment in ROS formation in the mitochondria 

that in turn provokes mitochondrial dysfunction. The accumulated ROS can react with cellular biomolecules (lipids, proteins, and 

DNA) and alter or impede their functioning. The generation of these oxidized adducts extends oxidative damage and favors cellular 

death. Moreover, ethanol consumption and lipid-enriched diets can lead to the loss of the intestinal barrier integrity permitting the 

entry of microbial products or saturated-FA to the circulation that release pathogen-associated molecular patterns (PAMPs)/damage-

associated molecular patterns (DAMPs) and trigger the activation of cytokines (Il-1β, Il-6, Tnfα) leading to inflammation. APAP: 

acetaminophen; ATP: adenosine triphosphate; Ca2+: calcium ion; CYP2E1: cytochrome P450 2E1 oxydase; FFA: free fatty acids; HNE-

4: 4-Hydroxynonenal; LPS: lipopolysaccharide; MDA: malonaldehyde; MPT: mitochondrial permeability transition; NQO1: 

NAD(P)H: Quinone Oxidoreductase 1; OXPHOS: oxidative phosphorylation system; PAMPs: pathogen-associated molecular pat-

terns; ROS: reactive oxygen species; UV: ultra violet; ∆Ψ: mitochondrial membrane potential. 
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ROS include a number of molecular species derived from oxygen, such as superoxide 

(O2•−) anion, the prototype of ROS which is produced in enzymatic reactions and in the 

electron transport chain (ETC) of mitochondria, as well as other oxidants like hydrogen 

peroxide (H2O2) or hydroxyl radicals (•OH). The majority of ROS is produced in mito-

chondria [2,3], where superoxide anion can be generated as a by-product of transfer of 

electrons to oxygen during the respiratory chain to produce ATP [4]. Extramitochondrial 

sources of ROS include membrane nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase, lipoxygenases, cyclooxygenases, peroxidases, other heme proteins, 

xanthine oxidase, peroxisomal fatty acid β-oxidation, and hepatic P-450 microsomal de-
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Figure 1. Reactive oxygen species can be produced by (1) exogenous sources such as alcohol, drugs,
virus infection, UV light, radiation, stress, and smoking, or (2) endogenous sources during metabolic
pathways in which oxygen is involved. The metabolism of molecules like ethanol, drugs (such as
APAP), and FFA in hepatocytes induce an increment in ROS formation in the mitochondria that in
turn provokes mitochondrial dysfunction. The accumulated ROS can react with cellular biomolecules
(lipids, proteins, and DNA) and alter or impede their functioning. The generation of these oxidized
adducts extends oxidative damage and favors cellular death. Moreover, ethanol consumption and
lipid-enriched diets can lead to the loss of the intestinal barrier integrity permitting the entry of
microbial products or saturated-FA to the circulation that release pathogen-associated molecular
patterns (PAMPs)/damage-associated molecular patterns (DAMPs) and trigger the activation of
cytokines (Il-1β, Il-6, Tnfα) leading to inflammation. APAP: acetaminophen; ATP: adenosine triphos-
phate; Ca2+: calcium ion; CYP2E1: cytochrome P450 2E1 oxydase; FFA: free fatty acids; HNE-4:
4-Hydroxynonenal; LPS: lipopolysaccharide; MDA: malonaldehyde; MPT: mitochondrial permeabil-
ity transition; NQO1: NAD(P)H: Quinone Oxidoreductase 1; OXPHOS: oxidative phosphorylation
system; PAMPs: pathogen-associated molecular patterns; ROS: reactive oxygen species; UV: ultra
violet; ∆Ψ: mitochondrial membrane potential. Created with BioRender.com.

2. Free Radicals: Sources and Defense

ROS include a number of molecular species derived from oxygen, such as superoxide
(O2
•−) anion, the prototype of ROS which is produced in enzymatic reactions and in the

electron transport chain (ETC) of mitochondria, as well as other oxidants like hydrogen
peroxide (H2O2) or hydroxyl radicals (•OH). The majority of ROS is produced in mitochon-
dria [2,3], where superoxide anion can be generated as a by-product of transfer of electrons
to oxygen during the respiratory chain to produce ATP [4]. Extramitochondrial sources of
ROS include membrane nicotinamide adenine dinucleotide phosphate (NADPH) oxidase,
lipoxygenases, cyclooxygenases, peroxidases, other heme proteins, xanthine oxidase, perox-
isomal fatty acid β-oxidation, and hepatic P-450 microsomal detoxification [5–9]. Although
oxidative stress ensues through the alteration of the balance between oxidants (i.e., ROS)
and antioxidants, a strict equilibrium between antioxidants (i.e., superoxide dismutase
(SOD) and GSH redox cycle) is also necessary to circumvent the generation of oxidants
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such as hydrogen peroxide [10]. In this regard, the cell displays antioxidant mechanisms
to combat ROS of different origins which comprise enzymatic and non-enzymatic compo-
nents. The enzymatic system includes different enzymes that catalyze reactions involved
in ROS detoxification. Some of the most relevant are SOD, catalase (CAT), glutathione
peroxidase, and reductase (GSH-Prx or Gpx), peroxiredoxins, glutaredoxins, thioredoxins,
and sulfiredoxins. To increase efficiency in ROS scavenging, some of these enzymes are
located in specific sites where free radicals and ROS are generated within the cells to
counteract them in a more direct fashion. As an example, two isoforms of the SOD enzyme
exist, the cytosolic one (Cu/Zn–SOD) and the mitochondrial one (Mn-SOD), also known
as SOD-1 and SOD-2. Non-enzymatic antioxidant components include small molecules,
such as glutathione (GSH), ascorbic acid (vitamin C), retinol (vitamin A), and tocopherol
(vitamin E) which provide protection against radical species by accepting electrons in their
structure [11]. Another key factor is the oxidative stress-induced transcriptional machinery
governed by the nuclear factor E2-related factor 2 (Nrf2) which regulates the expression of
various antioxidant genes [12]. Indeed, pharmacologic activation of the Nrf2-dependent
antioxidant signaling pathway has been shown to protect the liver in different oxidative
stress models [13]. Figure 2 illustrates the contribution of each cellular compartment to
oxidative stress and the antioxidant defense mechanism to overcome ROS generation.
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Figure 2. Major sources of ROS inside the cells. ROS is produced at different sites inside the cell such
as mitochondria, endoplasmic reticulum, peroxisomes, plasma membrane or cytoplasm. Yet, ROS
can be liberated through specialized channels or aquaporins and enter in neighboring organelles. To
combat these highly reactive species the cell poses antioxidant mechanisms comprising enzymatic
(SODs, CAT, Gpx, Trx, Prx) and non-enzymatic components (GSH, Nrf2 transcriptional activity).
Interorganellar interactions are represented by dotted arrows. ACOX: Peroxisomal acyl-coenzyme
A oxidase; CAT: catalase; Ero1: endoplasmic reticulum oxidoreductase 1; ETC: electron transport
chain; Gpx1/4,8: glutathione peroxidase; GSH: glutathione; IM: inner membrane; NOX4: NADPH-
oxidase isomerase; Nrf2: nuclear factor E2-related factor 2; OM: outer membrane; PDI: protein
disulfide-isomerase; Prx: peroxiredoxin; ROS: reactive oxygen species; SOD: superoxide dismutase;
Trx: thioredoxins XO: xanthine oxidase; 2-OGC: 2-oxoglutarate carrier. Created with BioRender.com.
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3. Redox Control in the Liver

Due to the predominance of mitochondrial-origin ROS and the involvement of this
organelle in liver diseases, attention will be focused in the strategies to attenuate mitochon-
drial ROS formation. Hepatocytes are well equipped with non-enzymatic and enzymatic
antioxidant defense systems that neutralize free radicals. SOD enzyme is the “first line”
defense in reducing superoxide radicals formed in the ETC to H2O2 and O2. CAT is a major
H2O2 detoxifying enzyme. However, mitochondrial expression of CAT is null as the local-
ization of this enzyme is mainly peroxisomal. Therefore, the degradation of mitochondrial
hydrogen peroxide is carried out by other alternative antioxidant enzymes. Mitochondrial
glutathione peroxidases (Gpx1,4) and various hydroperoxides (PrxIII, Trx2) catalyze the
reduction of H2O2 in a chain reaction with GSH as the electron donor, and the subsequent
conversion of GSH disulfide (GSSG) back to GSH by the NADPH-dependent glutathione
reductase (GR). Hence, mitochondrial GSH (mGSH) protects mitochondria from the lack
of catalase, implying that its availability is crucial for the appropriate redox maintenance
in this organelle.

