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Myocardial ischemia is a disease with high morbidity and mortality, for which reperfusion is currently the standard intervention.
However, the reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MI/RI).
Oxidative stress is one of the most important pathological mechanisms in reperfusion injury, which causes apoptosis,
autophagy, inflammation, and some other damage in cardiomyocytes through multiple pathways, thus causing irreversible
cardiomyocyte damage and cardiac dysfunction. This article reviews the pathological mechanisms of oxidative stress involved in
reperfusion injury and the interventions for different pathways and targets, so as to form systematic treatments for oxidative
stress-induced myocardial reperfusion injury and make up for the lack of monotherapy.

1. Introduction

Myocardial ischemia is the most frequent form of cardiovas-
cular disease with high morbidity and mortality [1], for
which timely restoration of blood flow to the ischemic myo-
cardium (reperfusion) is indispensable for a better patient
outcome [2]. However, this reperfusion may cause further
myocardial ischemia/reperfusion injury (MI/RI) which leads
to cardiac dysfunction such as myocardial stunning, reperfu-
sion arrhythmia, myocyte death, and endothelial and micro-
vascular dysfunction including the no-reflow phenomenon,
inflammatory response [3, 4], and other myocardial tissue
injury more terrible than that caused by the original ischemic
insult [5]. Lethal reperfusion injury, according to a report,
accounts for up to 50% of the final myocardial infarct size
[5]. Among the complex system networks involved in the
pathological mechanisms of MI/RI, such as oxidative stress
[6], inflammatory response [7], calcium overload [8], and

mitochondrial dysfunction [9], one of the most important
pathological mechanisms is oxidative stress (OS) [10].

OS refers to an imbalance between normal oxidant
scavenging enzyme systems, such as superoxide dismutase,
catalase, and glutathione, and intracellular reactive oxygen
species (ROS) production, which leads to toxic accumula-
tions of reactive oxygen intermediates like hydrogen perox-
ide (H2O2) [11, 12]. Under physiological condition, ROS
are produced as a result of normal cellular metabolism
processes, maintaining a dynamic balance with antioxidants
[12]. But ROS can also be generated in both ischemia
[13–15] and reperfusion period [16, 17]. Limited oxygen
availability during the ischemic period is associated with aci-
dosis, energy depletion, and alterations of ion homeostasis,
leading to cardiac dysfunction and ultimately cell death [18].
In the presence of residual oxygen, ROS are produced in the
myocardium [18], which are attributed to the decrease of
endogenous ROS scavenger and increase of ROS production
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by several mechanisms [13, 19–21]. Much higher levels of
oxygen free radical (OFR) production are induced immedi-
ately following reperfusion due to the sudden reintroduction
of high oxygen tensions [19], leading to oxidative damage of
cell structures, such as initiating lipid peroxidation, protein
carbonylation, and DNA oxidation [22]. However, many tra-
ditional antioxidants do not show significant efficacy [23, 24].
The formation and development of oxidative stress after
reperfusion and how it affects injuries involve multiple mech-
anisms, so developing interventions that act on specific path-
ways rather than simple antioxidants may be a promising
therapeutic approach.

Here, through summarizing pathogenesis of oxidative
stress involved in MI/RI, including sources of ROS, ROS-
mediated MI/RI, and its related pathways and signaling
molecules, as well as various interventions targeting them,
we expect systematic treatments against oxidative stress-
induced myocardial reperfusion injury to be formed, compli-
cations like arrhythmias, myocardial stunning, microvascular
obstruction and myocardial remodeling to be inhibited, and
mortality following reperfusion to be reduced.

2. Sources of ROS

Amounts of potential sources of ROS in the postischemic
heart are most attributed to one or more enzymes like
xanthine oxidase [25], NADPH oxidase (NOX) [26, 27],
mitochondria [28], and uncoupled nitric oxide synthase
[29], which have been deemed as the most likely causes to oxi-
dative stress during reperfusion and thus the most promising
targets for therapeutic measures against reperfusion-induced
organ dysfunction and tissue damage [30]. In addition to the
above mentioned data, there are also some descriptions about
other sources such as monoamine oxidases, lipoxygenases,
cyclooxygenases, the cytochrome P450, neutrophils, and cate-
cholamine [4, 31–34]. We summarized the various sources of
ROS (Figure 1).

2.1. Mitochondria. Mitochondria are deemed the major
intracardiac source of ROS RI, impaired autopha/RI [35].
There are at least eleven different sites that associate with
substrate catabolism and the electron transport chain
(ETC) in mammalian mitochondria generating superoxide
and/or hydrogen peroxide [18]. Mitochondrial ROS produc-
tion involves oxidative phosphorylation linked to aerobic res-
piration within the mitochondrial ETC [36]. This
mechanism has been detailedly described by Cadenas [18].
Electrons are released to cofactors such as NADH and
FADH2 via oxidation of substrates and then flow sequen-
tially through a series of redox carriers in respiratory chain
complexes, finally reducing oxygen to water with the catalysis
by cytochrome c oxidase (CcO). However, at seven different
sites along the respiratory chain, electrons derived from
NADH or some other donor can directly react with oxygen
and generate O2

- [37], that is electron leakage from the
ETC at complexes upstream of CcO, primarily at complexes
I and III, causing partial reduction of molecular oxygen to
O2

- instead of reduction to H2O [18], and, among these,
reverse electron transport at complex I is the main source

of superoxide upon reperfusion of ischemic tissue [38, 39].
O2

- can be converted into H2O2 and O2 either spontaneously
or enzymatically catalyzed by superoxide dismutase (SOD)
[18, 40]. Hydrogen peroxide (H2O2) can be fully reduced to
water or partially reduced to the hydroxyl radical (•OH)
[18]. H2O2 oxidizes Fe

2+to Fe3+ to generate hydroxyl radicals
through the Fenton reaction [18, 35] and also reacts with O2

-

to generate •OH in the Haber-Weiss reaction [19, 35]. Gluta-
thione peroxidase catalyzes H2O2 to form nonradical water
and oxygen [35].

2.2. Xanthine Oxidoreductase. Xanthine oxidoreductase, the
major source of superoxide in postischemic tissue too [4],
consists of two interconvertible forms, xanthine dehydroge-
nase (XDH) preferably using NAD+ as an electron acceptor
and xanthine oxidase (XO) using O2 as the terminal electron
acceptor [30]. Xanthine oxidoreductase catalyzes the trans-
formation of hypoxanthine and xanthine to uric acid, with
O2

-or H2O2 generation as by-products [41, 42]. Moreover,
under acidic conditions (pH ~6.5), XDHmay oxidize NADH
instead of xanthine, thus promoting superoxide production
RI, impaired autopha/RI [30]. Therefore, developing a sort
of xanthine oxidoreductase inhibitors seems a promising
intervention against MI/RI. But this approach sometimes
gets nowhere due to differences in xanthine oxidoreductase
abundance/activity between animal species [30]. For
instance, application of XO inhibitor, like allopurinol, to
the rabbit heart [43] and human heart [44] cannot protect
against MI/RI, because the rabbit heart and human heart lack
XO activity. However, activation of XO in hepatoenteric tis-
sue of a rabbit, not in the heart, induced significant myocar-
dial injury [45]. Perhaps because ROS released from
extracardiac xanthine oxidase induce cardiac injury [35],
and therefore, inhibition of extracardiac xanthine oxidase
may be still an effective therapeutic treatment against oxida-
tive stress-induced cardiac injury. In addition, xanthine
dehydrogenase is converted to xanthine oxidase during
ischemia [42]. In consideration that the capacity of superox-
ide production by XDH is regulated by the relative level of
NAD+ to NADH, and the higher proportion of NADH,
the more enhanced O2

- production [46], researches for find-
ing an intervention to change the reductive state (low NAD+

to NADH ratio) during reperfusion period in the heart could
be a feasible treatment to protect against MI/RI.

2.3. Uncoupled Nitric Oxide Synthase. Different effects of NO
from various sources on MI/RI have been reported. NO
derived from endothelial nitric oxide synthase and neuronal
nitric oxide synthase are thought to protect against MI/RI,
while inducible nitric oxide synthase-derived ones aggravate
MI/RI and can also cause cardiac hypertrophy and oxidative
stress [47]. NOS are enzymes containing flavin and heme and
transfer electrons from the NADPH at the C-terminal
(reductase domain) to the N-terminal heme (oxidase
domain), reducing O2 and incorporating it into l-arginine
to produce l-citrulline and NO [48, 49]. However, tetrahy-
drobiopterin (BH4), an essential cofactor of NOS, will be oxi-
dized by ROS [50]. In the absence of l-arginine, BH4, or both,
NOS can become a source of O2

− instead of NO [48, 51], thus
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becoming “uncoupled” to their primary role of NO synthesis
and limiting the effect of NO in the vascular system. How-
ever, H2O2 could potentially induce and activate the eNOS
[52, 53] that compensates for the reduction of NO due to
the pathological processes above. Besides, it has been specu-
lated that iNOS is increased under reperfusion stimulation
and then synthesizes NO [54, 55]. NO exerts cytotoxic effects
both in a direct way and via reacting with superoxide to form
highly oxidizing agent peroxynitrite (ONOO-) that causes
further cell and tissue damage [54, 56, 57].