GSH is exclusively synthesized in the cytosol, thus specific carriers are required to
distribute GSH to different compartments including mitochondria. In the liver, GSH
is transported into mitochondria via the 2-oxoglutarate carrier (OGC; Slc25a11) which
imports GSH in exchange for 2-oxoglutarate (2-OG). A relevant aspect of GSH transport
in hepatic disorders is the dependence of the 2-OG carrier on membrane fluidity [14]
which is determined by fatty acid composition and cholesterol content. Increment of
the membrane rigidity impairs this transport system, limiting mGSH availability and
antioxidant protection. In this sense, previous studies in various models of alcoholic
(ASH) and non-alcoholic steatohepatitis (NASH) have reported increased mitochondrial
cholesterol which resulted in mitochondrial dysfunction, reduced levels of mGSH and
increased susceptibility to cell demise [15–20]. In addition, by controlling cardiolipin redox
status, mGSH plays a key role in regulating cell death pathways [21], which is further
described later in this review.

When free radical species elude cellular antioxidant defense mechanisms, they react
with macromolecules generating toxic adducts that lead to the alteration of function of all
cellular components preceding apoptosis [22]. In this aspect, elevated markers of oxidative
stress such as DNA damage marker 8-hydroxy-2′-deoxyguanosine (8-OHdG) and lipid
peroxidation products (MDA and 4-HNE) have been observed in hepatic tissue and plasma
of patients diagnosed with different liver disorders (e.g., NASH, hepatitis C, liver fibrosis
or HCC), serving as potential biomarkers for disease [23–25]. Likewise, excessive oxidation
of lipids modifies the physical properties of cellular membranes and can contribute to
the impairment of the mitochondrial membrane potential and Ca2+ buffering capacity.
If prolonged in time, Ca2+ overload elicits mitochondrial permeability transition (MPT)
opening which results in a secondary burst of ROS and ignites a cascade of detrimental
effects that lead to hepatocellular death as ultimate consequence [26,27].
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4. Cell Aging and Cell Death Regulation in the Liver
4.1. Cell Aging in the Liver

The aging process is characterized by the gradual decay of physiologic functions that
occurs with time. Several hallmark features have been identified in aging such as genetic
alterations, mitochondrial impairment, loss of proteostasis, dysregulation of nutrient sens-
ing, altered intracellular communication, and telomere shortening. Major interest has been
focused in the last years in this progressive condition due to its correlation with the onset
of diseases including liver disorders. Indeed, aging is associated with the severity and poor
prognosis of various liver diseases including nonalcoholic fatty liver disease, alcoholic liver
disease, hepatitis C, and liver transplantation [28,29]. In addition, as this organ has the
capacity for regeneration, process that declines with age, fibrotic response is also altered
during aging [30,31].

In the young liver solutes such as lipoproteins, insulin, and carbohydrates are able to
diffuse between the blood and hepatocytes via the liver sinusoid endothelial cell (LSECs)
fenestrations which are critical for maintaining hepatic homeostasis. With age, multiple
changes take place in each liver cell type (hepatocytes, liver sinusoidal endothelial cells,
hepatic stellate cells, and Kupffer cells (KCs)), impairing many physiological functions.
Aging-related changes in liver cells include volume changes, increased polyploidy and
DNA damage, accumulation of lipofuscin, impaired mitochondrial oxidative capacity, ele-
vated oxidative stress and ROS, and presence of senescent cells with senescence associated
secretory phenotype (SASP) which promote the recruitment of inflammatory cells.

Concerning liver sinusoidal endothelial cells (LSECs), these cells show reduced fenes-
trations, cellular autophagy, and augmented levels of cell adhesion markers during aging.
These traits have been described in several species including mice, rats, non-human pri-
mates and humans, and in mouse models of premature aging [32–34]. Loss of fenestrations
has particular importance as it can lead to hyperlipidemia and hepatic insulin resistance
by limiting the uptake of lipoproteins and insulin [35]. In addition, LSECs also play a
key role in the removal of circulating macromolecules like collagen catabolism products,
hyaluronic acid or antibodies. This endocytotic activity is mislaid with aging, contributing
to the disproportionate accumulation of harmless molecules in the liver [36]. Moreover,
aging LSECs display a reasonable pro-inflammatory profile as evidenced by the presence of
leukocytes recruited by adhesion molecules and the high expression of interleukin 6 (Il-6)
cytokine and CD68+-cells. Moreover, upregulation of p16 and downregulation of SIRT1
has been reported which might influence cellular senescence [37].

According to several studies, liver volume decreases by 20–40% as one gets older [28,38].
These changes are linked to a reduction of blood flow in the liver, as an approximately
35% reduction in blood volume of the liver is observed in individuals above 65 years
of age compared with those aged less than 40 years [39]. These changes are associated
with increases in portal pressure and vascular resistance leading to reduced hepatic blood
flow due to downregulation of the vasodilatory pathways involving NO bioavailability
in LSECs [40]. In addition, aged LSECs exhibit increased expression of intercellular adhe-
sion molecule 1 (ICAM-1) which promotes leukocyte adhesion and contributes to further
reduction of sinusoidal blood flow [40]. Regarding other hepatic cells, excessive lipid
loading with marked increase in the number and size of lipid droplets and overproduction
of collagen and laminin that are deposited in the basal lamina membrane account for the
effect of aging on hepatic stellate cells (HSCs) [41]. Finally, KCs, major inflammatory cells
in this organ, accumulate within the liver with age and attach to the adhesion markers
expressed on LSECs, contributing to Il-6 release and extending inflammatory processes
in the liver [37,42].

These molecular alterations lead to low-grade inflammation and facilitate multiple
phenotypic changes in hepatocytes and other liver cells by the release of inflammatory
signals, and will provoke cellular senescence and death as ultimate consequence. Notably,
all these cellular events are observed in most types of liver disease including non-alcoholic



Livers 2022, 2 288

fatty acid liver disease, alcoholic liver disease, primary biliary cholangitis, liver fibrosis,
and hepatocellular carcinoma, which will be discussed in detail in the following section.

From the therapeutic point, prevention of age-associated alterations or inhibition/mod-
ulation of senescent cells might provide benefit to the health of patients with chronic liver
diseases. As an example, several compounds have already shown positive effects by
increasing fenestrations in LSECs isolated from old mice, including 7-ketocholesterol,
sildenafil, amlodipine, cytochalasin D, bosentan, 2,5-dimethoxy-4-iodoamphetamine, and
TNF-related apoptosis-inducing ligand. In addition, two drugs that delay aging by regu-
lating the nutrient sensing pathways, nicotinamide mononucleotide and metformin, were
also found to increase fenestrations in LSECs from aged mice [43,44]. Definitively, the
identification of specific markers and senescence-related pathways will provide important
knowledge to improve translational application of preclinical studies in human disease.

4.2. Cell Death Regulation in the Liver

Hepatocellular death participates in most types of acute and chronic liver disorders,
being a crucial pathologic factor in disease progression. Despite the fact that it essen-
tially occurs to accomplish the specific removal of injured cells as an adaptive reaction
to diverse disturbances, it also takes place as a result of inability to cope with excessive
stress, involvement in the promotion of inflammation, liver injury, fibrosis, cirrhosis, and
hepatocellular carcinoma.

Depending on the nature of insult, trigger mechanisms and morphologic phenotype,
cell death can be divided into different types. In this review, we will focus on apopto-
sis, necrosis, and pyroptosis types of cell death occurring in liver cells under various
liver disorders.

4.2.1. Apoptosis

Apoptosis, or active programmed cell death, is deeply organized, caused by concrete
signaling cascades and characterized by nuclear fragmentation, chromatin condensation,
and cellular shrinkage. It commonly occurs to control cell populations in tissues during
development and aging. Apoptosis is mainly dependent on caspase activation, although
caspase-independent apoptosis also exits. Apoptosis can either be initiated via intrinsic
mitochondrial or extrinsic death receptor-mediated pathways, both leading to the activation
of the executioner caspases -3 and -7.

Intrinsic apoptosis is induced by different aberrant events such as DNA damage, oxida-
tive stress, ER stress, starvation, and mitotic defects [45] which trigger BAX/BAK-induced
mitochondrial outer membrane pore formation (MOMP) and the leakage of mitochondrial
apoptotic components such as cytochrome c and SMAC/DIABLO which bind to APAF1
and pro-casp9 forming the apoptosome which activates CASP9. In turn, CASP9 induces
the activation of executioner caspase-3 and caspase-7 [45–47]. MOMP is regulated by the
balance between the pro-apoptotic and anti-apoptotic members of the B cell lymphoma-
2 (Bcl-2) family [46]. In contrast, the binding of ligands to death receptors such as FAS
and TNFR1 triggers the extrinsic death receptor apoptotic pathway, activating CASP8 via
FADD and TRADD, and subsequently CASP3 and CASP7, and apoptosis [46].

ROS are powerful inducers of apoptosis and can trigger the intrinsic mitochondrial
pathway, the extrinsic death receptor pathway and ER stress pathway [48], being mitochon-
dria crucial to activating apoptosis in all those pathways [49]. Proteins are considered the
principal targets of ROS and they are very frequently oxidized [50]. Indeed, increased ROS
levels can induce reversible post-translational alteration of cysteine [51], selenocysteine [52],
histidine [53], and methionine residues [54]. ROS drive to the oxidation of thiol groups
of critical cysteine residues in many proteins including kinases, phosphatases, and tran-
scription factors [55,56], achieving the regulation of cellular functions via the redox-balance
of cysteine residues of redox-sensitive proteins. Thus, ROS regulate apoptosis via diverse
mechanisms, including death receptor activation, caspase activation, Bcl-2 family pro-
teins, and mitochondrial dysfunction. The activities of assorted protein kinases, including
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MAPK (mitogen-activated protein kinases), protein kinases-B/C, inhibitor of-I-kappaB
kinases, and their equivalent phosphatases influence the apoptotic program depending
on cellular context. In this line, it has been shown that ROS induce apoptosis via JNK
activation [57,58] by intrinsic in the mitochondria or extrinsic apoptotic signaling by death
receptor pathways [59–62]. Of note, a dual role of JNK has been demonstrated by early-
transient activation of JNK by TNF promoting cell survival, whereas the long-sustained
JNK activation following TNF administration in cells with blocked NF-kB-driven gene
expression is associated with elevated ROS production which sustains JNK activity and
triggers cell death [63–65]. In addition, JNK affects the activity of cytoplasmic proteins
involved in the control of programmed cell death, such as Bim, Bid, and cFlip [66–69].

Additionally, cellular and organelle membranes are strongly susceptible to ROS dam-
age. Oxidized phospholipids act as cell death signals triggering programmed cell death,
activating both the intrinsic and extrinsic apoptotic signaling pathways [70]. It has been
demonstrated that lipid peroxidation products form adducts with ERK, JNK, and p38,
and activate caspase signals promoting apoptosis [71,72]. In addition, ROS may oxidize
cardiolipin, a mitochondrion-specific inner membrane phospholipid, and thus activate the
intrinsic apoptotic pathway [73]. Indeed, oxidized cardiolipin possesses lower affinity for
cytochrome c which drives the detachment of cytochrome c from the MIM [21,74,75]. In
addition, oxidized cardiolipin controls the permeabilization of MOMP via oligomerized
Bax [21,74,76], supporting the hypothesis that cardiolipin is a critical upstream target in
mitochondria-dependent apoptosis. Since mitochondrial ROS are involved in cardiolipin
oxidation, mGSH arises as an important modulator of apoptotic cell death by indirectly
controlling the redox state of cardiolipin [21,74]. In fact, apoptosis induced by ROS is linked
to GSH oxidation and decreased GSH levels, increasing ROS production and the loss of
redox homeostasis [77,78].

Apoptosis (both intrinsic and extrinsic) is involved in ASH, NASH, and cholestatic
liver injury [79,80]. In ALD, metabolic, toxic, and inflammatory factors drive to mito-
chondrial dysfunction, ROS formation, Bax translocation to mitochondria, and caspase
activation [81,82]. Alcohol and acetaldehyde are highly reactive and induce ROS generation
and ER stress which can activate IRF3. In turn, IRF3 interacts with Bax leading to hepatocyte
apoptosis [83]. In addition to ER and mitochondrial stress, alcohol also drives to apoptosis
and inflammation via lysosomal malfunction raising lysosomal pH [84]. In addition, acute
and chronic alcohol consumption modifies the intestinal permeability, driving to increased
bacterial lipopolysaccharide (LPS) which activates Kupffer cells (KCs) and subsequently
TNF generation [85]. High levels of circulating TNF and TNFR have been found in patients
with alcoholic liver disease and ASH, while in animal models anti-TNF antibodies treat-
ment protects against alcoholic liver injury [82,86]. In addition, apoptotic TUNEL positivity
staining and CASP3 positive hepatocytes have been detected in liver biopsies of patients
with alcoholic hepatitis with high bilirubin (>3 gr/dL) and elevated steatohepatitis [87].
Unfortunately, treatment with infliximab, an anti-TNF antibody, has been proven harmful
in patients with alcoholic steatohepatitis because of the elevated infection and mortality
rates, regardless of the evident link between TNF and alcoholic liver disease [88].

There are robust data indicating that hepatocyte cell death leads to inflammation
and fibrosis in NASH [89]. Activation of caspase-3 and -7, elevated expression of FAS
receptors and hepatocyte apoptosis are crucial events in experimental models and human
NAFLD correlated with disease severity and progression [90,91]. Indeed, fragments of
CK-18 produced by caspase 3 are used as indicators of NASH in patients with potential
NAFLD [92,93]. In addition, ER stress provoked by free fatty acids (FFA) is related with
the activation of JNK in human steatosis [94]. P-JNK and mitochondrial Sab (Sh3bp5)
interaction drives to ROS generation, maintains JNK activation and apoptosis-related lipo-
toxicity, leading to NASH pathogenesis [95]. Indeed, JNK plays a critical role in lipotoxicity
induced by palmitic acid [96–98]. Evidence supports a role for Src-dependent activation
of the MAP3K, MLK3 [99,100]. The role of JNK in palmitic acid toxicity is associated with
the induction and activation of PUMA and Bim [96,101], both pro-apoptotic Bcl2 family
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members involved in mitochondrial permeabilization. In addition, JNK phosphorylates
Sab, an outer membrane mitochondrial protein containing C terminal JNK docking sites
facing the cytoplasm, and directly drives to mitochondrial respiration impairment and the
increase of ROS. This, in turn, sustains JNK activation, as ROS activate the MAPK pathways
and further block mitochondrial function, inducing MOMP via regulation of Bcl2 proteins
in TNF- and ER stress-induced apoptosis. Other possible players of palmitic acid toxicity
might act upstream or downstream of JNK. These include NADPH oxidase [102,103] as
a source of oxidative stress [104], induction or posttranslational regulation of Bcl2 family
members, and lysosomal permeabilization [105]. Thus, highly elevated JNK1 signaling has
been described in human NAFLD livers [106].

Moreover, in patients with NAFLD and NASH, hepatocytes undergoing apoptosis
activate immune cells and hepatic stellate cells (HSCs), a crucial event during initiation
and progression of fibrosis [107,108]. Accordingly, CASP3 and CASP8-deficient mice fed
a methionine-choline deficient (MCD) diet were protected from apoptosis, and showed
decreased inflammation and fibrosis [109,110]. In line with this, elevated lipid peroxidation,
TUNEL positivity, augmented CASP3 and CASP8 activities, and fibrosis were found in
mice fed a high fat diet (HFD) [111] which were significantly reduced using a pan-caspase
inhibitor. Remarkably, presence of CASP6 was reported in NASH human livers. In NASH,
inflammation-induced CASP3 and CASP7 activation leads to casp6 cleavage and activa-
tion which in turn cleaves Bid. Truncated Bid promotes the leakage of mitochondrial
cytochrome c which activates CASP3 and 7 driving to a continuous apoptosis loop in
hepatocytes [112]. Therefore, controlling hepatocyte cell death pathways might have thera-
peutic implications [113] and hence, assorted apoptosis inhibitors have been suggested as
potential treatments for NASH [114–118].