2.4. Nicotinamide Adenine Dinucleotide Phosphate (NADPH)
Oxidase. NADPH oxidases (NOXs) are a family of seven
transmembrane electron transporters, respectively, named
NOX1 to NOX5 and dual oxidase- (DUOX-) 1 and DUOX-
2 [58, 59] that catalyze the transfer of electrons across biolog-
ical membranes from the electron donor NADPH to O2,
leading to the generation of O2

−.[59] and, according to some
reports, H2O2 [60–62]. To be more specific, it is believed that
the dual oxidases and NOX4 predominately produce H2O2,
while the remaining NOX isoenzymes largely produce super-
oxide [18, 27, 60]. The DUOX proteins are highly expressed

mainly in the thyroid [59]. NOX3 is expressed almost exclu-
sively in the inner ear [58]. The other NOX isoforms NOX1,
NOX2, NOX4, and NOX5 are expressed in the cardiovascu-
lar system and are activated or highly expressed during
myocardial ischemia or reperfusion [18, 63]. NOX2 and
NOX4 are the main NOX subtypes that produce ROS espe-
cially O2

- and H2O2 in the heart, which promote oxidative
stress RI, impaired autopha/RI [64]. NADPH oxidases are
involved in other process of ROS production, such as the
ROS generation by NOS and xanthine oxidase; NADPH
oxidase-derived ROS may oxidize and degrade BH4 and
activate xanthine oxidase [65, 66].

3. Pathways through Which Oxidative Stress
Causes Myocardial Reperfusion Injury

Oxidative stress causes cell death either through directly
destroying proteins, DNA, lipids, and other macromolecules
or acting as a signal molecule in the cell death signaling path-
way [67]. In this part, we mainly discussed the negative
effects of ROS in reperfusion through apoptosis, autophagy,

NADH

I

e-

II III Cyt IV
ATP

synthase
UCP

O2
e- O2 e-

FADH2

O2 H2O

O2
H2O2

H2O+O2

Fe2+ Fe3+

H2O

–OH

Hypoxanthine
xanthine Uric acid

O2 +H2O +H+

NAD++H2O
NADH+H+

XO

O2

NAD+

FAD

NADPH

HOOC FMN heme e-

XDH
PH~6.5

BH4 NH2

O2
L-arginine

NO L-citrulline

NADPH

NADP+

O2

H2O2

Cyt450

MAO

LOX

COX

NE

CA

ROS

NADPH
oxidase 

XDH

O2

H2O2

O–
2,

O–
2

O–
2

O–
2

O–
2

O–
2

G
SH

-P
x

Figure 1: Multiple sources of reactive oxygen species during reperfusion following myocardial ischemia. These are mainly mitochondria,
xanthine oxidoreductase, uncoupled nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, and some other sources.
Abbreviations: NADPH: nicotinamide adenine dinucleotide phosphate; NADH: nicotinamide adenine dinucleotide; FADH2: flavin
adenine dinucleotide hydrogen transmitter; O2

−: superoxide; Cyt: cytochrome; UCP: uncoupled protein; GSH-Px: glutathione peroxidase;
XDH: xanthine dehydrogenase; FAD: flavin adenine dinucleotide; FMN: flavin mononucleotide; BH4: tetrahydrobiopterin; MAO:
monoamine oxidase; LOX: lipoxygenases; CA: catecholamine; NE: neutrophil; COX: cyclooxygenase; XO: xanthine oxidase.
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inflammation, and some other pathological process, along
with the mechanisms involved (Figure 2).

3.1. Apoptosis of Myocardial Cells Induced by ROS. Apopto-
sis, a unique form of gene-regulated cell death, has been
shown to be triggered or accelerated primarily during reper-
fusion or reoxygenation [68, 69]. Secondary necrosis (i.e., late
apoptosis) of apoptotic cells can be caused by loss of mem-
brane integrity of these cells [70], ROS-induced inactivation
of caspases [71], and oxidant-induced failure of mitochon-
drial energy production [72]. It was thought that apoptosis
might cause myocardial stunning [73], extension of infarc-
tion [74], cardiac dysfunction, and even heart failure [75,

76]. Mechanisms of apoptosis induced by ROS have been
systematically described [34, 77].

Apoptosis triggered by disruption of mitochondrial
homeostasis. Ca2+ is induced by ROS to influx into the cyto-
plasm and then influx into the mitochondria, resulting in the
opening of MPTP, the collapse of mitochondrial mem-
brane potential, and release of apoptotic signaling mole-
cules such as cytochrome c and apoptosis-inducing factor
(AIF) from the intermembrane space [34, 78–80]. In the
cytosol, the apoptosome, formed with cytochrome c, apopto-
sis protease-activating factor-1 (Apaf-1), and caspase-9, acti-
vates caspase-3 ultimately initiating apoptosis [34, 79].
Evidence suggests that Bcl-2 prevents MPTP opening and
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Figure 2: The damage of oxidative stress to cardiomyocytes during reperfusion. Reactive oxygen species affect Ca2+ overload and Bcl-2 family
proteins, which lead to the mitochondrial permeability transformation pore opening and ultimately lead to myocardial apoptosis. Reactive
oxygen species also trigger exogenous apoptosis by activating the MAPK family. Finally, reactive oxygen species initiate apoptosis through
ER stress. Beclin1 and LAMP2, which are regulated by reactive oxygen species, cause impaired autophagy or excessive autophagy, thereby
damaging cardiomyocytes. Via inflammatory response, reactive oxygen species induce pathological damage of the heart. NO, one of the
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damage. Abbreviations: MAPK: mitogen-activated protein kinase; NF-κB: nuclear transcription factor-κB; TNF-α: tumor necrosis factor-α;
TNFR1: tumor necrosis factor receptor 1; Fas: tumor necrosis factor superfamily; CyP-D: cyclophilin D; Bcl-2: B cell lymphoma-2; MPTP:
mitochondrial permeability transition pore; AIF: apoptosis-inducing factor; Cyt: cytochrome; LAMP2: lysosomal-associated membrane
protein 2; Apaf-1: apoptosis protease-activating factor-1; ONOO-: peroxynitrite; NLRP3: nucleotide-binding oligomerization domain-like
receptor protein 3; MMPs: matrix metalloproteinases; ER stress: endoplasmic reticulum stress; CHOP: CCAAT/enhancer-binding protein
homologous protein.
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inhibits caspase activity, thereby inhibiting apoptosis. On the
contrary, Bax increased mitochondrial outer membrane per-
meability and caused the release of apoptotic factors [81, 82].
Beyond that mentioned above, oxidative stress also contrib-
utes to the translocation of the apoptotic protein Bax and
Bad into the mitochondria where these factors form hetero-
dimers with Bcl-2 [83], decreasing Bcl-2. A decreased Bcl-
2/Bax ratio results in MPTP opening as well [79].

Apoptosis triggered by MAPK family. ROS activate
MAPKs (primary p38 and JNK MAPKs), which mediate
the dissociation of the NF-κB from its inhibitor IκB and
upregulate activated NF-κB [34]. NF-κB in the cytoplasm
influx into the nucleus, contributing to synthesis of TNF-α
that releases to extracellular matrix, combines with mem-
brane surface receptors (TNFR1 and Fas), activates caspase-
8 and caspase-3, and then triggers an extrinsic death cascade
[34]. ROS could also directly activate NF-κB. H2O2 may
directly mediate the dissociation of IκB from NF-κB and
upregulate NF-κB [84]. H/R-induced reactive oxygen inter-
mediates activate NF-κB via tyrosine phosphorylation of
IκBα [85]. Evidences of NF-κB activation by oxidative stress
have also been described by Bowie and O’Neill [86]. How-
ever, the activation of NF-κB by H2O2 is cell-specific [86],
and it has not been clarified whether the mechanism of acti-
vation above holds in cardiomyocytes.