Additionally, elevated FAS expression, cytoplasmic shrinkage, nuclear condensation,
and TUNEL positivity of cholangiocytes have been described in liver biopsies of primary
biliary cholangitis (PBC) patients [119]. Indeed, apoptosis blockage and enhanced survival
was demonstrated in FAS KO mice [120]. Ursodeoxycholic acid (UDCA), a non-toxic bile
acid used to treat cholestatic diseases, protects against toxic bile acid-induced apopto-
sis [121]. In addition, cleaved CASP3 and CASP8 have been found in PBC patients’ liver
biopsies, indicating an activation of apoptosis [122]. Moreover, ameliorated AST/ALTs
and reduced cleaved CASP3 and p-JNK were reported in liver-specific CASP8 KO mice
after bile duct ligation (BDL) surgery, pointing at apoptosis as the presumable type of cell
death in BDL mice. Nevertheless, cholestatic liver disease models promote areas of necrotic
resembling cell death, as bile infarcts after BDL or in Mdr2 KO mice [79].

Despite apoptosis possessing a minor pro-inflammatory potential compared with
necrosis, KCs phagocytosis of apoptotic bodies augments death ligands and cytokines
in cholestatic liver damage in mice [123]. Thus, Fas-involved apoptosis of hepatocytes is
linked with activation HSCs and liver fibrosis, connecting apoptosis to liver injury [124].

4.2.2. Necrosis

Traditionally, necrosis has been considered a passive and accidental form of cell death
characterized by cell swelling, membrane disruption, and the leakage of inflammatory
cellular components (DAMPs), leading to an inflammatory response. However, recent evi-
dence indicates that necrosis is mostly mediated by MPT, characterized by the development
of permeability transition pore at inner and outer mitochondria membranes, driving to
a rapid disappearance of the membrane potential gradient, disruption of ATP synthesis,
osmotic failure of both membranes, and cell death [46]. Thus, various regulated necrotic
modalities exist, including necroptosis, pyroptosis and ferroptosis, that possess important
morphologic characteristics as passive necrosis combined with specific and regulated causal
mechanisms [46,125].

Necroptosis is a lytic form of regulated necrosis occurring usually after death receptor
(RD) (TNFR1, CD95, TRAIL-R) and Toll-like receptor activation (TLRs, TLR3, and TLR4),
but only when apoptotic signaling is inhibited. It is caspase-independent and initiated
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by activation of receptor interacting protein kinase (RIPK1/RIPK3) and the mixed lineage
kinase domain like pseudokinase (MLKL) forming the necrosome [126], and increased
the plasma membrane permeability which causes an important inflammatory response
associated with most chronic liver diseases including viral hepatitis, autoimmune hepatitis,
NASH, and ALD [80,127,128].

Several studies have demonstrated the relation between ROS production and necro-
some signaling [129–131]. In some types of cells, mitochondrial ROS is critical for necropto-
sis by triggering RIPK1 autophosphorylation and RIPK3 recruitment which in turn mediate
mitochondrial disruption and elevated ROS production in a feedforward mode, facilitating
necrosome formation [129,130,132]. In addition, necroptosis is prevented by JNK inhibition,
suggesting that JNK-induced mitochondrial dysfunction is a crucial trigger of necropto-
sis [133]. ROS can also induce ferroptosis, an iron-dependent form of cell death, different
from apoptosis and necrosis [134] which requires redox cycling of Fe2+/Fe3+ that promotes
membrane phospholipids peroxidation [135]. Free intracellular redox-active iron elevates
ROS production via Fenton chemistry and/or raised lipoxygenase activity [136,137] which
consecutively modify pores, integrity or curvature of membranes [138], demonstrating that
redox signaling firmly regulates apoptosis and ferroptosis [139].

An important crosstalk between apoptosis and necroptosis pathways has been de-
scribed [46,80]. The equilibrium between these two modalities of cell death not only
regulates the degree of inflammation, but also influences the type of liver cancer caused.
Recently it has been described that a necroptotic environment with an inflammatory
cytokine component induced intrahepatic cholangiocarcinoma caused by genetic onco-
genic activation, while an apoptotic background promoted HCC development [140]. Fur-
thermore, the role of necroptosis is determined by the background, and a switch from
necroptosis to apoptosis may be more inflammatory and fibrogenic in NAFLD than in an
ALD model [113,128].

4.2.3. Pyroptosis

Pyroptosis is a modality of lytic regulated cell death which develops in response
to intracellular pathogens or PAMPs, mainly LPS. Pyroptosis is associated with caspase-
dependent pore formation in the plasma membrane, swelling, rupture of the cell, and
pro-inflammatory IL-1β and IL-18 leakage [141]. In addition, the pore-making gasder-
min D (GSDMD) has been recognized a necessary executioner of pyroptosis [142,143].
Indeed, pyroptosis is mediated by the inflammasome via the pro-inflammatory activity
of GSDMD. Pyroptotic caspases include caspase-1, caspase-11 and its human homologs
caspase-4 and 5 [144,145].

Cleave of GSDMD and subsequent pyroptosis occur through three different mechanisms:
(1) caspase-1-dependent canonical inflammasome pathway activated by PAMPs, DAMPs, and
cholesterol crystals [146], (2) caspases -4, -5 or -11-mediated non-canonical inflammasome
mechanism [147], and via (3) caspase-8-mediated inflammasome-independent pathway [148].

The NLRP3 inflammasome activation driving pyroptosis has been linked with inflam-
mation, fibrosis, and cell death in the liver [149]. Thus, the NLRP3 inflammasome is an
important pathway for the release of pro-inflammatory cytokines in the liver and is strongly
associated with the pathogenesis of liver fibrogenesis [150]. The activation of NF-κB is the
first step in the canonical activation of NLRP3 inflammasome, and ROS strongly control
the activity of the transcription factor NF-κB. Most canonical NLRP3 inducers elevate ROS
generation via NADPH. The inflammasome activation is dependent on ROS accumulation
upon inhibition of autophagy and mitophagy, where ROS production is controlled [151].
Moreover, GSDMD has a thiol group located in the cysteine residues that can be affected
by oxidative stress to form disulphide bonds and stabilize pore formation in the plasma
membrane [152]. In addition, antioxidants increase Nrf2 activity, reducing ROS generation
and decreasing gasdermin D, TXNIP and NF-kB oxidation which is essential for inflam-
masome activation and pyroptosis. Indeed, treatment with antioxidants reduces ROS and
consequently prevents inflammasome activation in a carbon tetrachloride-driven acute
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liver injury model [153,154], demonstrating the association between ROS generation and
NLRP3 activation in liver disease.

Inflammatory caspases, including murine caspase-1 and -11, and human caspase-4/5,
play critical roles as inflammation intermediaries [143], locating pyroptosis in NAFLD
development to NASH progression [155,156]. Indeed, activation of IL-1β signaling, down-
stream of inflammasomes, drives liver inflammation, steatosis, and fibrosis in experimental
NASH [157,158] and amplifies the response of other cytokines [159]. Thus, preventing
inflammasome activation could be a promising therapy to hinder disease progression [160].

Since gut dysbiosis is frequently associated with ASH, NAFLD and NASH, it is rea-
sonable that NASH might be connected to the pyroptotic GSDMD pathway activation [161].
Indeed, CASP11-GSDMD activation has been described in livers from AH patients [162],
exacerbating neutrophilic infiltration via the leakage of DAMP, bacteria, PAMPs, IL-1β,
and IL-18 from pyroptotic cells in AH. The involvement of NOD-like receptor family pyrin
domain containing 3 (NLRP3) inflammasome in ALD has been demonstrated in several
studies [163]. Indeed, an interaction has been recently described between activated NLRP3
inflammasome and mitochondrial dysfunction in the context of ASH and NASH [164].