Apoptosis induced by endoplasmic reticulum stress. RI,
impaired autopha/RI, deficiency of glucose and nutrient sup-
ply, ATP depletion, ROS accumulation, and destruction of
Ca2+ homoeostasis interfere with endoplasmic reticulum
(ER) function, causing unfolded protein response with unfol-
ded/misfolded protein accumulation, the condition referred
to as ER stress [87, 88]. Numerous studies have indicated
the association between ER stress and cardiomyocyte apopto-
sis [89]. Prolonged and/or excessive ER stress has been
reported to induce ER-related apoptosis with increased
expression of CCAAT/enhancer-binding protein homologous
protein (CHOP) and the activation of caspase-12 [87, 90].
Simultaneously, ER stress was thought to disrupt the redox
balance, causing ROS accumulation and mitochondria dys-
function, finally aggravating cardiomyocyte apoptosis [90].

3.1.1. Effects of ROS on Intracellular Ca2+ Overload. Intracel-
lular Ca2+ overload may be caused via multiple pathways that
involved oxygen free radicals. Sarcolemmal Ca2+-ATPase
related to the extrusion of Ca2+ from cardiac cells [91] and
sarcoplasmic reticular Ca2+, Mg2+-ATPase sequestering
Ca2+ from the cytoplasm into the lumen of sarcoplasmic
reticulum [19] are altered by oxygen free radicals. ROS-
induced intracellular Ca2+ overload is also reported to be
caused via the activation of Na+/H+ exchanger [92], inhi-
bition of Na+-K+ ATPase [92, 93], and enhancement of
Na+/Ca2+ exchange (Ca2+ influx, Na+ efflux) [94], which all
promote influx of Ca2+ into the intracellular space. Besides,
increased extracellular Ca2+ influx is caused by ROS through
membrane lipid peroxidation and the voltage-sensitive Ca2+

channel opening [4, 95].

3.1.2. ROS Promote MPTP Opening. The formation of mito-
chondrial permeability transition pore (MPTP), an inner

membrane nonselective pore, can cause ATP depletion,
enhanced ROS production, membrane ion pump failure, sol-
ute entry, and then mitochondrial swelling, rupture, and
release of apoptotic signaling molecules such as cytochrome
c from the intermembrane space; this eventually leads to car-
diomyocytes apoptosis, causing irreversible damage to the
heart [4, 18]. The formation and opening of the MPTP are
the main cause of mitochondrial dysfunction and cardio-
myocyte death [96]. Therefore, prevention of MPTP opening
with pharmacological interventions or genetic modifications
has been reported to limit infarct size and decrease myocar-
dial apoptosis and necrosis [97, 98]. MPTP have been
reported [18] to be promoted by matrix Ca2+ and ROS but
inhibited by low pH in ischemia. However, during reperfu-
sion, restoration of pH, along with mitochondrial calcium
overload and excessive ROS generation, causes the pore to
form [18, 99], leading to cardiomyocyte death. In view of
these influence factors, it is extremely significant to seek out
some cardioprotective strategies that attenuate matrix
calcium overload and oxidative stress or maintain a low pH
during early phase of reperfusion [100–102]. In addition to
stimulus above, matrix cyclophilin D (CyP-D) promotes
MPTP opening via enhancing its calcium sensitivity [102],
and binding of cyclophilin to the inner mitochondrial mem-
brane could be greatly increased by oxidative stress [103].
CyP-D can be targeted by cyclosporin A (CsA) to protect car-
diomyocytes [18]. However, the toxicity of cyclosporin [104]
and even the adverse effects of Ca2+ efflux disorder in mito-
chondria after CyP-D-mediated MPTP opening is inhibited
[105, 106] limit the functions of CsA and other CyP-D inhib-
itors. However, MPTP opening lasts only for the first few
minutes after reperfusion [107] and may have little effect
on Ca2+accumulation in the mitochondrial matrix. As for
cyclosporine toxicity, more specific and novel CyP-D inhibi-
tors may be explored.

3.1.3. Activation of MAPK Family.Mitogen-activated protein
kinases (MAPKs) are a protein family including extracellular
signal-regulated kinases (ERK1 and ERK2), c-Jun N-terminal
kinases (JNK1 and JNK2), and p38 MAPK, among which
JNK and p38 MAPK promote apoptotic cell death, while
ERK1/ERK2 exerts a protective effect [108]. However, the
role of JNK MAPKs in apoptosis seems to be contradictory.
ROS-dependent activation of JNK/p38 MAPKs has been
shown to promote apoptosis [109]. JNK promotes apoptosis
through the Bax subfamily of Bcl-2-related proteins [110].
But for ROS-induced apoptosis, JNK activation seems to rep-
resent a scavenger pathway for cells, which tries to escape
apoptosis [111]. The contradictory role of JNK in apoptosis
may lie in the difference in experimental procedures and
the metabolic stage of the cells in different experiments
[111]. In cardiac myocytes, JNK, ERKs, and p38 MAPK can
be activated with the induction of ROS [112–114]. Hori and
Nishida thought that apoptosis signal-regulating kinase 1,
as an upstream signaling molecule, is activated by ROS, and
then activates p38 and JNK, which finally causes apoptosis
and cell hypertrophy [95]. The p38 MAPK, primarily related
to contribution of apoptosis [111, 115, 116], is a key signal
transduction factor mediating myocardial apoptosis
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following MI/RI [117]. For lung injury, p38 MAPK phos-
phorylates mitogen-activated protein kinase-activated pro-
tein kinase 2 (MK2), contributes the activation of caspase-3,
and then leads to apoptosis and cell death [118]. Further
study, nevertheless, is needed to determine whether this apo-
ptotic pathway holds in cardiomyocytes. Another report has
shown that p38-activated MK2 in MI/RI is detrimental to
cardiomyocytes [119]. Although an important role of MK2
in inflammatory response has also been suggested in this lit-
erature [119], its regulation of TNF biosynthesis may not be
contradictory with the MAPKs/NF-κB/TNF-α apoptotic
signaling pathway [34] previously mentioned. In the H/R
model, p38 MAPK also regulates the accumulation of mito-
chondrial ROS [6]. TUNEL assay showed that inhibition
of p38 kinase activity during hypoxia/reoxygenation
prevented H/R-induced apoptosis [120]. On the contrary,
activation of ERKs may protect cardiac myocytes from apo-
ptotic death induced by oxidative stress [113]. ERKs also
reduce ROS production by inhibiting NOX4 [121]. The
dynamic balance between activation of JNK and p38 and
activation of ERK may partly determine whether a cell
survives or apoptosis [122].

3.1.4. Endoplasmic Reticulum Stress. The ER, under physio-
logical conditions, regulates many biological processes, includ-
ing protein folding, assembly, modification and secretion,
Ca2+ homeostasis, and lipid synthesis [123, 124]. However,
when exposed to pathologic conditions, like ROS exposure,
Ca2+ overload, deficiency of glucose and nutrient supply, and
ATP depletion, homeostasis is impaired with the accumula-
tion of unfolded/misfolded proteins, as described above [87,
88, 123]. RI, impaired autopha/RI, the unfolded protein
response and/or ER-initiated apoptosis is likely to be triggered
by both the depletion of oxygen and energy substrates and the
subsequent sudden increase in oxygen free radicals [125]. It
has also been reported that oxidative stress triggered by tissue
reperfusion causes ER Ca2+ depletion, then leading to protein
misfolding [126]. MI/RI-activated unfolded protein response
upregulates multiple ER stress proteins, including chaperones
glucose-regulated protein 78, activating transcription factor 6,
and transcription factor X-box binding protein-1; many of
which act as protective roles, alleviating the ER stress [127].
However, prolonged and/or excessive ER stress-triggered
unfolded protein response may cause apoptosis through
CHOP and the caspase-12 pathways [87, 90, 127]. CHOP has
been known as a key upstreammolecule of apoptosis mediated
by ER stress. It also downregulates the expression of antiapop-
totic Bcl-2 [124].

3.2. Autophagy of Myocardial Cells Induced by ROS. Autoph-
agy is a major pathway for eukaryotic cells to degrade and
recycle organelles and macromolecules by which cytosolic
long-lived proteins and damaged organelles can be removed
[128]. Organelles and macromolecules are sequestrated by
double-membrane structures called autophagosomes, deliv-
ered to lysosomes, degraded by lysosomal hydrolases, and
then recycled [129, 130]. Different from ischemic autophagy
triggered by activation of the AMPK pathway and inhibition
of the mTOR pathway [131–133], autophagy during reperfu-

sion is upregulated by Beclin1 dependence [132]. On the con-
trary, reperfusion is accompanied by inactivation of AMPK
[132] and mTOR activation [132, 134], and activated mTOR
inhibits autophagy [134–136]. Enhancement of oxidative
stress is both necessary and sufficient for causing autophagy
in cardiomyocytes RI, impaired autopha/RI [137]. Autoph-
agy can also be induced by Ca2+ overload [138], release of
endoplasmic reticulum calcium [130], mitochondrial perme-
ability transition pore (MPTP) opening [139], and CyP-D
[140]. As mentioned above, these changes can be caused or
enhanced by oxidative stress. Besides, the autophagy is also
regulated by components of the apoptosis, including
mitochondrial-localized Bcl-2 family members [141]. The
antiapoptotic proteins Bcl-2 and Bcl-XL inhibit autophagy
through binding and inhibiting Beclin1 [142], while death-
inducing Bcl-2 family members, such as Bcl-2 19 kDa inter-
acting protein 3 or Bax, induce autophagy [141].

Autophagy is characterized by the protection of cell func-
tion under normal conditions, whereas autophagy under
pathophysiological conditions can either protect against cell
damage or serve as another form of programmed cell death,
known as PCD type II [143]. Finding out whether autophagy
activated respectively during ischemia and reperfusion plays
a positive or negative role is important. It is thought that
autophagy during acute myocardial ischemia and chronic
hibernation is cardioprotective while it is detrimental in
myocardial reperfusion after a short period of ischemia
[132, 133, 144, 145]. Autophagy may itself be a physiological
process that protects the heart by removing damaged mito-
chondria and other organelles and inhibiting ATP depletion.
For instance, autophagy is suspected to reduce apoptotic
damage via removing damaged mitochondria, thereby limit-
ing the diffusion of proapoptotic factors like apoptosis-
inducing factor, second mitochondria-derived activator of
caspases, and cytochrome c, and reducing ATP depletion
[146–149]. It can also repair myocardial cells injured during
H/R by lysosomal autophagy removal of nonfunctional lyso-
somes [150]. However, Beclin1-dependent autophagy
induced by reperfusion/reoxygenation only promotes autop-
hagosome formation, while autophagosome clearance is
impaired, resulting in impaired autophagic flux [151].
Impaired autophagy such as incomplete autophagic removal
of damaged mitochondria [152], abnormal lysosome struc-
ture and accumulation of autophagic vacuoles [153], loss of
lysosomal integrity, and lysosomal proteases released into
the cytosol [150] may play a negative role in heart disease.
Lysosomal-associated membrane protein 2 (LAMP2) is a
key protein for autophagosome-lysosome fusion, and its
expression is decreased during H/R injury [151], while
BECN1 interferes with autophagosome-lysosome fusion
and impairs autophagosome clearance [151, 154]. RI,
impaired autopha/RI, impaired autophagosome clearance,
which is mediated in part by the ROS-induced decrease of
LAMP2 and the upregulation of BECN1 [151, 154, 155],
leads to the accumulation of autophagosomes and abnormal
clearance of damaged cell components, and finally forms a
vicious cycle of increased ROS production and enhanced
mitochondrial permeability [154]. Slightly different from
the viewpoint of impaired autophagy, it is believed that
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reperfusion can lead to excessive autophagy, which is a
cytotoxic effect that leads to excessive degradation and self-
digestion of cellular constituents [136], resulting in irrevers-
ible damage and even cardiomyocyte death [132, 156]. In
addition, in L929 cells, autophagy is activated by caspase
inhibitors, which can lead to catalase degradation, intracellu-
lar ROS accumulation, membrane peroxidation, membrane
integrity failure, and finally cell death [157].

3.3. Inflammation Triggered by ROS. Oxidative stress and
inflammatory response are mutually promoting pathological
processes [4, 65, 95]. For example, neutrophils act as one of
the sources of ROS, while ROS from endothelial cells and car-
diomyocytes amplify inflammatory response and influence
nearby neutrophils, inducing a chain reaction of ROS gener-
ation [95]. Through the ischemia and reperfusion models of
multiple organs, Toll-like receptors have been demonstrated
to play an important bridging role in the interaction between
oxidative stress and inflammatory response [158]. It is
thought that ROS upregulate IL-1β through the NLRP3
inflammasome activation and caspase-1 expression [121].
IL-6 works as a downstream target of IL-1β [159]. It was
demonstrated that thioredoxin-interacting protein-
mediated NLRP3 inflammasome activation in cardiac micro-
vascular endothelial cells was a novel mechanism of MI/RI
[160]. In addition, NF-κB, activated by ROS, regulates the
expression of inflammatory genes, like IL-1β, IL-6, and
TNF-α [161, 162].

The severe inflammatory conditions during MI/RI have
been thought to occur due to the increased cytokines, that
is, IL-6, IL-1β, and TNF-α [163]. During MI/RI, rapidly
increased TNF-α exerts a negative effect via inducing the
expression of adhesion molecules and chemokines, promot-
ing the adhesion and interaction of leukocytes with endothe-
lial cells, and increasing leukocyte infiltration [162, 164].
Similarly, IL-6 and IL-1β aggravate myocardial injury
through promoting the adhesion of endothelial cells and
neutrophils [162]. Beyond mentioned above, inflammatory
factors have been reported to promote platelet adhesion,
vascular endothelial injury, collagen exposure, and platelet
activation [162]. The inflammatory response triggered by
ROS during MI/RI has been reviewed in detail [165]. ROS
can directly damage cardiomyocytes or promote cardiomyo-
cyte injury through cytokine release, NF-κB activation,
increase of endothelial cell adhesion molecules, and leukocy-
te/endothelial cell interaction [165]. Besides, matrix metallo-
proteinases, activated by ROS and inflammatory cytokines,
degrade collagens, then leading to myofibril slippage and left
ventricular dilatation [95].

3.4. Other Pathophysiology Caused by ROS. As for oxidative
stress-induced MI/RI, there are still other pathological
changes that need to be further explored in addition to the
frequently studied mechanisms mentioned above. For
instance, ROS is believed to be involved in necrotic cardio-
myocyte death via MPTP opening that is deemed as a main
cause of the necrotic cell death rather than just inducing apo-
ptosis [95]. Another report has shown that in cardiomyo-
cytes, ROS activate NF-κB and thereby inhibit the Nrf2-

ARE pathway to promote oxidative stress-induced necrosis
[166]. In addition to working as signaling molecules in the
cell death pathways, ROS also initiate cell death through
directly damaging various macromolecules like proteins,
DNA, and lipids [67]. As was demonstrated, ROS-mediated
reactions with proteins can inactivate key enzymes and ion
transporters. With the peroxidation of polyunsaturated fatty
acid of cell membranes, the permeability and selectivity of
cell membranes to specific ions as well as receptor function
alter [165]. Therefore, the effects of ROS on DNA, proteins,
and lipids may be just another manifestation of the signaling
pathways involved in cardiomyocyte damage. In addition to
the above cell injury caused by ROS, NO, along with its prod-
uct ONOO-, exerts cytotoxic effects that cause cell and tissue
damage [54, 56, 57].

4. Interventions Targeting Oxidative Stress and
Related Pathways in Myocardial Reperfusion

As mentioned above, based on the multiple sources of ROS,
the effects of oxidative stress on MI/RI and the mutual influ-
ence of various pathways, it is extremely important to explore
multiple targets and systematic intervening measures includ-
ing traditional Chinese medicine to overcome the limitations
of single therapy.

4.1. Antioxidants. It was demonstrated that oxidative stress to
cardiomyocyte may lead to detrimental cellular effects like
necrosis, apoptosis, or autophagy [22] and elicit MI/RI like
arrhythmia, stunning, and infarction [167]. Suppression of
OFRs accumulation during MI/RI can alleviate myocardial
stunning, irreversible injury, and reperfusion arrhythmias
[19]. Many therapeutic strategies have been developed to
attenuate MI/RI through counteracting ROS generation and
accelerating their consumption.

4.1.1. Inhibition of ROS Generation. Amounts of potential
sources of ROS have been researched, such as xanthine oxi-
dase [25], NADPH oxidase (NOX) [26, 27], mitochondria
[28], and uncoupled nitric oxide synthase [29]. Different
treatments targeting multiple sources of ROS could reduce
oxidative stress-induced injury in reperfusion.