The role of NLRP3 activation in ALD is supported by the protection of caspase-1,
apoptosis-associated speck-like protein containing a caspase recruit domain (ASC), and
IL-1β receptor global knockout mice which exhibit diminished steatosis and inflamma-
tion [165]. In addition, upregulation of caspase-1 and GSDMD processing were observed
after using a Western diet combined with intragastric ethanol administration to induce
ASH, indicating a critical role for pyroptosis in alcoholic hepatitis [162].

In addition, NASH is ameliorated in the GSDMD-knockout mice compared with WT
mice which possess enhanced hepatic NLRP3 inflammasome expression [149,162]. More-
over, the NLRP3 inhibitor MCC950 prevented liver injury in a murine NASH model induced
by feeding mice with a Western diet, decreasing transaminases, liver fibrosis, and cytokine
levels compared with control mice [158]. Additionally, inflammasome-induced choles-
terol crystallization in KCs is a critical factor of hepatic inflammation in NASH progres-
sion [166,167]. Sphingomyelin synthase 1 (SMS1) is involved in hepatocyte pyroptosis via
a diacylglycerol (DAG)–protein kinase Cδ (PKCδ)–NLR family CARD domain-containing
protein 4 (NLRC4) axis in NASH [168]. In addition, sphingosine 1 phosphate receptor 4
(S1PR4) mediates NLRP3 inflammasome activation in hepatic macrophages. SLB736, an
antagonist for S1PR4 receptor, prevented NASH and hepatic fibrosis development, and
could be considered a new therapeutic target in NASH development [169].

Remarkably, different cell death modalities can coincide simultaneously in pathologi-
cal backgrounds, leading to the concept of PANoptosis as a novel form of inflammatory
cell death during which the principal cell death pathways, apoptosis, necroptosis, and
pyroptosis can be activated in parallel, driving to the formation of a large multiprotein
complex named the PANoptosome [170].

Information summarizing the role of ROS in the various cell death types discussed
above is included in Figure 3. Knowledge about the specific signaling pathways and cell
death modalities involved in each disease will enable researchers to design treatments
targeting specific molecules to ameliorate injury, inflammation and disease progression,
opening novel therapy opportunities.
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Figure 3. Scheme of the pathways associated with apoptosis, necrosis and pyroptosis cell death.
Necrosis is a passive cell death caused by DAMPs and PAMPs recognized by TLR, or TNF rec-
ognized by TNFR1. The phosphorylation of RIPK1 and RIPK3 induces phosphorylation and the
subsequent activation of inactive MLKL. Necrosis is triggered by ROS production that induces RIPK1
autophosphorilation and RIPK3 recruitment, following the recruitment of MLKL. They form the
necrosoma that is translocated into the plasma membrane causing cell swelling and membrane
ruptures. Apoptosis is a form of regulated cell death that is triggered by two different pathways. The
apoptosis extrinsic pathway is activated by the FasR with the FADD adaptor protein which ends
activation of the caspases cascade (caspase-8, -10, -3, and caspase-7). Intrinsic apoptosis pathway
is dependent on mitochondrial damage (DNA damage, oxidative stress, ER stress, starvation, and
mitotic defects) which triggers BAX/BAK-induced ROS, activation of JNK pathway and MOMP,
causing the release of Cytochrome C and SMAC/DIABLO which form with the APAF-1 the apop-
tosome, activating caspase-9 and, subsequently, caspase-3 and -7. In pyroptosis, a regulated cell
death type, DAMPS and PAMPS activate NF-kB-signaling pathway, promoting the transcription of
inflammasome genes and the activation of the inflammasome complex. Subsequently, the active
form of caspase-1 cleaves pro-IL-1β to mature IL-1β, and GSDMD in to an N-terminal fragment
(N-GSDMD) which leads to gasdermin-mediated pore formation. The release of ROS by damaged
mitochondria caused by excessive electron flow, calcium overload, inhibited mitophagy, mtDNA
oxidation and cardiolipin translocation is essential for the inflammasome activation and pyroptosis.
DAMPS: damage-associated molecular patterns; FADD: Fas-associated death domain; GSDMD: gas-
dermin D; IL-1β: interleukin-1β; LPS: lipopolysaccharide; MOMP: outer membrane pore formation;
mt-DNA: mitochondrial DNA; NF-kB: nuclear factor kappa B; PAMPs: pathogen-associated molecu-
lar patterns; ROS: reactive oxygen; TLR: toll-like receptor; VDAC: voltage-dependent anion-selective
channel. Created with BioRender.com.
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5. Role of Oxidative Stress in Liver Diseases
5.1. Non-Alcoholic Fatty Liver Disease (NAFLD)

NAFLD is an intricate and multifactorial disease associated with multiple genetic, epi-
genetic, and environmental factors that comprises a spectrum of alterations beginning with
simple steatosis (non-alcoholic fatty liver, NAFL) which can progress to non-alcoholic steato-
hepatitis (NASH) that can culminate in cirrhosis and hepatocellular carcinoma (HCC) [171].
NAFL is characterized by macrovesicular steatosis (more than 5%) without the existence of
hepatocellular injury, whereas NASH encompasses hepatic steatosis, plus inflammation,
ballooning of hepatocytes and hepatocellular injury in the presence or absence of fibrosis.
A “two-hit” hypothesis was originally proposed to define the pathogenesis of NAFLD.
Insulin resistance (IR) acts as the first hit, promoting liver steatosis with augmented hepatic
lipogenesis and defective degradation of FFA. The accumulation of fat sensitizes the liver
to inflammation and cell death by a second hit that causes oxidative stress, concluding in
NASH and fibrosis [172,173]. In the last years, the “multiple hit” theory, which includes
different factors acting in parallel, has emerged to describe more accurately the pathogene-
sis of NAFLD. Oxidative stress is considered to be the main contributor of the “multiple
hits” to liver injury and disease progression in NAFLD [174,175]. Currently, metabolic
dysfunction-associated fatty liver disease (MAFLD) has been proposed to classify the het-
erogeneous population of patients with this disease. In this way, MAFLD includes patients
with hepatic steatosis in combination with overweight/obesity, presence of type 2 diabetes,
or evidence of metabolic dysregulation [176], excluding individuals with excessive alcohol
consumption. The new nomenclature encloses coexisting toxic (e.g., alcohol) or viral factors
that do not exclude the link to metabolic liver disease.

Liver steatosis, the first stage of MAFLD, although considered reversible, sensitizes to
diverse secondary insults driving the development of NASH [177]. Different lipid species
accumulate in the transition of MAFLD to NASH, including, among others, triglycerides,
diacylglycerol, free fatty acids, ceramides, and cholesterol, underlining that the type rather
than the amount of lipids is responsible for the progression from steatosis to NASH [15,178].
Therefore, the unbalance of lipid metabolism is the most direct etiology of MAFLD.

The mechanisms by which ROS contribute to MAFLD progression are multifactorial
and involve both accumulative oxidative biomolecular damage and dysregulated redox
signaling [179], since ROS induce oxidative alterations to macromolecules that lead to
liver injury [172,173], and possess important signaling functions [180]. In the liver, the
metabolism of lipids is regulated by nuclear receptors that activate diverse ligands and mod-
ulate important enzymes involved in lipogenesis and lipoxidation [181], acting as redox
triggers that in turn affect several metabolic pathways due to particular ROS [182]. AMPK
activation leads to the inhibition of lipogenesis [183], downregulating several nuclear recep-
tors and enzymes implicated in lipid metabolism, such as acetyl-CoA carboxylase, PPARα,
PPARγ, and SREBPs. Oxidative stress influences AMPK signaling, since both cytoplasmic
and mitochondrial ROS can upregulate AMPK activity [184]. In addition, in MAFLD, an
increment in the AMP/ATP ratio stimulates AMPK [185], and H2O2 can precisely modulate
AMPK activity [186]. H2O2 also increases SREBP-1c expression, leading to an increment in
fatty acid synthetase and promoting lipogenesis [187]. Remarkably, various antioxidants
reduce hepatic steatosis through the downregulation of SREBP-1c expression [188]. Hence,
ROS-mediated signaling may partially be responsible for the alterations in lipid metabolism
homeostasis. Additionally, as an effort of liver cells to control the prooxidant effects of
metabolic stress in MAFLD, stress-responsive transcription factors (such as AP-1, NF-κB
and Nrf2) and their regulated genes are also redox sensitive [189]. Elevated Nrf2 expression
is related to ROS pathological levels in liver biopsies of patients with NASH [190]. In
diverse NASH models, using MCD and HFD diets, Nrf2-knockout mice display elevated
susceptibility to NASH development [191,192]. Further, pharmacological activation of Nrf2
decreases IR, liver steatosis, and fibrosis in animals fed with a high-fat and high-fructose
diet [193], linking antioxidant signaling and lipid metabolic pathways.
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Excessive lipid accumulation produces an important hepatic metabolic stress which
causes inflammatory pathways activation. After exposure to harmful stimuli, KCs are the
principal effectors involved in ROS generation and the transcription of cytokines/growth
factors/enzymes modulating redox balance, metabolism, inflammation, and fibrosis [194,195],
functioning as a driving force in MAFLD progression at several levels [196–198]. Hence, the
innate immune and ROS signaling collaborate and synergistically influence disease progression.

MAFLD is also linked to “mitochondrial dysfunction” which is shown by modified
respiratory complex activity and fatty acids oxidation [199]. ETC activity gradually reduces
during MAFLD progression, and livers with simple steatosis already show a mild deteri-
oration of ETC activity. Besides targeting lipids, ROS generated in the mitochondria can
also modify mitochondrial DNA, causing deletions and mutations [200]. Of note, an im-
portant reduction in mitochondrial DNA in MAFLD patients has been shown [201]. Thus,
mitochondrial DNA damage and mutations induced by ROS may affect ETC and ATP gen-
eration which in turn activates mitochondrial ROS production through the mitochondrial
MPT opening, causing a vicious cycle of damage amplification termed “ROS-induced ROS
release” (RIRR) [202].

Oxidative stress biomarkers normally measured in clinical samples of MAFLD com-
prise DNA oxidation products (8-OH-dG), lipid damage products (thiobarbituric acid
reactive substances or TBARS), MDA, 4-HNE, hydroperoxides, and 8-isoprostane), and
protein oxidation products (protein carbonyl, nitrotyrosine). In general, the concentrations
or activities of these biomarkers are elevated in NASH patients [24,203]. In addition, an-
tioxidants commonly evaluated in MAFLD/NASH clinical samples include enzymatic
antioxidants (e.g., catalase, SOD, and GPX) and nonenzymatic antioxidants (e.g., GSH, TrxR,
α-tocopherol, and ubiquinone) which are reduced in most patients with MAFLD/NASH, al-
though they are increased in a few exceptions [204,205]. Further, several lipid peroxidation
circulating biomarkers have been detected in patients with MAFLD, their concentrations
positively associated with the disease severity [206,207]. Overall, these data indicate that
oxidative stress and mitochondrial antioxidant defense depletion plays an important role
in disease progression in MAFLD/NASH.

5.2. Alcoholic Liver Disease (ALD)

ALD is a prevalent form of chronic liver disease caused by the persistent abuse of
alcohol consumption. In 1967, Comporti and colleagues proposed for the first time the
involvement of lipid peroxidation as a mechanism for ethanol-induced fatty liver [208]. The
oxidative metabolism of ethanol triggers a complex array of mechanisms that contribute
to the progression of ALD from its initial step of steatosis to alcoholic hepatitis, cirrhosis
and eventually HCC. Unfortunately, the pathogenesis of ALD is not entirely understood,
which has limited the availability of therapeutic opportunities. Alcohol-induced liver
injury is linked to an exacerbated ROS generation resulting in the onset of oxidative stress
in hepatocytes [209] due to the metabolism of alcohol in the liver which begins with the
alcohol dehydrogenase (ADH) that metabolizes ethanol to acetaldehyde. Acetaldehyde is
subsequently catabolized to acetate by the acetaldehyde dehydrogenase (ALDH). Unlike
acetate, which is stable, acetaldehyde is very reactive and forms adducts with DNA,
promoting tissue damage. Acetaldehyde and its derivative MDA form hybrid adducts
which can be recognized by KCs, endothelial, and stellate cells that produce cytokines and
activate an inflammatory response that contributes to the progression of ALD [210]. In
addition, ethanol is also metabolized via the microsomal system cytochrome P450, CYP2E1,
which converts alcohol to acetaldehyde during alcohol chronic consumption. CYP2E1 is
inducible and becomes the preferred pathway of oxidative ethanol metabolism, due in part
to the saturation of ADH for alcohol, resulting in the generation of ROS and the onset of
oxidative stress. ROS can also sensitize hepatocytes to LPS released from the gut and tumor
necrosis factor-alpha (TNFα) which in turn generates more ROS [211], lending further
support for the interconnection between oxidative stress and inflammation during ALD.
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Several pathways contribute to liver injury during ALD. ADH and ALDH enzymes
reduce NAD+ to NADH. The modified NAD+/NADH ratio induces fatty liver through the
inhibition of gluconeogenesis and fatty acid oxidation [212]. CYP2E1, increased in persistent
alcohol intake and stabilized by alcohol itself, produces free radicals via the trans-formation
of NADPH to NADP+ [213]. CYP2E1-produced ROS can peroxidase mitochondrial and
peroxisomal enzymes involved in β-oxidation, resulting in the accumulation of fatty acids
and hepatic steatosis development. Alcohol promotes a gradient of hypoxia from the
portal vein to the central vein which contributes to hepatic injury [214]. Altered ROS
metabolism increases hypoxia-inducible factor-1 alpha (HIF-1α) expression which increases
TNFα secretion and impairs mitochondrial function, leading to an immune response
that amplifies liver injury. Furthermore, oxidative stress induces hepatocyte apoptosis
and mainly necrosis [57], a response that is accentuated due to the limited antioxidant
defense that contributes to inflammation and disease severity described in patients with
ALD [215]. Alcohol feeding induces mGSH depletion via cholesterol overload in the
mitochondria [216,217] which is reversed after alcohol withdrawal [218]. Moreover, recent
data described a mitochondrial cholesterol accumulation resulting in mGSH depletion and
ASH in rats fed an ethanol-polyunsaturated fatty acid treatment, effects that are prevented
by betaine cotreatment [219]. Remarkably, alcohol-induced endoplasmic reticulum (ER)
stress elevates cholesterol synthesis and modifies its trafficking into mitochondria, thus
indirectly affecting mGSH levels. In accordance, blocking ER stress by TUDCA restored
the mGSH pool in ethanol-fed rats [216,220]. Finally, ROS contribute to the transformation
of HSC into myofibroblasts and the activation of matrix metalloproteinases, leading to
remodeling of the extracellular matrix in the liver, culminating in excessive liver fibrosis
and cirrhosis during severe ALD. These effects are accentuated by impaired regenerative
capacity of mature hepatocytes [221].

5.3. Primary Biliary Cholangitis (PBC)

PBC is a chronic and progressive cholestatic liver disease, in general affecting middle-
aged women, which may lead to liver failure and transplantation [222,223]. PBC is asso-
ciated with hypercholesterolemia and deficiencies of antioxidant vitamins. Patients with
PBC display symptoms of endothelial dysfunction, inflammation and antioxidant defi-
ciency [224]. Moreover, PBC is considered to possess an autoimmune etiology, since specific
antimitochondrial antibodies are found in most patients. The abnormal immune response
in PBC drives the induction of autoreactive T and B lymphocytes, and the generation of
diverse inflammatory mediators [225,226] that subject the liver to several harmful factors
including oxidative stress. Serum samples from PBC patients displayed increased oxidative
stress biochemical marker levels such as lipid peroxidation and cholesterol self-oxidation
products [218] which further increase the immune response. Indeed, PBC patients have
increased IgGs levels against malondialdehyde adduct and human serum albumin [227]. It
has been described that oxidative stress and steatosis are cofactors promoting liver injury
in PBC. Besides altering lipid composition, oxidative stress in PBC also promotes the accu-
mulation of protein oxidative products and alters GSH metabolism [228]. Hence, treating
PBC with UDCA improves redox changes in serum and liver tissues [229–231].