(1) Mitochondria. Paraoxonase 2 binds specifically to the
complex III in inner mitochondrial membrane, and its
deficiency alters mitochondrial function partly by reducing
the activities of mitochondrial complexes I/III, thus result-
ing in the superoxide generation and exacerbating the
development of atherosclerosis [168]. A research aiming
at exploring the regulatory role of paraoxonase 2 in MI/RI
showed that paraoxonase 2 in the myocardium can reduce
mitochondrial dysfunction and oxidative stress in cardio-
myocytes by activating the PI3K/Akt/GSK-3 RISK pathway
[169]. Based on the report that rapid reactivation of complex
I, which generatesH2O2 causing oxidative damage and the cell
death, is a core pathological mechanism of MI/RI [170],
mitochondria-targeted S-nitrosothiol, a mitochondria-
selective S-nitrosating agent, can reversibly S-nitrosify com-
plex I to slow the reactivation of mitochondria during the first
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minutes of the reperfusion, thereby decreasing ROS produc-
tion and oxidative damage [170]. In adult Sprague-Dawley
rat MI/RI model, pigment epithelium-derived factor
decreased myocardial infarct size during MI/RI, downregu-
lated myocardial apoptosis, improved cardiac function, and
increased cardiac functional reserve [171]. TheH9c2myocar-
dial cell hypoxia/reoxygenation (H/R) model was established
to further study the protective mechanism of pigment
epithelium-derived factor. The results indicate that the pro-
tective effect of pigment epithelium-derived factor on MI/RI
is realized by inhibiting the production of mitochondrial and
cytoplasmic ROS [171]. Dapagliflozin administration during
MI/RI protects the heart by reducing infarct size, improving
left ventricular function, and reducing arrhythmias. The
protective effect is achieved in part by reducing mitochon-
drial ROS production and mitochondrial dysfunction [172].

(2) Xanthine Oxidoreductase. Xanthine oxidase inhibitors,
which include purines (allopurinol and oxypurinol) and non-
purines (febuxostat and topiramate), exert antioxidant effects
by reducing purine-derived ROS production [173]. In partic-
ular, the protective effects of allopurinol administration in
MI/RI have been reported, including reduced infarct size,
improved ventricular function, and reduced arrhythmia inci-
dence [25, 174–176]. In a clinical trial examining the cardio-
protective effect of oral allopurinol on patients receiving
primary percutaneous transluminal coronary angioplasty
after acute myocardial infarction, the results showed that
allopurinol pretreatment could effectively inhibit the produc-
tion of oxygen-derived radicals in myocardial reperfusion
and restore left ventricular function [177]. Clinical researches
showed that allopurinol improved cardiac function and
reduced hospital mortality in patients undergoing coronary
artery bypass surgery via inhibiting XO-derived ROS genera-
tion [178, 179].

(3) NOS. As mentioned above, the decreased bioavailability
of NO caused by eNOS uncoupling and the cytotoxicity of
NO synthesized by iNOS are the cause of myocardial damage
induced by NOS. The depletion of tetrahydrobiopterin
(BH4), an important cofactor of NOS, in MI/RI resulted in
increased eNOS uncoupling and ROS production, but pre-
ischemia administration of liposomal BH4 can reduce the
dysfunction of eNOS secondary to BH4 depletion during
reperfusion, thus protecting cardiac function [180]. To inves-
tigate the effect of quercetin on the expression of NOX2,
eNOS, and iNOS genes and proteins in the rabbit heart after
myocardial ischemia/reperfusion injury, a MI/RI model was
established in New Zealand white rabbits by myocardial
ischemia for 30 min and reperfusion for 12 h. The results
indicate that quercetin can not only inhibit MI/RI-induced
expression of NOX2 and iNOS but also eNOS [181]. The
protection to the myocardium by inhibiting eNOS expression
may be due to the reduction of iNOS induction and
decreased iNOS-derived peroxynitrite during late reperfu-
sion, which is in contradiction with the positive effect of
eNOS during early reperfusion [182]. Insulin [183] and pter-
ostilbene [108] can not only increase the phosphorylation of
eNOS, promoting the production of physiological NO and

the reduction of superoxide, but also inhibit the expression
of iNOS. It was shown that insulin and pterostilbene pro-
tected against MI/RI by blocking ONOO--triggered oxidati-
ve/nitrative stress and that they both improved cardiac
functions, as well as reduced myocardial infarction, apopto-
sis, and creatine kinase/lactate dehydrogenase release.
Studies have shown that the exogenous donor of NO, NO-
aspirin, releases NO at a rate similar to the endogenous
NO derived from L-arginine, which limits infarct size,
improves myocardial contractile dysfunction, and reduces
the mortality rate, during MI/RI [184]. In addition, due to
the antiplatelet aggregation and vasodilation effects of NO
[184], it may reduce microvascular obstruction following
reperfusion. Similar therapeutic effects may be achieved
through microbubble oscillations, which can increase blood
perfusion through activating the eNOS pathway and releas-
ing NO [185].

(4) NAD(P)H Oxidase. The NOX family of NADPH oxidase
may produce superoxide and other ROS by transporting elec-
trons through the biological membranes from NADPH to O2
during MI/RI, especially NOX2 and NOX4 [64]. Injection
with H2O2-responsive antioxidant PVAX nanoparticles was
used to evaluate the therapeutic effect of PVAX on MI/RI
in mice. The results of dihydroethidium staining showed that
PVAX effectively inhibited MI/RI-caused ROS production,
and PVAX targeted the production site of ROS, reducing
the expression levels of NOX2 and NOX4 that are the main
NOX subtypes in the heart, thus protecting against MI/RI
[23]. By suppressing the PKC-б/NOX2 /ROS signaling path-
ways in H9c2 cells, Wenxin Granule, a Chinese patent med-
icine commonly used in cardiovascular diseases, inhibits
oxidative stress, mitochondrial dysfunction, and myocardial
cell apoptosis induced by H/R [186]. In addition, as has been
demonstrated, cardiotonic pill that is a compound Chinese
medicine used in the treatment of ischemic angina pectoris
can achieve antioxidative effect by inhibiting NADPH oxi-
dase activation, thus reducing MI/RI-caused rat myocardial
injury and microcirculatory disturbance [187].

4.1.2. Endogenous Antioxidant Systems. The endogenous
antioxidant systems can protect cells against the potential
injury through regulating the balance of individual ROS
and their reactants, maintaining “redox homeostasis” [35].
Major endogenous antioxidants in cardiomyocytes include
superoxide dismutase (SOD), catalase (CAT), glutathione
peroxidase (GSH-Px), glutathione, coenzyme Q10 (ubiqui-
none), and vitamins C and E [35]. Some interventions
enhance the activity of endogenous antioxidant systems.
Cheng et al. evaluated the cardiac protective effect of N-
propyl caffeamide, a newly synthesized caffeic acid derivative,
on a mouse MI/RI model. The results showed that N-propyl
caffeamide effectively reduced infarct size and the release of
myocardial enzymes such as creatine kinase, creatine kinase
isoenzyme, and lactate dehydrogenase. Biochemical analysis
showed that N-propyl caffeamide increased the activity of
antioxidant enzymes (such as CAT and SOD) while
decreased the lipid peroxidation [188]. In a research to inves-
tigate the effects of galectin-3 on MI/RI, C57B6/J wild-type
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(WT) mice and galectin-3 knockout (KO) mice were used to
establish murine model with MI/RI for 30 min of ischemia
and 24 h of reperfusion. The results showed that troponin I
in the galectin-3-KO group was significantly higher than that
in the wild-type group, along with reduced SOD, GSH, and
CAT and enhanced apoptotic activity [189]. Besides, trans
sodium crocetinate was shown to upregulate sirtuin 3 expres-
sion and subsequently regulate the posttranslational protein
modification of FOXO3a, thereby increasing SOD2 protein
level and alleviating MI/RI-induced myocardial oxidative
stress [190]. Silent information regulator 1 (SIRT1) can dea-
cetylate and activate FOXO that synthesizes antioxidants
such as manganese superoxide dismutase (MnSOD) and cat-
alase [191, 192]. Berberine may target SIRT1 to protect
against MI/RI induced by oxidative stress [193]. An in vitro
MI/RI study showed that scutellarin, a flavone extracted from
traditional Chinese medicine, could inhibit oxidative stress
by increasing SOD concentration, thus protecting cardio-
myocytes [194]. Intravenous administration of water-
soluble acacetin prodrug could improve ventricular arrhyth-
mias, infarct size, and cardiac dysfunction, which were
induced by MI/RI in rats. Molecular mechanisms suggested
that its protective effect on the myocardium was achieved
partly by preventing the reduction of endogenous antioxi-
dants such as SOD2 and thioredoxin [195]. A clinical
research of 34 patients showed that human recombinant
SOD alleviated reperfusion arrhythmias, but did not signifi-
cantly improve left ventricular function. This may be due to
the fact that the myocardial cell damage during reperfusion
is not caused by superoxide but by other ROS, or that SOD
in the damaged myocardium does not reach the effective
concentration during reperfusion [196]. Another clinical
report has shown that N-acetylcysteine, a precursor of gluta-
thione, limits infarct size, reduces reperfusion ventricular
arrhythmias, improves global and regional left ventricular
function, and normalizes electrocardiogram [197]. In addi-
tion, there is evidence that preoperative upregulation of anti-
oxidant enzymes and nonenzymatic antioxidants may reduce
the incidence of postoperative atrial fibrillation [22].