As previously mentioned, Nrf2 induces many cytoprotective genes that influence
xenobiotic metabolism, antioxidant and anti-inflammatory responses. It has been reported
that Nrf2/Keap1 axis-mediated protection against oxidative stress is impaired in PBC.
Thus, defects in the Nrf2/Keap1 integrity system may influence self-defense mechanisms
against oxidative stress in PBC [232]. Moreover, recent observations demonstrated that
the administration of S-Adenosyl-L-methionine (SAMe) may prevent autoimmune events
in PBC patients via its antioxidant and S-glutathionylation properties, providing new
awareness into the molecular events inducing PBC progression and pointing at the potential
therapeutic use of SAMe in PBC [233]. Oxidative stress also induces apoptosis of bile duct
cells in PBC, promoting biliary damage that is a consequence of reduced glutathione-
S-transferase (GST) levels. Thus, the intracellular GSH reduction directly drives biliary
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epithelial cells to apoptosis, the modulation of these events crucial to decreasing the
immune-mediated injury [229].

5.4. Viral Hepatitis

Worldwide, over half a billion of individuals are chronic carriers of viral hepatitis. The
three dominant types of viral hepatitis are hepatitis A virus (HAV), HBV and HCV. The
last two are increasing in prevalence and 12% of all cancers arise from them, including the
hepatitis delta virus (HDV) which can lead to accelerated disease progression [234].

Oxidative stress also plays a pathogenic role in viral hepatitis. ROS and free radicals
are generated in human diseases caused by viruses, among others. Viruses enter in to
the cell by endocytosis and act as an intracellular parasite using the host cell synthetic
processes for their replication [235]. These processes affect the physiological statement
of the ER and the mitochondria producing ROS and antioxidant system depletion (GSH,
GSHPx) [236]. HBV and HCV infections are characterized by the increased levels of a wide
array of oxidative stress markers in liver and blood of infected patients. Such markers
include MDA, lipid peroxides, protein carbonyl content, oxysterols, and thioredoxin, which
are responsible of inflammatory pathways activation [237–240]. NADPH oxidases, CYP2E1
and Ero1a are also increased in HCV [241].

Furthermore, Zn deficiency occurs in HCV, causing lipid peroxidation, loss of mi-
tochondrial energization and oxidative DNA damage. Its supplementation therapy has
been shown to improve the prognosis of patients with HCV [242]. On the contrary, the
antioxidant therapy is not always effective: antioxidants can become easily pro-oxidants if
they are not used at the right dose and schedule [243]. Therefore, detailed investigation
of the mechanisms by which viral proteins induce oxidative stress is needed to develop
effective treatments.

5.5. Liver Fibrosis

Fibrosis is characterized by progressive and excessive deposition of extracellular
matrix (ECM) between hepatocytes and sinusoids, impairing the physiological architecture
of the liver. It is associated with disease progression in chronic inflammatory diseases [244].
In addition, chronic portal hypertension induced by liver fibrosis is the major cause of
clinical complications, bleeding events and hepatic encephalopathy [245].

As described above, steatohepatitis from all etiologies is associated with an increase
in ROS by vicious cycles encompassing steatosis, lipid peroxidation, ROS formation, anti-
oxidants reduction, modified mitophagy, and mitochondrial danger signal-induced expres-
sion of inflammatory cytokines which cause apoptosis and necrosis of hepatocytes. The
pro-fibrotic mediators such as superoxide, H2O2, and other hydroxyl radicals are generated
in hepatocytes, HSCs, and macrophages [246]. Among the ROS production enzymes, the
NAPDH oxidases (NOXs) mediate fibrogenic responses by inducing angiotensin II, PDGF,
and TGFβ in HSCs and macrophages that activate collagen-producing myofibroblasts
that account for excessive accumulation of ECM [108,247]. Necrotic hepatocytes release
DAMPs that activate danger signals to neighboring cells (HSCs and KCs). In this regard,
NF-κB plays a key role in the regulation of inflammation and is considered an important
modulator of liver fibrosis progression. Its activity is linked with HSC proliferation [248].
Fibrosis development principally determines the quality of life and prognosis correlated
with liver function, thus being a critical risk factor for HCC development [249].
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5.6. Hepatocellular Carcinoma (HCC)

HCC is the second driving cause of cancer-associated deaths worldwide due to late
diagnosis and poor therapeutic outcomes [250,251]. HCC is an inflammation-related
cancer, as most of HCCs emerge in the background of hepatic inflammation [252,253].
HCC incidence is significantly associated with liver inflammation from exposure to dif-
ferent risk factors such as hepatitis B virus, hepatitis C virus, metabolic diseases, persis-
tent alcohol drinking, obesity and type 2 diabetes [254,255]. Chronic liver inflammation
promotes oxidative stress and lipid peroxidation, producing excess ROS and aldehydes
which form promutagenic DNA adducts interacting with DNA bases. Therefore, oxidative
stress acts as a critical factor promoting carcinogenesis. Further, blocking antioxidant
defenses strongly elevated the rate of liver cancer [256]. Moreover, mild/excess iron
deposition positively correlates with HCC and p53 mutations in patients with hemochro-
matosis, indicating a potential carcinogenic role of oxidative stress induced by iron via
Fenton reactions [257,258].

Oxidative stress is a critical factor in NASH progression and NASH-driven HCC [174,259].
NASH-related HCC incidence is expected to increase worldwide due to its association
with the obesity and type 2 diabetes mellitus epidemic. Recently we have provided ev-
idence that cholesterol rather than steatosis per se plays a role in NASH-induced HCC
development [260], giving further support to strategies aimed at targeting liver cholesterol
homeostasis as potential therapeutic treatments with relevance in NASH-driven HCC.
Indeed, recent findings indicated that ezetimibe [260] and atorvastatin [261] improved
high-fat high cholesterol diet-induced HCC development, correlating with previous results
in a subcutaneous HCC model [262]. Future research may explore whether combina-
tion therapy between ezetimibe and statins may be superior for the treatment of HCC.
Moreover, our laboratory also uncovered an important role of StARD1 in non-alcoholic
steatohepatitis-driven HCC, where it stimulates bile acid production in the mitochondrial
acidic pathway, and, in turn, activates hepatocyte pluripotency and self-renewal as well as
inflammation [263].

In this regard, as HCC is closely linked to elevated oxidative stress through viral
proteins or persistent inflammation and lipids, modulating oxidative stress may emerge
as a promising approach against progressive liver disease. However, the administration
of antioxidant therapies as potential HCC treatment remains to be fully established and
should be administered with attention to the fact that a strict antioxidant balance must be
guaranteed to avoid the generation of unwanted prooxidants and free radicals.

Altogether, all this data indicate that ROS is present in many liver diseases and is a
determinant hallmark contributing to the progression of diseases. Molecular mechanisms
underlying the pathological events described in this section need to be further investigated.
Whether the formation of ROS is in fact the cause or consequence in those pathologies is
also an unanswered question. As a summary, Figure 4 illustrates the molecular events
leading to the development of the liver diseases discussed in this section:
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Figure 4. Outline of the pathophysiology of various liver diseases. (1) The increased hepatic lipid flux
leads to an extended accumulation of triglycerides and ‘toxic’ levels of fatty acids, free cholesterol,
and other lipid metabolites which cause mitochondrial dysfunction, ER stress, oxidative stress,
and overproduction of ROS, all leading to hepatic inflammation. (2) Ethanol is metabolized in the
liver by ADH or via the microsomal system cytochrome P450, CYP2E1, to acetaldehyde which is
further metabolized to acetate. Acetaldehyde is very reactive and forms adducts, such as MDA,
with biomolecules provoking tissue damage. (3) In PBC, autoreactive B and T cells lead to the
gradual destruction of intrahepatic bile ducts, resulting in periportal inflammation and cholestasis
(impeded flow of the bile to the duodenum). Prolonged hepatic cholestasis causes cirrhosis and portal
hypertension. (4) Hepatitis virus A, B or C enter into the cells by endocytosis. Pathogenic mechanisms
induced by viruses include persistent liver inflammation and immune-mediated oxidative stress
damage to ER and mitochondria, oxidative damage induced by viral proteins, and deregulation
of cell signaling pathways by viral proteins, leading to liver cell destruction. (5) Extensive ROS
formation and steatohepatitis induces the release of inflammatory cytokines which cause apoptosis
and necrosis of hepatocytes. Necrotic hepatocytes send danger signals to neighboring cells (HSCs
and KCs) and induce the activation of matrix metalloproteinases, leading to fibrotic remodeling of
the extracellular matrix. (6) Progressive fibrosis culminates in cirrhosis and is a determinant risk of
factor for HCC development. Created with BioRender.com.
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6. Antioxidant Therapies