4.1.3. Exogenous Antioxidants. Since endogenous antioxidant
levels are not sufficient to prevent reperfusion injury [198], it
is also important to explore more exogenous antioxidants.
Pretreatment for the hearts with N-acetylcysteine and N-
mercaptopropionylglycine that are exogenous antioxidants
has been shown to be beneficial in preventing MI/RI, but fur-
ther studies are needed to determine their effectiveness in
reversing MI/RI-induced abnormalities in the heart [199].
Tong et al. used in vitro H/R cell model and in vivo local
MI/RI mouse models to explore the effects of intravenous
administration of lycopene on ROS during MI/RI. It sug-
gested that intravenous administration of lycopene could
protect mice from MI/RI by inhibition of ROS accumulation
[200]. It was reported that novel pyridoindole derivatives
seemed to inhibit the incidence of reperfusion injury like
ventricular tachycardia and ventricular fibrillation in MI/RI
through antioxidation and free radical scavenging protection.
In addition, SMe1EC2, one of the pyridoindole derivatives,
promotes recovery of the left ventricular function, such as

decreasing left ventricular end-diastolic pressure and recov-
ery of the stunned myocardium [201]. Besides, probucol, a
lipophilic antioxidant, has been reported to reduce myocar-
dial stunning during reperfusion following short-term ische-
mia in the rabbit [202].

4.1.4. Mitochondria-Targeted ROS Scavengers. Antioxidants
that are neither targeted nor accumulated in the mitochon-
dria may be ineffective [10]. Mitochondria are deemed the
major intracardiac source of ROS during MI/RI [35].
Mitochondria-targeted ROS scavengers may be more effec-
tive and more easily controlled than general antioxidants.
MitoQ [203, 204], a mitochondria-targeted antioxidant con-
taining the antioxidant quinone moiety, can be concentrated
by the lipophilic triphenylphosphonium cation for several
hundredfold within mitochondria, protecting the cardio-
myocytes from MI/RI. Mitochondria-targeted Szeto-Schiller
peptides (SS peptides) can decrease mitochondrial ROS gen-
eration, prevent mitochondrial permeability transition,
inhibit cytochrome c release, reduce lipid peroxidation, limit
the infarct size, prevent reperfusion ventricular arrhythmias,
restore myocardial contraction, and prevent reperfusion-
related myocardial stunning [205, 206]. Treatment of irisin,
a muscle-origin protein, reduces infarct size, improves left
ventricular ejection fraction, decreases serum troponin I,
and inhibits apoptosis during MI/RI by regulating mitochon-
drial localization of SOD2 and increasing SOD2 activity
[207]. Furthermore, since rapid reoxidation of succinate by
succinic dehydrogenase may lead to massive ROS generation
and cardiomyocyte death during reperfusion [208], inhibi-
tion of succinic dehydrogenase by malonate limits infarct size
via alleviating ROS generation in the isolated mouse hearts
during reperfusion period [208].

4.1.5. Regulation of the Oxidation Defense System

(1) Nuclear Factor Erythroid-Related Factor 2 (Nrf2). Nrf2, a
nuclear transcription factor, plays an indispensable regula-
tory role in the defensive genes that encode detoxifying
enzymes and antioxidant proteins, contributing to cellular
resistance to oxidants [209, 210] and it is involved in induc-
ing endogenous antioxidant enzymes to respond to oxidative
stress [211]. Nrf2 binds to its cytosolic repressor Kelch-like
ECH-associated protein 1 under nonoxidative stress and is
ultimately targeted for ubiquitination and proteasomal deg-
radation. However, Nrf2 dissociates from Kelch-like ECH-
associated protein 1 and migrates to the nucleus under the
influence of ROS. After binding to antioxidant response ele-
ments (AREs), Nrf2 promotes the expression of antioxidant
genes and produces enzymes related to antioxidant defense,
such as glutathione reductase (GR), heme oxygenase 1
(HO-1), and superoxide dismutase 1 (SOD1) [18, 209, 210,
212]. HO-1, an intracellular inducible phase II detoxifying
enzyme, can be regulated by Nrf2 [213]. The Nrf2/HO-1 sig-
naling pathway is related to defense against a variety of
oxidative-inducing agents and represents a promising target
for inhibiting MI/RI [213]. Many drugs or extracts thereof,
such as resveratrol [211] and triptolide [214], inhibit
oxidative stress by activating the Nrf2/HO-1 signal, thereby
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limiting infarct size and improving cardiac function. Precon-
ditioning with Potentilla reptans L. root can exert cardiopro-
tective and antiapoptotic effects through NO release, the
Nrf2 pathway, and endogenous antioxidant activity, thereby
alleviating arrhythmias and infarct size, and improving myo-
cardial stunning [215]. Upstream signaling molecules of
Nrf2 can also serve as targets for MI/RI therapies, such
as phosphatidylinositol-3-kinase (PI3K) [216, 217], protein
kinase C (PKC) [217], and silent information regulator
1(SIRT1) [218]. Glycogen synthase kinase 3 (GSK3)
[219–221], which promotes degradation and inactivation of
Nrf2, is also a therapeutic target. For instance, Shanmugam
et al. used the Langendorff isolated heart perfusion system
to research the myocardial protective effect of fisetin, a natu-
ral flavonoid, on MI/RI. The results suggested that fisetin
could induce the expression of Nrf-1/2 through inhibiting
GSK-3, thereby synthesizing HO-1, SOD, and GR, clearing
ROS, and finally inhibiting apoptosis [222].

(2) Hypoxia-Inducible Factor-1 (HIF-1). HIF-1 is a critical
regulator of the transcriptional response to hypoxia condi-
tions of mammalian cells [223]. Evidences suggested that
HIF-1 expression is increased after myocardial ischemia
[224, 225] and that HIF-1 is also activated by ROS [226,
227]. HIF-1 protects the myocardium from reperfusion
injury. For example, HIF-1α mediates ischemic precondi-
tioning [18, 228], regulating HO-1, and eNOS expressing
[18], which, as described previously, alleviate MI/RI-induced
oxidative stress. HIF-1 is regulated by PI3K/Akt. For
instance, troxerutin alleviates oxidative stress in H9c2 cardi-
omyocytes through activation of the PI3K/Akt/HIF-1α
signaling pathway [229]. Besides, the antioxidants N-
acetylcysteine and allopurinol combat MI/RI synergistically
in diabetes primarily restore through the HIF-1α/HO-1
signaling pathway [230].

(3) PI3K/Akt. Activation of phosphatidylinositol-3-kinase
(PI3Ks) and its downstream target protein kinase B (Akt)
regulates myocardial oxidative stress and promotes myocar-
dial protection against MI/RI [231]. The regulatory effect of
insulin on NOS mentioned above may be realized through
the PI3K/Akt-dependent pathway [183]. GSK-3, which pro-
motes MPTP [134], inhibits activation of mTOR [134], and
promotes Nrf2 degradation [219–221], is inactivated by Akt
phosphorylation [232]. Pretreatment with hydroxytyrosol
seems to reduce myocardial infarct size, decrease apoptosis,
and improve cardiac systolic function through this signaling
pathway during MI/RI [233]. In addition, Akt acts on cyto-
plasmic peptide Bad (Bcl-2 family proteins), which is
isolated in the cytoplasm, and inhibits apoptosis [232].
Signaling molecules that regulate the PI3K/Akt pathway
can be used as targets for antioxidative stress. For example,
phosphatase PTEN that negatively regulates the PI3K/Akt
pathway can be inhibited by ROS [234, 235], exosomes derived
from bone marrow stromal cells [236], or Achyranthes biden-
tata polypeptides [237], then enhancing Akt phosphorylation
and promoting myocardial protection. Treatments targeting
PI3K/Akt or related signaling pathways reduce reperfusion
complications such as arrhythmias [238, 239], myocardial

stunning [239], myocardial no-reflow [240], and adverse
remodeling [241].

4.2. Regulation of Apoptosis-Related Pathways

4.2.1. Regulation of Ca2+ Overloading. Intracellular Ca2+

overload, as mentioned above, can be triggered by ROS in a
variety of ways [19, 91–94]. Apart from inducing MPTP
opening, Ca2+ overload in cardiomyocytes also leads to cell
death by causing excessive contraction of cardiomyocytes
during reperfusion [5]. Therefore, the exploration of strate-
gies to inhibit Ca2+ overload may provide new ideas for the
prevention and treatment of oxidative stress-induced reper-
fusion injury. For example, intracardiac injection of 4(RS)-
4-F4t-neuroprostane before ischemia, a nonenzymatic
oxidized metabolite of cardiac protective docosahexaenoic
acid, can limit myocardial infarction and reduce the inci-
dence of ventricular arrhythmias [242]. The results not only
showed the protective effect of 4(RS)-4-F4t-neuroprostane
against mitochondrial Ca2+ overload, which is related to
decreased MPTP opening, but also suggest that its antiar-
rhythmic properties seem related to reduced Ca2+ release
from sarcoplasmic reticulum, diastolic membrane hyperpo-
larization, and action potentials shortening [242]. Tetra-
methylpyrazine, an alkaloid extracted from the traditional
Chinese medicine Ligusticum chuanxiong Hort, protects
against MI/RI by preventing Ca2+ overload and scavenging
OFRs, among other beneficial pathways [243]. Mitochondrial
ATP-sensitive potassium channel (mitoKATP) can reduce
mitochondrial Ca2+ overload, increase ATP synthesis, and
increase protective ROS production during preconditioning
but decrease ROS generation during reperfusion [244, 245].
Activation of mitochondrial potassium channels partly pro-
tects against reperfusion injury by a mild depolarization
and reduction of Ca2+ accumulation in the matrix, then
reducing MPTP opening and apoptosis [246]. The novel
H2S donor 4-carboxyphenyl isothiocyanate can prevent
Ca2+ accumulation in the mitochondrial matrix, and the
mitoKATP may be a relevant pharmacological target of it
[247]. Regulation of Ca2+ has been reported to ameliorate
complications associated with MI/RI. In a model simulating
MI/RI, Salvia miltiorrhiza was showed to improve antioxi-
dant and calcium regulation in cardiomyocytes during MI/RI
and reduce arrhythmias and apoptosis [248]. In a porcine
model of MI/RI, sarcoplasmic reticulum Ca2+ ATPase pump
improves mechanical and electric stability in the heart
through reducing Ca2+ overload and then inhibits ventricular
arrhythmias [249]. In addition, calcium regulation can
reduce myocardial death and heart failure [250].

4.2.2. Regulation of MPTP Opening. Mitochondria-mediated
apoptosis is recognized as a key part in MI/RI [251]. During
reperfusion, Ca2+ overload and excessive ROS production,
along with some other factors, can trigger MPTP opening
[252]. Myocardial ischemia/reperfusion injury mainly
depends on the opening of MPTP within the first few
minutes of reperfusion and subsequent mitochondrial dys-
function [253, 254]. MPTP contributes 50% to MI size
[253]. It has been reported [254] that ischemic

10 Oxidative Medicine and Cellular Longevity



preconditioning and ischemic postconditioning may inhibit
MPTP formation by regulating calcium balance, oxidative
stress, ATP level, and pH recovery, as well as direct MPTP
inhibition involving the complex signal transduction path-
ways, thus exploring more targets for the treatments of myo-
cardial reperfusion injury. In the rat MI/RI models
established by ligation of the left coronary artery (30 min)
and reperfusion (120 min), pretreatment of 3-methyl-1-phe-
nyl-2-pyrazolin-5-one, a free radical scavenger, can inhibit
intracellular Ca2+ overload caused by oxidative stress,
thereby inhibiting MPTP opening [198]. In addition, mito-
chondrial swelling, the release of cytochrome c, and myocar-
dial cell apoptosis can be reduced by 3-methyl-1-phenyl-2-
pyrazolin-5-one through inhibiting MPTP opening [198].
Schaffer et al. have comprehensively reviewed the protective
effects of taurine in MI/RI, which suppresses MPTP activa-
tion by inhibiting calcium overload, reducing ROS overpro-
duction in respiratory chain, and activating the Akt-
dependent protective signaling pathway [255]. It has been
reported with heart protection during bypass surgery, heart
transplantation, and myocardial infarction, and severe loss
of it may increase the risk of reperfusion ventricular remod-
eling and heart failure [255]. Inhibition of MPTP during
reperfusion was also showed to promote functional recovery
and reduce mortality in mice [256]. Besides, matrix CyP-D
promotes MPTP opening by enhancing its calcium sensitiv-
ity [102], and CyP-D serves as a target for cyclosporin A to
protect cardiomyocytes [18]. However, Bennett and Norman
described toxicity of cyclosporine [104]. Newer CyP-D inhib-
itors such as hematopoietic-substrate-1-associated protein
X-1 [98] and polylactic/glycolic acid nanoparticles [257]
may overcome the shortcoming of CsA. Cardio-specific
hematopoietic-substrate-1-associated protein X-1 downre-
gulates cyclophilin D levels through interfering its binding
to heat shock protein-90 [98], rather than involving CsA.
Polylactic/glycolic acid nanoparticles regulate the in vivo
kinetics of CsA by selective delivery to the MI/RI-related
cardiomyocyte cytosol and mitochondria [257], and treat-
ment with nanoparticles incorporated with CsA enhanced
the cardioprotection of CsA, even at low CsA concentra-
tions [257], which may effectively reduce the toxicity of
CsA. In addition, increased acetylation of CyP-D after myo-
cardial reperfusion promotes MPTP opening, and ischemic
postconditioning may promote deacetylation of CyP-D and
prevent MPTP opening by increasing sirtuin 3 activity
which prevent lethal reperfusion injury [258].

4.2.3. Regulation of Bcl-2 Family Proteins. ROS triggers the
initiation of apoptosis, which is related to the decrease of
antiapoptotic Bcl-2 and proapoptotic Bax ratio during MI/RI
[259]. The ratio of Bcl-2 to Bax can decide whether cell sur-
vives or not following apoptotic stimulation [260]. Therefore,
the exploration of therapeutic strategies regulating the
expression of Bcl-2 and Bax may provide new targets against
oxidative stress. For example, the cardiac protective effect of
N-propyl caffeamide is not only realized by regulating the
activity of CAT and SOD as mentioned above but also by
upregulating the expression of Bcl-2 in myocardial tissue
and inhibiting the expression of Bax [188]. In addition, it

has been reported that treatment with diltiazem plus SOD
during MI/RI in a rat model can inhibit the apoptosis path-
way, and that one of the results showed increased Bcl-2
expression and decreased Bax expression [261]. The pheny-
lethanoid glycoside-rich extract of Cistanche deserticola
reduces oxidative stress in the reperfusion myocardium and
plays an important role in suppressing apoptosis pathways.
Results of the research also included upregulation in the ratio
of Bcl-2 to Bax [262]. It has been shown that adrenomedullin
can protect against MI/RI-induced myocardial infarction,
arrhythmias, and apoptosis by activating NO/cGMP to
inhibit ROS-induced phosphorylation of Bax and p38MAPK
and activation of the Akt-Bad-Bcl-2 signaling pathway [263].

4.2.4. Regulation of MAPK Family. Activated by ROS,
MAPKs (mainly p38 and JNK MAPKs) initiate exogenous
cell death cascades through theMAPK/NF-κB/TNF-α signal-
ing pathway. Interventions targeting p38 MAPK or JNK have
been shown to protect against oxidative stress-induced
MI/RI. Dual-specificity phosphatase is upregulated by N-
acetylcysteine pretreatment [120]. And the modulation of
p38 MAPK by dual-specificity phosphatase is indispensable
to improve cardiovascular function under oxidative stress
[120]. Betulinic acid protects H9c2 cells from MI/RI by inhi-
biting oxidative stress and apoptosis, and the Nrf2/HO-1,
JNK, and p38 pathways are involved in mediating these pro-
tective effects [264]. Syringic acid, a natural O-methylated
trihydroxybenzoic acid monomer that is extracted fromDen-
drobium nobile Lindl., protects H9c2 cardiomyocytes from
H/R-induced apoptotic injury via inhibiting the activation
of the p38 MAPK and JNK signaling pathways [265]. Injec-
tion of snakegourd peel, a traditional Chinese herbal medicine,
inhibits the apoptosis of myocardial cells by reducing intracel-
lular Ca2+ overload, inhibiting the activation of caspase-3, and
downregulating the phosphorylated JNK (p-JNK) and p38
MAPK (p-p38 MAPK) protein expression [266].