Given the role of oxidative stress in liver disorders, boosting the pool of endogenous
antioxidants or the intake of dietary antioxidants was proposed as an effective therapeutic
strategy with many antioxidants undergoing clinical studies [264–266]. In vitro and animal
model studies support the beneficial role of various antioxidant compounds in liver diseases.
However, when translated to clinical trials, results were controversial or failed to be
replicated in larger studies [267,268]. Potential reasons for these disappointing results
include inaccurate dose schedules, inadequate choice of a certain antioxidant for a particular
disease, and the redundancy of symptoms with other pathologies. Problems such as small
sample size, short follow up, inappropriate endpoints, inefficacy to establish tissue delivery
and antioxidant effect, and the heterogeneous character of antioxidants also complicate the
analysis of results of clinical studies. Although in general the outcomes are promising, the
precise cellular mechanisms of these compounds are still obscure evidencing the urge for
additional research to study their potential as therapeutic option.

Non-enzymatic antioxidants currently undergoing clinical trials can be classified ac-
cording to their origin: endogenous and exogenous, from diet or synthetic, antioxidants.
As such, well-known endogenous antioxidants include melatonin, GSH, coenzyme Q10,
lipoic acid, inosine, and carnosine. GSH is mainly produced in the liver and is one of the
most important ROS scavengers in the organism. As described above, GSH replenishment
has shown protective effects in liver disorders [269,270]. Antioxidant co-enzyme Q10 is
localized in the inner membrane of the mitochondria, and thus represents a crucial target
to prevent or minimize oxidative damage as it can directly act in the ETC. Lipoic acid is
a dithiol compound produced in mitochondria that exerts a key function as it can recy-
cle other oxidants including GSH and vitamins C and E. Importantly, both CoQ10 and
lipoic acid are frequently given as adjuvant therapy in combination with other antiox-
idant compounds for treating degenerative diseases [271]. N-Acetyl cysteine (NAC) is
a thiol-compound with antioxidant capacities as it modulates redox signaling and halts
lipid peroxidation [272]. An important feature of NAC is that it is a GSH precursor by
providing the rate-limiting amino acid cysteine. However, it is not able to replenish mGSH
in the presence of mitochondrial cholesterol overload. Therefore, its ability to restore
mGSH levels in NASH/ASH or other diseases in which cholesterol is accumulated in
mitochondria is limited.

In some, if not all, pathological conditions, the endogenous pool of antioxidant de-
fenses is not sufficient to combat the excess of ROS production. In this situation, the
ad-ministration of dietary antioxidants as therapy or supplements has been proposed as it
can be beneficial for improving the overall redox status and compensating the impaired
endogenous antioxidant mechanisms. The list of dietary compounds with antioxidant
properties includes selenium, carnitine, flavonoids, polyphenols (such as resveratrol, cur-
cumin), carotenoids, lutein, and vitamins (A, C, E), among others. Vitamin E is considered
the archetypal antioxidant vitamin and is the compound with the most encouraging results
in the therapy of NASH so far [273]. Unluckily, the translation of these compounds from
pre-clinical to clinical stages has several limitations largely related to pharmacokinetic and
pharmacodynamic constraints, as many natural antioxidants do not fulfil the absorption,
distribution, metabolism, and excretion (ADME) requirements of drugs [274].

The development of synthetic antioxidant compounds, small molecules with drug-like
properties, has boomed in recent years. New benzoquinone-based antioxidants such as Mi-
toubiquinone (MitoQ), vatiquinone and idebenone have been developed and are included
in several clinical trials for the treatment of liver disorders [275]. Another newly-designed
synthetic drug with antioxidant capacity is despramipexole, a benzothiazole renowned for
its effects on preserving mitochondrial function [276]. Moreover, it inhibits cytochrome
P450 and confers protection against N-acetyl-p-benzoquinoneimine (NAPQI) [277], a highly
reactive electrophilic intermediary produced in the liver after APAP overdose that is ca-
pable of depleting reduced GSH. To summarize the information on the latest advances in
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antioxidant therapy, antioxidant molecules currently undergoing clinical trials in the field
of liver disorders are briefly described in Supplementary Table S1.

7. Conclusions

As it is well known, free radical species are physiological signaling molecules that,
when produced in excess or accumulated due to an unbalance with antioxidants, trigger
oxidative stress, producing paramount changes in cell function and even cell death. Given
the strategic function of the liver in xenobiotic detoxification and protection against toxic
radicals, growing evidence has reinforced the impact of ROS and oxidant species in the
progression of many liver diseases. Here, we have reviewed the disease mechanism in a
disparate group of liver disorders that share oxidative stress as a common entity. In addition,
we addressed the most important pathogenic processes involved in the development of
liver diseases, pointing out oxidative stress as a key player in its pathophysiology.

Despite the use of antioxidants for the treatment of liver diseases gaining attention
in recent years, when the benefit of antioxidant compounds has been assessed in clinical
trials, mixed and controversial results have been reported and many of the promising
results obtained in animal models failed to be reproduced when translated into human
disease. If the design of clinical trials is improved, the data extracted from them could
provide valuable information promoting enthusiasm for the possible future of antioxidants
in liver diseases.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/livers2040023/s1. Table S1. Antioxidant compounds under
clinical trial for the treatment of liver disorders. Source: ClinicalTrials.gov (NIH). Only trials in
“Recruiting”, “Enrolling by invitation”, “Active, not recruiting”, “Terminated” and “Completed”
status are included.
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Abbreviations

ADH alcohol dehydrogenase
ALD alcoholic liver disease
AMPK 5’ adenosine monophosphate-activated protein kinase
ATP adenosine triphosphate
ASC apoptosis-associated speck-like protein containing a caspase recruit domain
ASH alcoholic steatohepatitis
BDL bile duct ligation
Ca2+ calcium ion
DNA deoxyribonucleic acid
ER endoplasmic reticulum
ETC electron transport chain
GSH glutathione
GSSG oxidized glutathione
FADH2, flavin adenine dinucleotide (reduced form)
FFA free fatty acid
H2O2 hydrogen peroxide
HCC hepatocellular cancer
HFD high fat diet
HSC hepatic stellate cells
MAFLD metabolic-dysfunction-associated fatty liver disease
MCD methionine-choline deficient diet
MDA malondialdehyde
MMOs microsomal monooxygenases
MPT mitochondrial permeability transition
mDNA mitochondrial deoxyribonucleic acid
NAD+ nicotinamide adenine dinucleotide phosphate, (oxidized form)
NADPH nicotinamide adenine dinucleotide phosphate, (reduced form)
NAFLD non-alcoholic fatty liver disease
NASH non-alcoholic steatohepatitis
NLRP3 NOD-like receptor family pyrin domain containing 3
NOX NAPDH oxidases
Nrf2 nuclear factor E2-related factor 2
O2
•− superoxide anion

1O2 singlet oxygen
•OH hydroxy radical
-OH hydroxy group
ONOO− peroxynitrite
OXPHOS oxidative phosphorylation system
PBC primary biliary cholangitis
Prx peroxiredoxin
ROS reactive oxygen species
SAMe S-(5-Adenosyl)-L-methionine
SOD1 superoxide dismutase 1
SOD2 superoxide dismutase 2
StARD1 steroidogenic acute regulatory protein
TNFα tumor necrosis factor alpha
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