4.2.5. Regulation of Endoplasmic Reticulum Stress. During
MI/RI, prolonged or excessive ER stress triggered by oxida-
tive stress and other causes acts as a target for intervening
in oxidative stress-induced reperfusion injury; in that, it
causes apoptosis of the cardiomyocytes. Transforming
growth factor β-activated protein kinase 1, a key regulator of
cell death, may trigger MI/RI as an upstream signaling mole-
cule of the ROS/ER stress pathway, and inhibition of it signifi-
cantly decreased MI/RI-induced infarct size, reduced cell
death, and improved cardiac function [87]. It has been
reported that prevention of the ER stress with two chemical
chaperones, tauroursodeoxycholic acid and 4-phenylbutyric
acid, could limit the deterioration of the contractile function
in the stunned myocardium such as reperfusion following
acute myocardial infarction [88]. In vitro and in vivo experi-
ments have shown that sulodexide pretreatment [267] and
tournefolic acid B [268] may exert inhibiting role in ER stress
through the PI3K/Akt pathway and then inhibit cell apoptosis.
Silibinin treatment has been reported to improve cardiac func-
tion, reduce infarct size, and inhibit fibrotic remodeling in
MI/RImice. Its protective effect was achieved partly by inhibit-
ing ER stress [90]. Shuxuening injection, an extract of Ginkgo
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biloba, protects against MI/RI mainly by preventing oxidative
stress and ER stress, thus regulating the Toll-like receptor
4/NF-κB pathway so as to reduce inflammation, and inhibiting
procoagulant-related factors to reduce thrombosis [162].

4.3. Regulation of Autophagy-Related Pathways. The decline
of LAMP2 and upregulation of BECN1 mediate the damage
of autophagosome clearance during MI/RI, forming a vicious
cycle of increased ROS production and enhanced mitochon-
drial permeability, which eventually leads to cell death [151,
154, 155]. Therapeutic measures targeting BECN1 or LAMP2
expression may reduce oxidative stress-induced reperfusion
injury, such as partial BECN1 knockdown [154], inhibition
of BECN1 expression by urocortin [269], and upregulating
LAMP2 by exogenous calreticulin postconditioning [270].
There are other therapies that do not rely on Beclin1 and
LAMP2 to restore impaired autophagy. For example,
sustain-releasing H2S donor 5-(4-methoxyphenyl)-3H-1, 2-
dithiole-3-thione [155], metformin [271], and sevoflurane
precondition [272] restore the impaired autophagic flux
induced by MI/RI through AMPK activation, thus protecting
the myocardium from MI/RI. Intermittent fasting [273] and
cilostazol [274] protect against myocardial ischemia/reperfu-
sion injury by transcription factor EB-mediated transcrip-
tional initiation of autophagy-lysosome mechanisms.
Transient hypoxia can also protect against reperfusion injury
by slightly upregulating autophagy [275]. In a MI/RI model
with female farm pigs, myocardial hypothermia was shown
to prevent myocardial remodeling through increasing
autophagic flux and mitophagy [276]. Since excessive
autophagy caused by MI/RI leads to cytotoxic effects with
excessive degradation of cellular components and self-diges-
tion, prevention of excessive autophagy caused byMI/RI may
play a protective role in the heart. For example, PI3K/Akt
upregulates mTOR expression, promotes downregulation of
autophagy, and protects myocardial reperfusion injury
[136]. Trimetazidine inhibits excessive autophagy induced
by MI/RI by activating the Akt/mTOR pathway, which pro-
tects the rat hearts from heart failure, reduces infarct size,
and so on [136]. Sevoflurane postcondition protects the rat
heart from MI/RI by inhibiting autophagy overactivation
and promoting autophagosome clearance [277]. Phellinus
linteus mycelium pretreatment was used to significantly
reduce MI/RI-induced myocardial infarct size, lactate dehy-
drogenase level, ventricular arrhythmias, and mortality in
part by enhancing protective autophagy and inhibiting exces-
sive autophagy [278].

4.4. Regulation of Inflammatory Response. The nuclear tran-
scription factor-κB may be an ideal target for the treatments
against reperfusion injury; in that, it plays an important role
in cardiomyocyte apoptosis and inflammatory injury trig-
gered by oxidative stress duringMI/RI. Apart from inhibition
of ER stress, silibinin also exerts cardioprotective effect
against MI/RI through alleviating inflammatory response
via deactivating the NF-κB pathway [90]. Researches show
that microRNA-130a-5p targeted high mobility group box
2 to downregulate the NF-κB to relieve the MI/RI-induced
inflammatory injury [279]. Cytokines such as TNF-α, IL-6,

and IL-1β are also indispensable in ROS-induced inflamma-
tory injury. Dietary selenium intake, for example, reduces
myocardial infarct size of rats and reduces adverse remodel-
ing, and beneficial effect of it might be partly related to the
inhibition of proinflammatory cytokine overexpression
[280]. The supplementation of phyllanthin, a major bioactive
lignin compound from Phyllanthus species, has also been
reported to diminish IL-6, IL-1β, and TNF-α in the mice dur-
ing MI/RI, as well as suppress the overexpression of NF-κB
[163]. In addition, interventions acting on inhibiting NLRP3
inflammasome activation may be deemed as novel therapies
for relieving MI/RI [160].

5. Conclusion

Reperfusion following myocardial ischemia may lead to
accelerated myocardial injury and worsening clinical out-
comes. One of the most important pathological mechanisms
in reperfusion injury is oxidative stress, which is the imbal-
ance between the antioxidant system and the excessive
production of ROS, leading to the toxic accumulation of reac-
tive oxygen intermediates.

Multiple sources of ROS have been reported, including
electron leakage from the ETC in mitochondria, the conver-
sion of hypoxanthine and xanthine to uric acid catalyzed by
xanthine oxidoreductase, “being uncoupled” of NOS to their
primary role of NO synthesis, the transfer of electrons from
NADPH catalyzed by NADPH oxidase, and other sources
like the monoamine oxidases, lipoxygenases, cyclooxy-
genases, cytochrome P450, neutrophils, and catecholamine.

ROS mainly cause cardiomyocyte death through apopto-
tic pathway, autophagic pathway, inflammatory pathway,
and cytotoxic effect. On the one hand, ROS initiate one apo-
ptotic pathway through Ca2+ overload and decreased ratio of
Bcl-2 to Bax, then formation of MPTP, mitochondrial mem-
brane potential collapse, release of apoptotic signaling mole-
cules, and finally activation of caspase-3. On the other hand,
ROS initiate exogenous apoptotic pathway by activating
MAPK family, upregulating activated NF-κB, promoting
the synthesis and release of TNF-α, binding of TNF-α to
membrane surface receptors, and activating caspase-8 and
caspase-3. Besides, ROS trigger ER-related apoptosis with
the increased expression of CHOP and the activation of
caspase-12. As for autophagic pathway, ROS induce decrease
of LAMP2 and upregulation of BECN1, leading to impaired
autophagic flux and excessive autophagy. About inflamma-
tion, ROS lead to pathological injury through inflammatory
response with cytokine release, NF-κB activation, increased
adhesion molecules, and leukocyte/endothelial cell interac-
tion. The inflammatory response also induces MMPs activa-
tion, then leading to collagen degradation, myofibril slippage,
and left ventricular dilatation. Finally, NO synthesized by
iNOS and ONOO- produced by NO and O2

- cause cardio-
myocyte death through cytotoxicity.

Fortunately, some interventions are currently available
for ROS-induced reperfusion injury, including antioxidant
therapy, along with regulation of apoptosis-related path-
ways, autophagy-related pathways, and inflammatory
response. Researches have shown that these interventions

12 Oxidative Medicine and Cellular Longevity



can reduce reperfusion-mediated complications such as
remodeling, arrhythmias, myocardial stunning, microvascu-
lar obstruction, and heart failure to a certain extent, as well
as reduce mortality.

However, researches on the mechanisms of reperfusion
injury caused by oxidative stress still need to be further
improved, and more measures targeting various pathways
and targets need to be explored. In addition, many of the cur-
rent studies are based on animal or molecular level while
fewer clinical studies have been done. Therefore, in future
studies, (i) it may be of additional value to develop a compre-
hensive understanding of the oxidative stress involved in
MI/RI and its associated signaling pathways, thereby reduc-
ing the risk of exposure. (ii) In terms of treatments, in addi-
tion to antioxidant therapies, systematic interventions
targeting various pathways may overcome the limitations of
single measures and targets. (iii) In addition to more abun-
dant and mature laboratory research, more clinical research
should be performed appropriately.
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